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Abstract

Background: Morphological features are widely used in the study of neuronal function and pathology. Invertebrate
neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their
fine features. Such variability can be quantified using detailed spatial analysis, which however requires the
morphologies to be registered to a common frame of reference.

Results: We outline here new algorithms— Reg-MaxS and Reg-MaxS-N— for co-registering pairs and groups of
morphologies, respectively. Reg-MaxS applies a sequence of translation, rotation and scaling transformations,
estimating at each step the transformation parameters that maximize spatial overlap between the volumes occupied
by the morphologies. We test this algorithm with synthetic morphologies, showing that it can account for a wide
range of transformation differences and is robust to noise. Reg-MaxS-N co-registers groups of more than two
morphologies by iteratively calculating an average volume and registering all morphologies to this average using
Reg-MaxS. We test Reg-MaxS-N using five groups of morphologies from the Droshophila melanogaster brain and
identify the cases for which it outperforms existing algorithms and produce morphologies very similar to those
obtained from registration to a standard brain atlas.

Conclusions: We have described and tested algorithms for co-registering pairs and groups of neuron morphologies.
We have demonstrated their application to spatial comparison of stereotypic morphologies and calculation of
dendritic density profiles, showing how our algorithms for registering neuron morphologies can enable new
approaches in comparative morphological analyses and visualization.
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Background
Since Ramon y Cajal’s ‘Neuron Theory’ [1], neuronal mor-
phology has been a prominent field of study in Neuro-
science. With early hand-drawn illustrations, later camera
lucida tracings and more recent digital reconstructions
[2], scientists have investigated the structure of individ-
ual nerve cells to better understand its role in neuronal
function and pathology. Using modern imaging tech-
niques and reconstruction algorithms, labs from around
the world are producing huge numbers of detailed 3D
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morphologies [3, 4], and databases have been developed
to collect and host such data [5].
A prominent application of neuron morphology is in

comparative studies aiming to quantify the inter-group
and intra-group variability of neurons. Neuronal shape
and structure have been known to vary widely, even across
specimens of a single species, making their characteriza-
tion and classification a very difficult task [6]. Although
long investigated [7, 8], the general principles underly-
ing such diverse structures have largely been elusive, with
a few widely applicable ones being uncovered only in
the last decade [9–12]. Many different approaches with
increasingly complex methods have therefore been used
in the investigation of neuronal shape and structure.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2136-z&domain=pdf
http://orcid.org/0000-0001-7928-877X
mailto: ajayramak@bio.lmu.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Kumaraswamy et al. BMC Bioinformatics  (2018) 19:143 Page 2 of 16

A common approach has been to statistically test the
variance of whole cell scalar measures ([13, 14]) of neu-
ronal morphologies within and between groups. Although
these methods have been successful in some cases
[15–17], they have proven unsuitable for quantifying finer
changes in topology and morphology [15, 18].
The next finer level of quantification involves divid-

ing each morphology into concentric disks or shells
about pre-identified centering points, grouping topolog-
ically or morphologically equidistant regions from dif-
ferent individuals and computing statistical variability of
morphological and topological measures like the num-
ber of dendrites [19–21] within and across groups to
characterize morphologies. For each such set of corre-
sponding regions, statistical variability of morphological
and topological measures like the number of dendrites
[19–21] are used to characterize morphologies. Although
this approach has been successfully used to quantify inter-
group and intra-group variability in several studies of spe-
cific cell types [22–25], it has been found to be inadequate
for morphologies that have similarly complex structures
but differ in fine spatial distributions of morphological
and topological features [15, 18]. For such cases, Mizrahi
et al. [18] illustrated the use of Hausdorff Distance based
features by quantifying the overall spatial dissimilarity
between morphologies at different spatial scales. More
recently, Kanari et al. [26] proposed a novel feature based
on radial distance and topological “persistence” of den-
drites and showed that a distance measure based on it
could distinguish groups of complex morphologies with
fine differences. A shortcoming of these approaches is that
regions that are morphologically or topologically equidis-
tant are lumped together for analysis, which can lead
to dilution or cancellation of differences. Another draw-
back of this approach is the requirement for identification
of corresponding centering points across different spec-
imens, especially for invertebrates for which the somas
are “segregated” [27] and variably located (for example,
see Additional file 1 that visualizes classified groups of
morphologies from Drosophila melanogaster).
For localization of inter-group and intra-group differ-

ences in morphological features, a spatial correspondence
needs to be established between regions, in other words,
the morphologies need to be co-aligned or co-registered.
Several recent studies have proposedmethods for such co-
registration of morphologies and used them to compare
morphologies.
Fiduciary markers can be used to register the orig-

inal image data to a standard brain before extracting
morphologies [28, 29]. Although this approach is very
effective for brain regions with an existing standard brain
[30–32], construction of a new standard brain is beyond
the means of individual researchers as it requires a huge
concerted effort. Furthermore, even for the cases where

brain atlases are available, registration of individual mor-
phologies can be ineffective due to lack of sufficient
fiduciary markers in the brain region of interest. Hence
methods that co-register morphologies without requiring
external information are needed.
Other studies have presented co-registration methods

that do not need fiduciary markers. Mizrahi et al. [18]
implemented a method consisting of a translation for
matching landmarks and rotation about one axis based on
radii of ganglia. BlastNeuron [33] uses an affine registra-
tion method based on pointwise Euclidean distances and
RANSAC sampling [34] as a preprocessing step for estab-
lishing detailed spatial and topological correspondence
between morphologies. Several Iterative Closest Point
(ICP) based methods from computer vision and biomed-
ical imaging are also applicable, specifically the ones that
can handle morphologies scaled differently along dif-
ferent axes [35, 36]. All these methods use measures
of dissimilarity based on pointwise Euclidean distances
for registration and hence seek a solution of point-to-
point or surface-to-surface overlap, which can be hard
to achieve for neuron morphologies, due to natural bio-
logical variation in their fine spatial structures. This has
also been a major consideration in the construction and
application of brain atlases [37]. Even neurons that have
highly consistent global spatial features show consider-
able variation in their lower order branches [18, 37].
Moreover, the spatial region occupied by dendritic arbor
has been shown to be important for the classification
and synthesis of morphologies [15] and for investigating
the role of single neuron morphology in the popula-
tion [38]. This is consistent with dendrites and axons
occupying specific spatial regions for making synaptic
connections, while, within these regions, there can be
variability in the exact arborization patterns at fine spa-
tial scales [10]. Therefore, our approach aims to match the
volume occupied by dendritic arbors at different spatial
scales instead of seeking a point-to-point match between
morphologies. Specifically, affine transformations are
applied to blurred volume representations of morpholo-
gies at different spatial scales (Fig. 1) to maximize spa-
tial overlap between volumes occupied by them. Using
this approach, we present Reg-MaxS (Registration based
on Maximization of Spatial overlap) and Reg-MaxS-N
for co-registering pairs and groups of morphologies,
respectively.

Methods
We describe here algorithms for co-registration of mor-
phologies based on maximizing spatial overlap and such
an approach requires defining a measure of spatial dissim-
ilarity betweenmorphologies and describing a strategy for
finding a transformation that minimizes this dissimilarity.
We discuss these aspects in the following subsections.
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Fig. 1 Volume representation of morphologies and spatial dissimilarity profiles at different voxel sizes illustrated using planar morphologies. Top
row: Two example planar morphologies with volume representations at different voxel sizes. Circles visualize SWC points and lines their connectivity,
with circle sizes indicating the diameter of the points. The two morphologies are identical but are rotated against each other about their centroids.
Their discretized volume representations at corresponding voxel sizes are indicated by the filled squares. Bottom row: Variation of spatial dissimilarity
between the morphologies at different voxel sizes as one of the morphologies (red morphology in top row) was rotated about its centroid.
Dissimilarity was quantified using the spatial non-centric measure (see main text). The actual rotation difference between the morphologies is
indicated by the red line. With decreasing voxel size, spatial dissimilarity profiles show increasing number of local minima (green arrows)

Measures of spatial dissimilarity
Our algorithms approach spatial dissimilarity based on
the overlap between volumes occupied by morphologies
at different spatial scales. The following definition for
volume occupied by morphologies is used.

Representing the volume of amorphology
A common way of representing a neuron’s three dimen-
sional structure is by using the SWC format [14, 39],
which represents a binary tree embedded in three dimen-
sional space. Each point or node has, apart from its
three spatial coordinates, a radius associated with it.
With these features, every parent-child pair of nodes
can be used to construct a frustrum, and consequently
a set of connected frustra can be constructed from
a tree structure which then represents the neuronal
morphology. In our algorithms, to extract a volume repre-
sentation of a morphology described in the SWC format,
the three dimensional space containing the morphol-
ogy is discretized into a set of equally sized cubic vox-
els (Fig. 1 top row). The voxels are positioned so that
there is a voxel with its center at the origin of the
space and the edge length of a voxel, which we term
“voxel size”, is the most important parameter of this
volume discretization. Among these voxels, those that
contain at least one point of the morphology are identi-
fied and the resulting set of voxels is used to represent
its volume.

Measures of spatial dissimilarity for twomorphologies
Given two morphologies A and B, we define spatial dis-
similarity (D) from their volume representations setA and
setB as:

D(setA, setB) = n(setA − setB) + n(setB − setA)

n(setA ∪ setB)

= 1 − n(setA ∩ setB)

n(setA ∪ setB)

where n() represents the number of elements in a set, and
∪ and ∩ represent the set union and set intersection oper-
ators, respectively. This measure essentially quantifies the
spatial overlap between two morphologies normalized by
their total volume.
Our algorithms use two measures of spatial dissimilar-

ity, which we call “centric” and “non-centric” measures.
The non-centric measure calculates the spatial dissimi-
larity between morphologies based on the values given,
without applying any transformations. This measure is
used when estimating translation and rotation differences
between morphologies. The centric measure first trans-
lates one of themorphologies so that its centroid coincides
with that of the other and calculates spatial dissimilar-
ity using the volumes of the resulting morphologies. This
measure is used when estimating scaling differences.
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Measures of spatial dissimilarity for a group ofmorphologies
We define a measure for more than two morphologies
based on voxel occupancy in the following paragraphs.
Given a group of morphologies, occupancy of a voxel is

defined as the total number of morphologies of the group
that have at least one point belonging to the voxel. A his-
togram of voxel occupancy values is calculated using all
voxels with non-zero occupancy. A weighted histogram is
created by multiplying each count of the histogram by its
voxel occupancy. A normalized histogram is created by
normalizing the weighted histogram by its sum.
It is desirable that a perfectly co-registered group of

morphologies, i.e., a group with each morphology occu-
pying the same set of voxels, has a spatial dissimilarity of
zero. The normalized histogram of such a group would
have a value of one at voxel occupancy equal to the
size of the group and zero for all other values of voxel
occupancy. Larger deviation from such a normalized his-
togram indicates larger spatial dissimilarity. Therefore, we
define spatial dissimilarity of a group of morphologies as
the distance between its normalized histogram and the
normalized histogram corresponding to perfect spatial
overlap, quantified by Earth-Mover-Distance [40].

Estimating best transformations
In our approach, morphologies are co-registered by
repeatedly removing rotation, scaling or translation dif-
ferences. These differences are estimated using a multi-
scale method based on exhaustive searches, which are
described in the following paragraphs. Since the measures
defined above show multiple local minima over the space
of transformations, especially when working at low voxel
sizes (Fig. 1), gradient based optimization techniques are
not suitable.

Exhaustive search
Exhaustive search is a basic search algorithm where all
candidates from the search space are sequentially gen-
erated and tested to find the solution which optimizes
a certain criteria. To illustrate this with the example of
estimating the rotational difference between two mor-
phologies, exhaustive search can be formulated as sequen-
tially generating all possible rotations, applying them to
one of the morphologies, calculating spatial dissimilarity
for each of them with the reference and choosing that
rotation which leads to the least dissimilarity. However,
the number of possible rotations is infinite. Therefore,
an approximate estimate is obtained by generating a dis-
crete set of equally spaced rotations from a plausible
region of the rotation space and exhaustively searching
among these rotations for the optimal rotation. This can
be implemented by parametrizing rotation, sampling the
plausible range of each parameter uniformly with a cer-
tain inter-sample-interval, and exhaustively searching all

combinations of the resulting parameters (for implemen-
tation details see Additional file 2).

Multi-scale estimation
Using exhaustive search on a discretized search space
imposes a trade-off between accuracy of the resulting
estimate and the computational cost associated with
its calculation. To reduce this computational cost, our
algorithms use the strategy of hierarchical or multi-
resolution matching [41, 42] which has been success-
fully used to speed up and reduce errors of 3D image
registration methods. Starting at the largest voxel size,
it runs an exhaustive search over an equally spaced
discrete set of plausible parameters to find an esti-
mate. The exhaustive search at the next lower voxel
size is run over a smaller region around this estimate
determined by its uncertainty (see Additional file 2 for
more details). Thus estimates are progressively refined
by running exhaustive searches over a sequence of dis-
cretized volumes generated using decreasing values of
voxel size.

Reg-MaxS
Using this multi-scale estimation method to determine
transformation differences between morphologies, Reg-
MaxS iteratively applies transformations to remove deter-
mined differences until no transformation reduces the
spatial dissimilarity between the morphologies any fur-
ther. It first translates one of the morphologies so that its
center coincides with the other. It then applies a sequence
of translation, rotation and scaling transforms to mini-
mize the spatial dissimilarity between morphologies. The
order in which the different transformations are applied is
determined based on how the application of one transfor-
mation influences the subsequent estimation of another
transformation difference.
Rotation and translation do not affect each other,

i.e., if there are only rotation and translation differ-
ences between morphologies, it does not matter whether
the rotation difference is removed first and then the
translation difference or vice versa. However, scaling
and rotation/translation affect each other, i.e., applying
a scaling affects a subsequent estimation of a transla-
tion/rotation difference and vice versa. Hence, Reg-MaxS
applies a sequence of translation/rotation transforms until
no translation or rotation can reduce spatial dissimilar-
ity further. Then it applies a scaling transform. This is
followed again by a set of translation/rotation transforms
which is then followed again by a scaling. This itera-
tion of alternatively applying a set of translation/rotation
and scaling is continued until none of the transforms can
decrease the spatial dissimilarity between the morpholo-
gies any further. Finally, the iteration at which spatial
dissimilarity wasminimized is chosen as the final solution.
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(see Additional file 2 for actual algorithm). Note that Reg-
MaxS does not handle reflections. Any reflectionsmust be
removed before the algorithm is applied.

Reg-MaxS-N
Reg-MaxS-N is an algorithm for co-registering multi-
ple morphologies. It uses Reg-MaxS for co-registering
pairs of morphologies and is based on “iterative aver-
aging” [43] which has been successfully used to gen-
erate several standard brain atlases [43–45]. It is an
iterative algorithm, which in each iteration uses a refer-
ence volume and registers all morphologies to it. From
the resulting registered morphologies, it generates an
“average volume”, which is then used as the reference
in the following iteration. For the first iteration, vol-
ume occupied of one of the morphologies to be reg-
istered is chosen as the initial reference. The iteration
stops when all pairwise registrations of an iteration are
rejected (see “Accepting a pairwise registration” section)
Finally, the iteration at which the occupancy based
measure of the morphologies was minimized is cho-
sen as the final solution (see Additional file 2 for
actual algorithm).

Computing the average volume
There are several ways of generating an average volume
from a group of registered morphologies. In image stack
registration paradigms, where voxel values are multi-
valued and numerical (E.g.: for grayscale image stacks),
an average of a set of images is generated by averag-
ing the value for each voxel across the set of images.
In other problems where voxel values are non-numerical
(string labels for example, as in [43]), a democratic pol-
icy is used, where the most frequently occurring value
is chosen for each voxel. However, in our formulation
each voxel takes one of two values, ’1’ or ’0’, indicating
whether it contains at least one point of the morphol-
ogy or not. Using a democratic policy would mean that
the average retains only those voxels for which more mor-
phologies have ’1’s than ’0’s. For those cases where some
parts of the morphologies have not yet overlapped at the
end of the first iteration, this policy would remove those
parts from the average. Since the morphologies are reg-
istered to this average in the following iteration, those
parts would no longer be taken into account for regis-
tration. Instead, we use a more conservative approach
and assign a voxel in the average volume to be ’1’ if
at least one of the morphologies being averaged has a
value ’1’. In other words, the average volume of a given
set of morphologies is calculated as the union of the
voxel sets of all the morphologies. This ensures that
each morphology is completely represented in the average
and thereby contributes equally in determining the final
registration.

Initial approximate registration
For the first iteration, an initial approximate registration
is performed by matching centroids. For all subsequent
iterations, no initial registration is applied.

Restricting total scaling
In every iteration, Reg-MaxS-N uses Reg-MaxS for regis-
tering morphologies to an average volume. A parameter
of Reg-MaxS is the range of values of scales over which
Reg-MaxS searches to find the scale that, when applied
to the test morphology, minimizes its spatial dissimilar-
ity with the reference. However, if this range of possible
scales is constant, and Reg-MaxS-N repeatedly aligns the
morphologies to the average volume of the previous itera-
tion, it would scale the morphologies larger and larger to
stretch the dimensions which show high spatial dissimi-
larity. If such scaling is not constrained, the morphologies
would become disproportionately and unrealistically large
to achieve a high similarity value. Hence, Reg-MaxS-N
constrains the total scaling that is applied to a morphol-
ogy. It keeps track of the total scaling that has been already
applied to a morphology at the end of each iteration and
reduces the amount of scaling that can be applied to it
in the next iteration. This prevents the total scaling from
becoming unrealistic.

Normalizing final morphologies
As explained above, since Reg-MaxS-N repeatedly reg-
isters morphologies to the average of the previous iter-
ation, the final morphologies would have translation,
rotation and scaling differences with the initial refer-
ence morphology, i.e., the reference morphology of the
first iteration. For further analysis on these final regis-
tered morphologies, it is convenient to transform them
such that they are comparable to the original refer-
ence morphology. Thus, Reg-MaxS-N calculates the sum
total of all translation, rotation and scaling transforms
applied to the original reference morphology over all
iterations and applies the inverse of this total trans-
formation to all the final registered morphologies. This
makes all of them comparable with the original reference
morphology.

Accepting a pairwise registration
At each step, Reg-MaxS uses the multi-scale method
for determining transformation differences. In the multi-
scale method, the final estimate is determined at the
lowest voxel size of the algorithm. Thus, Reg-MaxS tries
to minimize spatial dissimilarity between two morpholo-
gies at this lowest voxel size. Doing so could lead to an
increase in spatial dissimilarity at a higher voxel size. This
is acceptable, since we want an exact or a very large over-
lap between the volumes of the morphologies. However,
when working iteratively with a group of morphologies,
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the reference corresponds to an actual morphology only
for the first iteration. For all other iterations, it is a con-
servative “average” representing the union of the volumes
of several morphologies, which does not represent any
single morphology. Sacrificing spatial overlap at a higher
voxel size for spatial overlap at a lower voxel size can
cause over-fitting, in the sense that parts which do not
necessarily correspond to each other would end up being
randomly matched. Hence, a morphology registered to an
average is accepted only if spatial dissimilarity at the high-
est voxel size has decreased. If the spatial dissimilarity at
the highest voxel size has remained the same, then the
spatial dissimilarity at the next highest voxel size is con-
sidered, and so on. When a registration is not accepted,
the test morphology is itself designated as the registered
morphology.

Testing the methods
To validate Reg-MaxS and Reg-MaxS-N, we tested them
on several groups of morphologies. We defined mea-
sures for quantifying performance and calculated them
for each of the test cases. Comparing these mea-
sures, we identified the cases where the algorithms
performed poorly and investigated the reason behind
them. In this section, we describe the morpholo-
gies and performance measures used for testing the
algorithms.

Morphologies used for testing
Synthetic Morphologies used to test Reg-MaxS To
illustrate its working and explore its limitations, we
applied Reg-MaxS to synthetic data generated from a
morphology of a visual neuron from the blowfly [15]
(Fig. 2b green) obtained from NeuroMorpho.org [2]. The
morphology is nearly two dimensional and has a dense
dendritic arbor with a thick axon which projects to a
couple of nearby regions.
We first created a set of 10 noisy morphologies by

adding independent zero-mean Gaussian noise of stan-
dard deviations (std) 1, 3, 5, ...,17, 19 μm to the
points of the morphology. Next, 100 different random
transformations were constructed by drawing transla-
tions from a uniform distribution over [-20, 20]μm,
rotations from a uniform distribution over [-30, 30]
degrees and scaling from a uniform distribution over
[0.5, 1/0.5]. Each transformation was applied to the set
of ten noisy morphologies to generate one hundred
such sets. In addition, 1000 noiseless morphologies were
generated by applying 1000 different random transfor-
mations constructed as above to the original noiseless
morphology. To summarize, we used 2000 transformed
morphologies: (1000 without noise) + (100 with noise
of std 1μm) + (100 with noise of std 3μm) +....+
(100 with noise of std 19μm).

Morphologies used to test Reg-MaxS andReg-MaxS-N
Table 1 describes the five groups of neuron morphologies
from Drosophila melanogaster used for testing Reg-MaxS
and Reg-MaxS-N. Morphologies within a group have
stereotypic structure but each group shows a different
three dimensional dendritic arborization (see Additional
file 1).
All the morphologies were generated from image

stacks of the FlyCircuit Database [31]. The morphologies
reconstructed without registering to any standard brain
atlas (“non-standard” morphologies) were obtained from
NeuroMorpho.org [2]. Morphologies which were recon-
structed after registering to a Drosophila standard brain
[30, 46] (“standardized” morphologies) were obtained
from Dr. Gregory Jefferis.

Measures for quantifying performance of Reg-MaxS
Reg-MaxS was evaluated by applying it to register a test
morphology to a reference and calculating residual errors
based on the Euclidean distances of corresponding point
pairs between result and reference morphologies. When
synthetic morphologies were used, the test morphologies
were randomly transformed versions of the reference and
hence a pointwise correspondence was readily available.
When real morphologies were used, test and reference
morphologies were from the group ‘LCInt’ and no such
correspondence was available. In this case, correspon-
dences were defined by choosing the nearest neighbor
among the test SWC points for every SWC point of the
reference morphology.

Measures of performance: The residual error above
between result and reference morphologies was quanti-
fied as follows. Given a reference morphology P and a
result morphology Q1, let {p1, p2, · · · , pm} be the SWC
points of P and {qp1 , qp2 , · · · , qpm} be their correspond-
ing points in Q1. From these points, a set of Euclidean
distances

{
dQ1
1 , dQ1

2 , · · · , dQ1
m

}
were calculated as follows:

dQ1
i =

√(
pxi − qxpi

)2 + (
pyi − qypi

)2 + (
pzi − qzpi

)2

for i in {1, 2, 3, · · · ,m}
where the superscripts x, y and z indicate coordinates in
space. We used multiple tests for validation and therefore
given a set of tests {Q1,Q2,Q3...,Qn}, a set of Euclidean
distances as shown below were calculated.{

dQ1
1 , dQ1

2 , · · · , dQ1
m ,

dQ2
1 , dQ2

2 , · · · , dQ2
m ,

· · · , · · · , · · · , · · · ,
dQn
1 , dQn

2 , · · · , dQn
m

}

Since the finest spatial scale at which Reg-MaxS regis-
ters morphologies is the smallest voxel size used, distances
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Fig. 2 Examples of pairwise co-registration of morphologies using Reg-MaxS. Results of pairwise co-registration of a morphology (green) and three
versions of it (blue, magenta and red) transformed by random translations, rotations and scaling. In each example, Reg-MaxS was applied to
co-register a transformed morphology to the reference. a Distribution of corresponding point pairs distances between the resulting morphologies
and the reference. Box plots extend between first and third quartiles with the median indicated by a black line while whiskers indicate the extrema.
The red dashed line indicates the smallest voxel size used for the co-registrations. The Y-axis has been scaled to focus on distances in the range zero
to the lowest voxel size, which indicate good registration performance. Asterisk indicates whether corresponding point pairs were significantly
closer than the smallest voxel size used according to Signs test at 1% significance level. b The morphologies before and after co-registration.
Reg-MaxS was successful in removing the transformation differences between the morphologies for Example1 and Example2 as shown by
distribution of distances in (a) and close alignment in (b, “After”). For Example 3, which showed a high degree of anisotropic scaling (MAS=0.37),
some scaling differences remained

less than the smallest voxel size indicate good registration.
We regrouped these distances in two ways to quantify two
kinds of performances:

1. Performance for every test across SWC points, using

Table 1 Neurons from Drosophila melanogaster used for testing
Reg-MaxS and Reg-MaxS-N

Group
name

No. of mor-
phologies

Description NBLAST
Cluster [46]

LCInt 8 Interneuron of the fly
Lobula complex

246

ALPN 14 Neuron projecting
from the antennal
lobe to the
mushroom body

458

OPInt 23 Interneuron of the fly
Optic lobe

209

AA1 12 Interneuron of fly
ventrolateral
protocerebum

921

AA2 9 Neuron of the fly
antennal
mechanosensory and
motor center

803

{{
dQ1
1 , dQ1

2 , · · · , dQ1
m

}
,
{
dQ2
1 , dQ2

2 , · · · , dQ2
m

}
, · · · ,{

dQn
1 , dQn

2 , · · · , dQn
m

}}

2. Performance for every SWC point of the reference
morphology across tests, using,{{

dQ1
1 , dQ2

1 , · · · , dQn
1

}
,
{
dQ1
2 , dQ2

2 , · · · , dQn
2

}
, · · · ,{

dQ1
m , dQ2

m , · · · , dQn
m

}}

These performance measures were calculated as the
percentage of tests or SWC points for which distances
were significantly smaller than the smallest voxel size
used. Since only distance values smaller than the smallest
voxel size were relevant, we used the one-tailed Wilcoxon
test, also known as the Signs test with a significance level
cutoff of one percent.

Measure of anisotropic scaling: Some preliminary tests
with Reg-MaxS indicated that performance of the
algorithm was affected by different scaling along dif-
ferent axes of the morphologies relative to each other
(see “Results” section). To quantify such differences in
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scaling along axes, we defined the following Measure of
Anisotropic Scaling (MAS):

MAS = 1 − 1
3

(
s1
s2

+ s1
s3

+ s2
s3

)

where s1, s2, s3 are the scaling differences along the axes
arranged in ascending order. MAS has a value of zero
when the scaling differences along all axes are equal, and
increase gradually to one as the scales become more and
more different.

Comparing Reg-MaxS-N with other methods
We compared the performance of Reg-MaxS-N with Reg-
MaxS and four other methods for co-registering mor-
phologies from recent studies:

• PCA: A method using Principal Component Analysis
based on a similar method for image stacks [47].

• PCA + RobartsICP: The PCA method above
followed by Anisotropic-Scaled Iterative Closed
Point [36].

• BlastNeuron: The affine transformation step of
BlastNeuron [33].

• Standardized: A method using a standard brain [30].

Code for BlastNeuron and RobartsICP was obtained
from the respective authors. Morphologies registered to a
standard brain were provided by Dr. Gregory Jefferis. The
PCA method was implemented as follows. Given a test
and a reference morphologies, we assumed that they have
similar dendritic density profiles and were oriented simi-
larly in space. Based on this, the method assumes a corre-
spondence between the first principal axes (principal axes
corresponding to the largest principal factors), second
principal axes and the third principal axes of the two mor-
phologies. This method translates the test morphology so
that its center coincides with that of the reference and
rotates it so that their corresponding principal axes align.
Scaling differences are determined based on the variances
of the morphologies along the corresponding principal
axes and the test morphology is appropriately scaled.
Each registration method was applied to each of the

five groups of morphologies with the standardized ver-
sion of one of the morphologies as the initial reference.
Performance was quantified using the occupancy-based
measure defined above. The results of PCA, PCA +
RobartsICP, Reg-MaxS and Reg-MaxS-N were in the
same frame of reference as the standardizedmorphologies
allowing direct comparison. The results of BlastNeuron
however were in a different frame of reference.
In addition, the above registration tests were repeated

three times for each method and each group using differ-
ent morphologies as initial references and performances
were quantified in each case.

Computing density profiles from sets of registered
morphologies for visualization
We visualized the results of PCA, BlastNeuron and Reg-
MaxS-N along with the standardized morphologies by
constructing density profiles from each of them and by
maximal projections of these density profiles along two
orthogonal planes. These density profiles were generated
using the method described in [30]. For each set of mor-
phologies that were co-registered, a density profile was
constructed discretized with a voxel size of 0.25μm ×
0.25μm × 0.25μm. Each morphology was resampled so
that the distance between any pair of connected points
was at most 0.1μm. Each voxel that contained at least
one point of the morphology was assigned a value of 1
and all others were assigned 0. This binary density pro-
file was smoothed using a unity sum 3D discrete Gaussian
Kernel. The standard deviation of this kernel was cho-
sen individually for each group of morphologies. Density
profiles so calculated for each morphology were averaged
across morphologies to obtain a density profile for the set
of morphologies.

Results
Testing Reg-MaxS with synthetic morphologies
Testing Reg-MaxSwith noiselessmorphologies
We first used the synthetically generated noiseless mor-
phologies for testing Reg-MaxS. In each of these test reg-
istrations, the respective original morphology was always
used as the reference while a transformed version of the
original morphology was used as the test. The small-
est voxel size used was 10 μm for all the tests. When
pointwise distance statistics were calculated for each test
registration across SWC points, 675 of 1000 tests (67.5%)
had final distances that were significantly smaller than
the smallest voxel size (n=1290, Signs Test, 1% signif-
icance level). When pointwise distance statistics were
calculated for each SWC point across test registrations,
1287 of 1290 SWC points (99.76%) had final distances
that were significantly smaller than the smallest voxel
size (n=1000, Signs Test, 1% significance level). Thus,
although Reg-MaxS fails to register a significant number
of SWC points in a third of the test registrations, the num-
ber of points for which it consistently fails across tests
is small.
Three example tests are illustrated in Fig. 2. Reg-MaxS

failed for the test morphology “Example3”, especially in
removing scaling differences. This was caused by the
heavy anisotropic scaling in this morphology (scaling dif-
ferences: 1.12 along X, 0.61 along Y and 1.27 along Z,
MAS=0.37). We analyzed this further by separating mor-
phologies based on their level of anisotropic scaling (see
“Effect of anisotropic scaling” section below).
In these tests the morphologies used had nearly planar

densities. However, Reg-MaxS also performed well on
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morphologies with 3D extent. This is demonstrated in
the “Testing Reg-MaxS with real reconstructions” section
using LCInt morphologies which have a non-planar den-
dritic density profile.

Effect of anisotropic scaling
To investigate the effect of the level of anisotropic scaling
on the performance of Reg-MaxS, we calculated statistics
only for the tests with low levels of anisotropic scaling, i.e.,
for cases where Measure of Anisotropic Scaling (MAS)
was less than 0.2. Across SWC points, 166 of 193 tests
(86%) had significant numbers of final distances smaller
than the smallest voxel size (n=1290, Signs Test, 1% sig-
nificance level). Across test registrations, 1290 of 1290
SWC points (100%) had final distances less than smallest
voxel size (n=193, Signs Tests, 1% significance level). This
shows that Reg-MaxS performs better for cases with low
levels of anisotropic scaling, i.e, for cases where the MAS
is less than 0.2.

Testing Reg-MaxSwith noisymorphologies
Reg-MaxS was designed to co-register morphologies so
that their spatial characteristics can be compared, assum-
ing that the morphologies have very similar structure
and belong to the same stereotypic neuron group but
are obtained from different specimens. Even stereotypical
neurons exhibit natural biological variability in the exact
location of their dendrites from individual to individual,
especially for higher order dendrites. Thus, in order to
properly register such morphologies, Reg-MaxS must be
able to tolerate such variability in dendritic position. We
tested this by applying Reg-MaxS to morphologies where
noise was added to each point of the morphology.
As described in “Methods” section, we generated noisy

syntheticmorphologies by first adding independent Gaus-
sian noise to each point of a reference morphology M
(Fig. 3a) to generate a noisy morphology N(M), shown in
Fig. 3b. Then we randomly transformed N(M) to obtain
the morphology TN(M), shown in Fig. 3c together with
the original morphology M. We then ran Reg-MaxS with
M as reference and TN(M) as the test to produce the
morphology RTN(M), shown in Fig. 3d. Since the best
expected registration of TN(M) to M is N(M), we com-
pared RTN(M) to N(M) and calculated point-wise dis-
tances and registration accuracy accordingly. This was
done for ten different values of standard deviation and a
hundred different transforms. Figure 3e show the results
of these tests. Reg-MaxS showed about 85% success for
values of noise standard deviation less than the smallest
voxel size.

Testing Reg-MaxS with real reconstructions
Reg-MaxS applies affine transforms for reducing spa-
tial dissimilarity between morphologies. However, mul-
tiple morphologies of the same stereotypical neuron

obtained from different specimens could show non-affine
differences as well, if the brains of the specimens show
non-affine differences. This is taken into account while
constructing brain atlases that use both affine and non-
affine transforms (e.g., [43]). To test if the limitation to
affine transforms is a major drawback for Reg-MaxS,
we registered non-standard versions of LCInt morpholo-
gies (see Additional file 1 for its 3D structure) to their
corresponding standardized versions. Since a pointwise
correspondence between the morphologies was not avail-
able in this case, we used distance statistics of nearest
point pairs of the reference morphology and the regis-
tered morphology for quantifying algorithm performance.
The algorithm performed well on all neurons, with sig-
nificant number of nearest point pairs closer than the
smallest voxel size (117 ≤ n ≤ 276, Signs test, 1% signif-
icance level). However, these tests showed slightly larger
final distances (5.51 ± 4.49 μm) compared to tests using
noiseless synthetic morphologies with only affine trans-
formation differences (3.08 ± 3.35 μm). The distributions
of nearest point distances also showed more outliers com-
pared to noiseless synthetic tests because of non-rigid
differences between the non-standard and standardized
morphologies.

Testing Reg-MaxS-N with groups of morphologies
For evaluating Reg-MaxS-N, we compared its perfor-
mance with that of five other methods (see “Methods”
section). We applied the six methods to five groups of
morphologies, repeating each case for four different initial
references. Results of applying the methods are visual-
ized in Fig. 4 using one sample morphology per group.
Performance was quantified using occupancy-based dis-
similarity (see “Methods” section) and averaged across
initial references as shown in Fig. 5. Reg-MaxS-N out-
performed PCA, BlastNeuron and PCA+RobartsICP for
four of the five groups – LCInt, ALPN, OPInt and
AA. For AA2, a group of neurons with unusually high
structural stereotypy, BlastNeuron and PCA+RobartsICP
showed slightly higher performance than Reg-MaxS-N
(see “Applicability” in “Discussion” section for more).
The density profiles calculated from the result morpholo-
gies of Reg-MaxS-N were very similar to those obtained
using methods relying on a standard brain (Fig. 6). Fur-
thermore, the performance of Reg-MaxS-N across initial
references was less variable than BlastNeuron, PCA-
Based+RobartsICP and Reg-MaxS for all groups as seen
from the error bars in Fig. 5 (also see Additional file 3).
Although PCA showed lower variance across initial refer-
ences for ALPN and AA1 morphologies, its median per-
formance was lower. Thus Reg-MaxS-N showed higher
average performance and lower sensitivity to initial ref-
erence than other existing methods in a large majority of
our tests.
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Fig. 3 Testing Reg-MaxS with noisy morphologies. a The reference morphology M. bM (green) and the morphology N(M) (blue), which was
obtained by adding independent Gaussian noise of standard deviation 7μm to each point of M. cM (green) and the morphology TN(M) (red), which
was obtained by applying random translation, scaling and rotation to N(M). d N(M) (blue) and RTN(M) (violet), which was obtained by registering
TN(M) to M using Reg-MaxS. The process was repeated using multiple random transformations and different values of noise standard deviations
(see “Methods” section). e Performance of Reg-MaxS as a function noise standard deviation. Reg-MaxS performance was calculated as the
percentage of tests for which the distribution of resulting pointwise distances was significantly smaller than the smallest voxel size (10 μm).
Reg-MaxS-N showed high performance for noise with standard deviation below the smallest voxel size

Discussion
We have presented Reg-MaxS and Reg-MaxS-N, algo-
rithms for co-registering pairs and groups of neuron mor-
phologies, respectively, by maximizing spatial overlap.
We have quantified the performance of Reg-MaxS using
synthetic and real morphologies. We have tested Reg-
MaxS-N on different groups of morphologies with differ-
ent initial references and quantified its performance for
each case.

Initialization
Spatial registration is a global optimization problem usu-
ally consisting of multiple local minima. Most registra-
tion algorithms therefore initialize using an approximate
solution before minimizing dissimilarity. Several differ-
ent strategies have been developed for initialization of
registration algorithms [48]. However, initialization is
required only when the objects being registered are
expected to have large transformation differences. Neuron
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Fig. 4 Comparative visualization of co-registration results of different methods using single morphologies. Co-registration results of PCA,
PCA+RobartsICP, BlastNeuron, Reg-MaxS-N and standard brain based method visualized using a single morphology for LCInt (a), ALPN (b), AA1 (c)
and AA2 (d). These visualizations illustrate some of the misalignments that can occur from the application of these methods

morphologies of the same type obtained from different
individuals do no usually have large transformation differ-
ences other than translations caused by arbitrary choice of
origin. Hence Reg-MaxS uses centroid alignment for ini-
tialization. Nonetheless, Reg-MaxS can be easily modified
to include an appropriate initialization if an application
demands it.

Reg-MaxS vs Reg-MaxS-N
Compared to Reg-MaxS, Reg-MaxS-N has mainly two
additional components in its procedure — iterative regis-
tration and final normalization.While Reg-MaxS registers
all morphologies once to the initial reference, Reg-MaxS-
N applies multiple iterations of such registrations, cal-
culating a new reference in each iteration. This iterative
strategy reduces the effect of the choice of initial ref-
erence on algorithm performance. In our tests, Reg-
MaxS-N performed better than Reg-MaxS for most cases,
and showed less variability across different initial refer-
ences compared to Reg-MaxS (see Figs. A31 and A35

of Additional file 3), indicating better suitability for
these cases.
For ALPN, OPInt and AA1 morphologies, the perfor-

mance of Reg-MaxS-N was nearly the same as that of
Reg-MaxS . In these cases, Reg-MaxS-N chose the mor-
phologies at the end of its first iteration as the solution,
i.e., the same solution as Reg-MaxS. However, the solution
morphologies for Reg-MaxS-N were additionally normal-
ized so that they were comparable to the initial reference
and this caused the observed reduction in performance
of Reg-MaxS-N compared to Reg-MaxS in some of these
cases. The normalization was applied mainly for the pur-
pose of visualization and comparison with other meth-
ods, and can therefore be excluded when analyzing single
groups of morphologies.

Computational cost
Reg-MaxS applies a sequence of transformations for max-
imizing spatial overlap between two morphologies. It
estimates transformation differences at each step using
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Fig. 5 Performance comparison of registration methods. Performance
of six registration methods for five different groups of morphologies.
Error bars indicate 95% confidence intervals of median performance,
calculated across values for four initial references. BlastNeuron
performance for OPInt morphologies are not shown as the program
provided by the authors stopped after a time limit of 30 min and
produced no results. In most cases, Reg-MaxS and Reg-MaxS-N
outperform the other methods

a measure of spatial overlap based on the set of voxels
occupied by each morphology. However, the set of voxels
occupied by a morphology can change with every rotation
or scaling. Thismakes it hard to predict the computational
cost of estimating transformation differences at each step
and thus to estimate the total computational cost of Reg-
MaxS. Furthermore, Reg-MaxS and Reg-MaxS-N are both
iterative algorithms which stop only when spatial over-
lap between morphologies cannot be improved further.
This further complicates the prediction of total number of
iterations and total computational cost.
We compared the run times per morphology of

Reg-MaxS, Reg-MaxS-N and other methods for co-
registration of groups of neurons with different settings
of initial reference (Table 2). Run times for Reg-MaxS-N
were many times longer than those of the other methods.
This is because Reg-MaxS-N iteratively registers mor-
phologies many times, refining their spatial alignment
and incorporating features of all morphologies. There-
fore Reg-MaxS-N is expected to run longer than methods
that register each morphology to the reference only once.
A more suitable comparison is between Reg-MaxS and
the other methods, since all of them register each mor-
phology once. These run times were comparable, differing
by factors between 0.25 and 5. The main reason for the

Fig. 6 Comparison of dendritic density profiles generated using Reg-MaxS-N and brain altas based method. a Two dimensional projections of
morphological densities after registration with Reg-MaxS-N (left columns) and standard brain based registration (right columns). Densities were
calcuated for voxels of size 0.25μm. Color indicates the fraction of morphologies that, after registration, had at least one dendrite in the particular
voxel. For illustration purposes, densities have been smoothed by a 3D Gaussian kernel with standard deviation of 1.25μm. a Densities for eight
LCInt morphologies. A1, A2 and A3 correspond to the principal axes of the standardized LCInt morphology used as initial reference. b Densities for
fourteen ALPN morphologies. A4, A5 and A6 correspond to the principal axes of the standardized ALPN morphology used as initial reference.
c Densities for twelve AA1 morphologies. A7, A8 and A9 correspond to the principal axes of the standardized AA1 morphology used as initial
reference. d Densities for nine AA2 morphologies. A10, A11 and A12 correspond to the principal axes of the standardized AA2 morphology used as
initial reference. In all cases, Reg-MaxS-N produced densities very similar to that produced by standard brain based method
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Table 2 Comparison of average runtimes per morphology for
different registration algorithms

Average runtimes per morphology (s)

Method LCInt ALPN OPInt AA1 AA2

PCA 0.07 0.08 0.45 0.59 0.25

PCA + RobartsICP 189.63 318.18 287.02 68.07 39.03

BlastNeuron 19.48 319.32 N.A. 115.95 185.78

Reg-MaxS 98.44 239.20 474.88 90.45 46.89

Reg-MaxS-N 1141.81 605.82 2796.96 883.670 633.44

The runtimes per morphology for each method and test group averaged across
initial references. The runtimes of BlastNeuron for OPInt group of morphologies
were unavailable as the program provided by the authors of BlastNeuron stopped
execution after an internally defined time limit without producing output

variabilities seen both in the run times of each algorithm
and in the relative run times between algorithms is that
all the algorithms except PCA use iterative routines for
finding optimal transformations and their run times can
vary substantially and differently depending on properties
of the morphologies like size, number of SWC nodes and
spatial structure.

Choice of voxel sizes
The most important parameters of Reg-MaxS and
Reg-MaxS-N are the set of voxel sizes over which
transformation difference estimates are refined during co-
registration of morphologies. The largest and the smallest
voxel sizes define the coarsest and the finest spatial scales,
respectively, at which the algorithms register morpholo-
gies. The algorithms consider a voxel to be occupied by a
morphology if it contains one or more of its SWC points
and align morphologies by applying transformations to
match the sets of occupied voxels. Thus morphological
features at scales finer than that defined by the smallest
voxel size are ignored by the algorithms. Therefore, a good
choice for the smallest voxel size is the spatial scale below
which morphological features are not expected to match.
In our preliminary tests involving morphologies of dif-

ferent sizes and dendritic densities, we found a smallest
voxel size of 10μm to be a good compromise and there-
fore used it for evaluating algorithm performances. To
investigate the effect of reducing the value of the small-
est voxel size, we repeated the tests by setting the value
of smallest voxel size to 5μm. The results are summarized
in Additional file 4. For pairwise co-registration of test
morphologies that were larger in size and that had fewer
features at scales smaller than 10μm than other test mor-
phologies, the performance of Reg-MaxS reduced from
67.5% at 10μm to 32.2% at 5μm. On the other hand, for
pairwise co-registration of test morphologies that were
smaller in size and had more features at scales smaller
than 10μm, performance of Reg-MaxS showed only a
minor improvement. Furthermore, performance of Reg-
MaxS and Reg-MaxS-N in co-registration of groups of

morphologies did not show any substantial changes when
smallest voxel size was changed from 10μm to 5μm
(Additional file 4, Fig. A41). Thus, the value of smallest
voxel size can influence the performance of our algorithms
depending on the size and the sparsity of structural fea-
tures of morphologies being registered, and should be
chosen accordingly.

Applicability
Reg-MaxS repeatedly applies a set of rotation/translations
followed by a scaling to maximize spatial overlap between
morphologies. Scales are estimated after aligning cen-
troids of morphologies. In other words, Reg-MaxS seeks
a solution of close centroid alignment. Therefore Reg-Max-S
and consequently Reg-MaxS-N are best applicable to
morphologies that are complete and have similarly situ-
ated centroids. Their application to partial morphologies
or largely incomplete reconstructions is not straightfor-
ward and requires caution and consideration. For more
efficient handling of such cases, the algorithms could be
modified so that they do not depend heavily on centroid
alignment.
Reg-MaxS-N was outperformed by PCA+RobartsICP

and BlastNeuron for one out of five of our test groups
of morphologies, AA2. Importantly, this was not due to
poor performance of Reg-MaxS-N, but due to untypically
good performance of BlastNeuron and PCA+RobartsICP.
A reason for this could lie in the unusually high struc-
tural stereotypy of AA2 morphologies, which is also
reflected by lower values of occupancy-based dissimilar-
ity compared to other groups (Fig. 5, also see Fig. A35 of
Additional file 3). This high structural stereotypy indi-
cates the existence of a solution with very close point-
to-point alignment, and hence BlastNeuron and PCA +
RobartsICP, which are based on pointwise distance
statistics, performed better. Under most realistic con-
ditions, however, neuron morphologies will have a
non-negligible biological variability in their fine spatial
features, and therefore we would expect Reg-MaxS-N to
perform better than the other methods considered here,
as was the case for the other four test groups. How-
ever, since our sample sizes were small (n=4) we could
not establish statistical significance for the differences
in performance.

Calculating dendritic density profiles using Reg-MaxS-N
Applying Reg-MaxS-N to three groups of stereotypic neu-
ron morphologies from the Droshophila melanogaster
brain, we have shown that Reg-MaxS-N can co-register
groups of neuron morphologies. Without the need
for an external reference like a standard brain atlas,
the registration results were very similar to mor-
phologies registered conventionally, using such a refer-
ence. Dendritic density profiles can be calculated from
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groups of registered morphologies by spatial averaging
(see “Methods” section). Thus Reg-MaxS-N can be used
to calculate dendritic density from profiles of stereotypic
neurons (Fig. 6). Such density profiles are useful in ana-
lyzing spatial variances in different subregions of neurons
and can provide insights about the brain regions sur-
rounding neurons [11]. Furthermore, density profiles so
calculated could be used in generative models of neuron
morphology [10, 49, 50]. Suchmodels usually assume sim-
ple density profiles like a uniform density over the region
of arborization. The availability of better spatial density
profile estimates can improve such existing models and
also enable the development of new models.

Possible improvements
Reg-MaxS applies a sequence of translation, rotation and
scaling transformations to maximize the spatial overlap
between morphologies. We tested Reg-MaxS with syn-
thetic morphologies that had random translation, rotation
and scaling differences and demonstrated its ability to
revert these transformations. Other affine differences like
shear would be expected to be compensated approxi-
mately by combinations of rotation and anisotropic scal-
ing transformations. However, specifically including shear
in the sequence of transformations applied could speed
up the registration process and possibly result in better
performance.
Topological features play an important role in determin-

ing neuronal function [51, 52] and hence are indispensable
in the study of neuron morphology. Some recent studies
[26, 33] have illustrated the effectiveness of the combined
use of spatial and topological features for characteriza-
tion and classification of morphology. Since Reg-MaxS-N
can provide better spatial registration of morphologies
than existing methods, it could be used as preprocessing
to remove spatial differences for algorithms that subse-
quently estimate topological differences. Further, incor-
porating topological features into its formulation could
lead to even more powerful methods for analyzing neuron
morphologies.

Conclusion
We have addressed the problem of co-registering neu-
ron morphologies, which is a crucial requirement for
visualization and spatial analysis of stereotypical neu-
rons, by formulating algorithms based on maximiz-
ing spatial overlap. Our tests using synthetic and
real groups of morphologies have indicated that our
algorithms can be used for registering stereotypic
neuron morphologies that show considerable spatial
variability in their fine structures as long as they
are similarly scaled along different axes. The dendritic
densities of stereotypic neurons calculated using our
algorithms were very similar to those produced using

a standard brain, demonstrating the potential of our
algorithms in detailed spatial comparison of neuron
morphologies.

Additional files

Additional file 1: Figure showing the five groups of neuron
morphologies used for evaluating Reg-MaxS-N registered to a standard
brain (a) Interneurons in the Lobula complex (b) Antennal lobe projection
neurons (c) Interneurons of ventrolateral protocerebum (d) Neuron of the
antennal mechanosensory and motor center (e) Interneurons in the optic
lobe. Figures from http://flybrain.mrc-lmb.cam.ac.uk/si/nblast/clusters/.
(PNG 2101 kb)

Additional file 2: Implementation details of Reg-MaxS and Reg-MaxS-N.
(PDF 306 kb)

Additional file 3: Performance comparison of Reg-MaxS-N and other
methods for different initial references plotted separately for each group of
morphologies. (PDF 593 kb)

Additional file 4: Tests Results of Reg-MaxS and Reg-MaxS-N with
smallest voxel size set to 5μm. (PDF 181 kb)
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