
Kovac et al. BMC Bioinformatics (2018) 19:101
https://doi.org/10.1186/s12859-018-2108-3

METHODOLOGY ARTICLE Open Access

Heterogeneous computing for
epidemiological model fitting and simulation
Thomas Kovac1,2*† , Tom Haber2†, Frank Van Reeth2 and Niel Hens1,3

Abstract

Background: Over the last years, substantial effort has been put into enhancing our arsenal in fighting epidemics
from both technological and theoretical perspectives with scientists from different fields teaming up for rapid
assessment of potentially urgent situations. This paper focusses on the computational aspects of infectious disease
models and applies commonly available graphics processing units (GPUs) for the simulation of these models.
However, fully utilizing the resources of both CPUs and GPUs requires a carefully balanced heterogeneous approach.

Results: The contribution of this paper is twofold. First, an efficient GPU implementation for evaluating a small-scale
ODE model; here, the basic S(usceptible)-I(nfected)-R(ecovered) model, is discussed. Second, an asynchronous particle
swarm optimization (PSO) implementation is proposed where batches of particles are sent asynchronously from the
host (CPU) to the GPU for evaluation. The ultimate goal is to infer model parameters that enable the model to
correctly describe observed data. The particles of the PSO algorithm are candidate parameters of the model; finding
the right one is a matter of optimizing the likelihood function which quantifies how well the model describes the
observed data. By employing a heterogeneous approach, in which both CPU and GPU are kept busy with useful work,
speedups of 10 to 12 times can be achieved on a moderate machine with a high-end consumer GPU as compared to
a high-end system with 32 CPU cores.

Conclusions: Utilizing GPUs for parameter inference can bring considerable increases in performance using average
host systems with high-end consumer GPUs. Future studies should evaluate the benefit of using newer CPU and GPU
architectures as well as applying this method to more complex epidemiological scenarios.

Keywords: ODE, PDE, Infectious diseases, Epidemiology, SIR model, GPU, Asynchronous, Parallel, Particle swarm
optimization, Heterogeneous computing

Background
Over the last years, substantial effort has been put into
enhancing our arsenal in fighting epidemics from both
technological and theoretical perspectives. For example,
effective vaccines and antiviral drugs can be produced
with knowledge going deep into the molecular structure
of viruses, and mathematical modeling of infectious dis-
eases helps provide insight into the disease dynamics and
the design of intervention/vaccination programs. Scien-
tists from different fields, extending from medicine and

*Correspondence: thomas.kovac@uhasselt.be
†Equal contributors
1Center for Statistics, I-BioStat, Hasselt University, Agoralaan building D, 3590
Diepenbeek, Belgium
2Expertise Centre for Digital Media, Hasselt University, Wetenschapspark 2,
3590 Diepenbeek, Belgium
Full list of author information is available at the end of the article

molecular biology to computer science and applied math-
ematics, are teaming up for rapid assessment of potentially
urgent situations [1–4].
This paper focusses on the computational aspects of

simulating these mathematical models and parameter
inference. Infectious diseases are often modeled using
ordinary and partial differential equations (ODE and
PDE). However, most models are non-linear in nature
and cannot be solved analytically. Therefore a numer-
ical method is generally used to provide approximate
solutions. Performing parameter inference on these mod-
els typically requires a large number of evaluations with
different parameter values, which can be an incredibly
computationally expensive task.
Since their inception, graphics processing units (GPUs)

have been transformed from common peripherals

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2108-3&domain=pdf
http://orcid.org/0000-0002-3235-5151
mailto: thomas.kovac@uhasselt.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 2 of 11

into powerful devices that can be used for general-
purpose programming [5–7]. GPUs are single-instruction
multiple-data (SIMD) [8] devices. They contain chips
that, in turn, contain hundreds of cores that allow hun-
dreds of threads to be executed in parallel. CUDA [9],
from NVIDIA, is a computing platform that exposes
parallel compute power of NVIDIA GPUs to developers
without a graphics background. However, it remains
difficult to program GPUs for general-purpose use as
the single-instruction, multiple-threads (SIMT) nature of
GPUs does not allow all algorithms to be mapped onto a
GPU.
Whereas GPUs are often exceptionally suited for solv-

ing big ODE/PDE problems (such as Computational Fluid
Dynamics [10–12]), the models in infectious diseases are
more troublesome; their smaller size makes it harder to
optimally utilize all GPU cores and the SIMT nature intro-
duces additional overhead which lowers performance. In
contrast, simulatingmultiple small models simultaneously
can be done efficiently on GPUs.
Inference of model parameters is usually done by maxi-

mizing the (log)likelihood such that the model accurately
describes the data at hand. A number of local and global
optimization methods can be used to this end. This paper
focuses on particle swarm optimization (PSO): a method
introduced by Kennedy et al. [13] for optimizing continu-
ous non-linear functions. Based on the principles of bird
flocking, fish schooling, and swarm theory, PSO can be
implemented in a few lines of code.
Since the exchange of information between CPU and

GPU is expensive [14], the common approach is to run all
steps of the optimization algorithm on the GPU [15–18].
Instead, this paper proposes a heterogeneous approach for
the following reasons:

• The CPU is a valuable resource that would otherwise
be left idle.

• Implementing algorithms on the GPU requires
thorough knowledge of hardware specifics for
optimal performance.

• The sequential and branching nature of the
algorithms makes them ill-suited for GPUs, since
their SIMT architecture requires every thread to
execute the same instruction at every moment.

• CPU implementation allows the use of scientific
languages such as Python, Julia or MATLAB,
significantly shortening development time.

• Several high-end implementations can be reused.

The contribution of this paper is twofold. First, an
efficient GPU implementation for evaluating small-scale
ODE models based on the Runge-Kutta method is pre-
sented and its scalability in number of threads and
equations is investigated. Second, this paper proposes the

use of an asynchronous PSO implementation, for inferring
parameters of an infectious disease model, that enables
efficient utilization of both CPU and GPU resources.

Related work
GPUs have evolved to such a degree that they have out-
paced CPUs in terms of processing speed. As a result,
they are being used for non-graphical applications such as
high-order numerical integrations [19]. Amidst a plethora
of numerical integration algorithms, Runge-Kutta meth-
ods are a family of implicit and explicit iterative methods,
with a wide variety of orders and schemes [20]. Seen
et al. [21] implemented a Runge-Kutta-Fehlberg (com-
monly denoted RK45) with adaptive step size on an
NVIDIA GPU. The authors demonstrated that the GPU
outperforms a CPU implementation, given that the prob-
lem dimensions are large enough, as in 200 equations, or
more.
Niemeyer et al. [22, 23] developed GPU versions of

the adaptive fifth-order Runge-Kutta-Cash-Karp (RKCK)
method and stabilized second-order Runge-Kutta-
Chebyshev (RKC) method, which are used for problems
of non-stiff and greater stiffness nature, respectively. The
authors came to the same conclusion; relative simple
systems of ODEs, as in 512 equations, or less, limit the
number of calculations performed on the GPU, resulting
in the fact that the transfer of data to and from the GPU
is expensive.
Murray [24] explains that a Runge-Kutta implementa-

tion with adaptive time steps is an example of a class of
problems where the task-length for individual threads is
variable. In this particular case, it is possible that the step
size modification and error control can differ for each
thread, which results in warp divergence and therefore
loss in performance. To mitigate this complication, the
author suggests that multiple data items could be bundled
into each thread. When a task for one item is completed,
a thread may advance immediately onto the next task.
In the last decade, several studies have been conducted

on PSO methods in terms of performance and efficiency,
new applications, and new variants of the algorithm. Both
Koh et al. [25] andVenter et al. [26] concurrently, but inde-
pendently, published work on a parallel and asynchronous
implementation of the PSO algorithm. Both articles pro-
pose the use of a master-slave approach, where slave pro-
cessors evaluate particles and themaster conducts particle
updates in terms of velocity and position.
Although this paper focuses on an asynchronous CPU

implementation of PSO that ships off particles to the
GPU for evaluation, the work of the following authors
is included for completeness, as they concentrated on
implementing a GPU version of PSO. Veronese et al.
[15] were the first to experiment with the PSO algorithm
and CUDA. With the entire, classical, PSO algorithm

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 3 of 11

ported to GPU using CUDA, they observed a significant
reduction of the computing time compared to both C
and MATLAB implementations. Wachowiak et al. [16]
proposed an asynchronous GPU-based approach of PSO.
Each particle is handled by a separate GPU thread, where
they run a specified number of iterations after which they
are resynchronized.
Mussi et al. [17] also present an asynchronous GPU

implementation of the PSO algorithm. The authors
aspire to overcome the drawbacks of asynchronous PSO
imposed by the master-slave approach. In their method,
the neighborhood is updated immediately after a particle
is evaluated. The same authors compared their asyn-
chronous implementation against their synchronous GPU
version of PSOwhere they noticed speedups ranging from
5 to 35 times, depending on the problem’s dimensions [27].
Hung et al. [18] propose a synchronous GPU imple-

mentation of the PSO method, meaning that the entire
process is executed on GPU. Updating velocity, position,
evaluating the given function, and updating best local and
global candidate solutions are all implemented as separate
CUDA kernels. This implies that, although the implemen-
tation is sped up by use of a GPU, the method is still
synchronous.
Wende et al. [28, 29] observed that the GPU can han-

dle large amounts of work, but that small-scale workloads
are expensive to evaluate on a GPU. When doing so, the
cost of shipping work towards and from the GPU is rather
high. Using the Hyper-Q feature of NVIDIA’s GPUs, the
authors provided a single, shared, GPU of work usingmul-
tiple CPU threads. This feat can assure that the resources
of both the CPU and the GPU are efficiently used.

Solving epidemiological models on GPUs
This paper proposes that infectious disease dynamicmod-
els are evaluated in parallel on the GPU. Since the inter-
est lies with inferring parameters of infectious disease
models, the following section outlines the characteristics
of said models. Second, a comparison is made between
the proposed approach and the previously mentioned
ones, showing where performance is gained. Third, both
the integration method and the right-hand of the ODEs
can benefit from parallelization as vector operations and
matrix-vector multiplications (i.e. calculating the force of
infection) can easily be performed on GPU.

The SIR model
A basicmodel that is often used to study infectious disease
dynamics in a population, is the Susceptible-Infected-
Recovered or SIR model which describes the flow of indi-
viduals through these mutually exclusive disease states. In
terms of the SIR model, the following set of partial dif-
ferential equations (PDEs) can be used to model these
dynamics,

⎧
⎪⎪⎨

⎪⎪⎩

∂S(a,t)
∂a + ∂S(a,t)

∂t = −(λ(a, t) + μ(a))S(a, t),
∂I(a,t)

∂a + ∂I(a,t)
∂t = λ(a, t)S(a, t) − (ν + μ(a))I(a, t),

∂R(a,t)
∂a + ∂R(a,t)

∂t = νI(a, t) − μ(a)R(a, t).
(1)

where S(a, t), I(a, t), and R(a, t) are the age- and time-
specific (a and t) number of susceptibles, infected and
recovered, respectively, with S(0, t) = B(t) the num-
ber of newborns at time t. In this paper, the basic SIR
model is used, whereas in practice this model is commonly
extended (e.g. Goeyvaerts et al. [30] use a SEIRS model).
Such extensions typically exhibit the same dynamics and
characteristics as the basic SIR model.
The force of infection λ(a, t) is given by the mass action

principle:

λ(a, t) =
∫ +∞

0
β(a, a′, t)I(a′, t)da′.

where β(a, a′, t) ≡ β(a, a′) is often assumed to be time-
independent and governed by so-called Who Acquires
Infection From Whom (WAIFW) matrices, i.e. mathe-
matically convenient structures or by the social contact
hypothesis (see e.g. [31]).
Solving a set of PDEs is not straightforward and depends

on specific assumptions made for the different model
parameters. In practice most PDE models are approxi-
mated using different methods in order to reduce the
PDE model to a more solvable and workable model. Two
well-known procedures are often used in mathematical
epidemiology [32]: (1) The Cohort Age Structured (CAS)
model replaces the set of PDEs with a set of ordinary
differential equations (ODEs) by considering K compart-
mental models representing K age-groups and using con-
tinuous transitions from one age-group to the next (see
Fig. 1; η1). (2) In a Realistic Age Structured (RAS) model
individuals change status from S to I and from I to R
during one year (assuming age-groups of one year) after
which they instantaneously move to the next age-group
(see e.g. [30]). It is often said that a RAS-model bet-
ter reflects infectious disease dynamics because children
switch grades in school generally at the same moment
during the year, and only once per year (see e.g. [33]).
For a more in depth discussion about the advantages
and disadvantages of the different methods to discretize
age-structured PDE models, the reader is referred to
[32, 34, 35].
This paper focusses mostly on the CAS model, but the

RAS model would be fairly similar. The CAS model uses
a backward in space finite difference scheme [36], com-
parable to the method of characteristics [37], essentially
breaking down the PDE into the following set of coupled
ODEs:

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 4 of 11

Fig. 1 Flow diagram for the CAS implementation of the SIR model. The individuals enter the susceptible class, then move to the infected class (at
rate λ) and after recovering they move into the immune class (at rate v). ηi is the transition rate from category ai to ai+1, and μ is the mortality rate
in this diagram

⎧
⎪⎨

⎪⎩

S(a,t)−S(a−�a,t)
�a + ∂S(a,t)

∂t = −(λ(a, t) + μ(a))S(a, t),
I(a,t)−I(a−�a,t)

�a + ∂I(a,t)
∂t = λ(a, t)S(a,t)−(ν+μ(a))I(a,t),

R(a,t)−R(a−�a,t)
�a + ∂R(a,t)

∂t = νI(a, t) − μ(a)R(a, t).
(2)

Note that using this discretization, the force of infection
can be rewritten as:

λ(a, t) =
∑

a′
β(a, a′)I(a′, t). (3)

To ensure stability of the scheme, a necessary and suffi-
cient condition is the Courant-Friedrichs-Lewy condition
[36] which requires �t ≤ �a.

Runge-Kutta-Fehlberg on GPU
With many methods to choose from, the Runge-Kutta-
Fehlberg method, commonly known as RK45, is charac-
terized as being an integration method that provides the
most bang for the buck [20]. In his paper [38], Fehlberg
describes a fifth-order method with six function evalua-
tions where another combination of the same six func-
tions gives a fourth-ordermethod. The difference between
these estimates approximate the truncation error, which
in turn adjusts the step size. Related work shows that there
have been successful attempts at porting a Runge-Kutta
method to GPU. However, in most of those implementa-
tions, each GPU thread evaluates a system of differential
equations of varying task-length, due to analyzing dif-
ferent parameter candidates for inference and given the
SIMT nature of GPU, it is difficult to minimize per-
formance loss. The following sections will outline our
approach of implementing an efficient RK45 implementa-
tion on GPU.

Using a block of threads
The proposed method differs from existing techniques in
that a block of threads, mapped on a single streaming
multiprocessor (SM), jointly integrate a single ODE while

different blocks are working on other ODEs. This has the
advantage that threads can communicate via sharedmem-
ory instead of global memory (approximately 60x faster)
[39]. However this technique only works for small sys-
tems that fit in shared memory. The reduction step in the
RK45 method would normally require a synchronization
barrier, but can be avoided when using a block of threads
through the use of warp shuffle functionality of CUDA
[39]. As a result the threads can execute the RK45method
in lock-step.

Calculating the force of infection
Another integral part of the integration process is the
right-hand side of the ODE, which can also benefit from
parallelization. Multiplying the social contact matrix β

with a vector of infected I, results in the force of infection
(FOI) λ, as depicted in Fig. 2 and Eq. 3. Given that at each
iteration of the integration process I is updated based on
an update of λ, and this multiplication must be performed
several times, it is the most computational intensive part
of the integration process.
Figure 2 shows that available threads are divided up in

order to calculate the FOI. The division scheme, describ-
ing howmany threads are used per row, is chosen based on
the GPU architecture. When calculating a single λ value,
the warp shuffle feature of CUDA is used to perform
reductions.

Asynchronous parameter inference
The next, and final, step is to infer model parameters
so that the SIR model accurately describes the observed
data by maximizing the (log)likelihood of the model, also
calledmaximum likelihood estimation (MLE). This entails
that the model is integrated using candidate parameters,
applying the ODE integration technique introduced in
previous sections. This paper proposes the use of an asyn-
chronous particle swarm method for parameter inference
with the goal of fully utilizing both CPU and GPU.

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 5 of 11

Fig. 2 Being the most computational intensive part of the evaluation, all the threads are divided up to rapidly compute the FOI, λ. For illustrative
purposes, there are 32 threads (in total) active in this example. There are four lambdas calculated in parallel; for each lambda there are eight threads
in charge of executing the actual matrix-vector calculation. This window of eight threads per row slides over the elements of the row until the
lambda is completely calculated

Particle swarm optimization
Particle swarm optimization, introduced by Kennedy et al.
in 1995 [13], is based on the principles of bird-flocking,
fish schooling, and swarm theory. Individual members of
the society can profit from the discoveries made by other
members during the search for food. The same principle
is applied to explore the parameter space of (non-linear)
problems.
Particles have both a position and velocity which are

updated at every iteration using the particles’ best known
local (Pbest) and global position (gbest). The vanilla method
decomposes into two steps, as described in Algorithm 1,
namely to first initialize all particles and then update
the particles’ position and velocity until a termination
criterion has been met.
Each particle represents candidate parameters for the

SIR model and will be evaluated by first integrating
the ODE using the proposed GPU implementation of
the RK45 method and then passing the result to the
(log)likelihood function. While the evaluation can be per-
formed in parallel, alternating between GPU and CPU
results in inefficient resource utilization. Only one proces-
sor is making progress at any given time. In addition, if
some particles take longer to evaluate, resource utilization
drops further.

Asynchronous particle swarm optimization
The vanilla PSO algorithm (Algorithm 1) requires that all
particles have updated their velocity and position before
advancing to the next iteration. On the other hand, asyn-
chronous PSO [25, 26, 40] removes this barrier with the
goal of keeping all processing units from idling. The key
to implement an asynchronous PSO algorithm is to sepa-
rate the update actions for individual particles from those
associated with the swarm as a whole. While the asyn-
chronous algorithm might require additional iterations
due to some particles running ahead of others, the con-
vergence rate is generally reported as comparable and
the algorithm significantly outperforms its synchronous

Algorithm 1 Particle Swarm Optimization
1: procedure INITPARTICLES
2: for every particle P do
3: Ppos ← RandomPosition()

4: Pvel ← RandomVelocity()
5: Pbest ← Pposition
6: if cost(Pbest) < cost(gbest) then
7: gbest ← Pbest
8: procedure UPDATEPARTICLES
9: while termination criterion is not

met do
10: for every particle P do
11: Pvel ← UpdateVelocity(Pvel,Pbest , gbest)
12: Ppos ← UpdatePosition(Ppos,Pvel)� barrier
13: for every particle P do
14: if cost(Ppos < cost(Pbest) then
15: Pbest ← Ppos
16: if cost(Pbest) < cost(gbest) then
17: gbest ← Pbest

counterpart in terms of parallel efficiency [25, 26]. This
is especially true when the evaluation time of a particle
depends on its position, which is the case for numeri-
cal integration of ODEs (as also noted by Murray [24]).
Figure 3 shows a histogram of the execution times for
the evaluations of 2048 particles in the first iteration of
the PSO algorithm. As the execution time varies between
0ms and 160ms, the synchronous algorithm will have sig-
nificant idling of processing units. In the asynchronous
algorithm, faster particles can advance to the next iter-
ation and will positively influence the slower ones, as
information is shared between the whole population of
particles.

Heterogeneous approach
The key idea to fully utilize both CPU and GPU resources
is to produce many concurrent GPU workloads which

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 6 of 11

Fig. 3 Evaluating the model with different candidate parameters together with different execution timings. This figure shows the result of
employing the PSO algorithm with 2048 particles and with one iteration step. The x-axis depicts the execution time in milliseconds and y-axis
depicts the number of particles that have been executed within the amount of time given by the x-axis. With only one iteration, particles are
initialized all over the parameter space

as a whole can fill up the GPU to capacity and asyn-
chronously offload them such that the CPU can concur-
rently pre/post-process the workloads. The Concurrent
Kernel Execution (CKE) and Hyper-Q features introduced
by NVIDIA with the Fermi and Kepler architectures,
respectively, enables this by allowing multiple CPU cores
to simultaneously launch concurrent workloads on a sin-
gle, shared, GPU. The Hyper-Q feature allows 32 simulta-
neous, hardware-managed connections (or work queues),
compared to the single work queue available on the Fermi
architecture.
When dealing with imbalanced workloads, it is

advantageous to have multiple kernels executing
concurrently instead of a single monolithic kernel as
the latter would idle GPU resources while finishing
the longest of tasks. CKE on the other hand allows the
GPU to continue execution with the next workloads.
Since offloading to GPU can be costly due to data
transfer, kernel launching and synchronization [14],
particles are grouped into batches to amortize these
costs. Given that execution time of a batch is determined
by the slowest particle in the batch, there is a trade-
off between batching and the ability to deal with the
imbalance.
It is important to note that, while Hyper-Q allows

offloading of multiple kernels, the newer generation of
GPUs still only have two copy engines. This implies
that only two data transfer operations can happen
simultaneously: one transfer from device to host mem-
ory and one in the opposite direction. This could result
in a transfer bottleneck with a drop in performance
as a result.

The CPU implementation of the particle swarm
algorithm has two goals: maximize CPU utilization and
separate the optimization algorithm from GPU details.
Ideally, the optimization algorithm should be completely
oblivious to anything GPU related such that it is easy
to reuse existing implementations and switch between
different algorithms.
The former is accomplished by multiple CPU threads

processing particles in parallel thus utilizing all cores
on the host and through the use of fibers (or corou-
tines [41]). Fibers are light-weight threads of execution
that enable cooperative multitasking. This means that a
fiber must yield its execution to enable the execution of
another. In the proposed method, each CPU thread han-
dles one or more fibers (see Fig. 4). Whenever the thread
must wait for the GPU to finish, it switches to another
fiber and continues processing different particles: either
pre-processing, offloading to GPU or computing the like-
lihood. The use of fibers also enables a single CPU core to
process multiple particles at the same time and to occupy
the 32 Hyper-Q connections.
While the use of fibers is not necessarily required to

maximize CPU usage, it makes the implementation of
the PSO algorithm much easier and free of any GPU
related details. The alternative would be to manage the
Hyper-Q work queues manually inside the algorithm. The
proposed implementation consolidates such details in the
GPU implementation.
For every Hyper-Q work queue, the implementation

also keeps several work packages containing CPU pinned
memory and GPU device memory such that it can avoid
expensive memory allocation for every offload. These

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 7 of 11

Fig. 4 The PSO algorithm is run on CPU side, while the evaluation of the particles is handled by the GPU. CPU cores send batches of particles to the
GPU asynchronously in order to increase performance. Before a batch is sent to the GPU, some pre-processing can be performed, as well as eventual
post-processing when the evaluation is finished

packages are placed in a concurrent first-in first-out data
structure from which the CPU threads can acquire them
whenever an evaluation is offloaded. In this case, the
concurrent_queue implementation of the TBB tem-
plate library [42], developed by Intel, is used.

Results and discussion
In this section, the performance and behavior of the
RK45 implementation as well as the asynchronous
parameter inference using a heterogeneous architecture
is described. The experiments were conducted on a
machine with four eight-core Intel Westmere proces-
sors running at 2.67GHz and an NVIDIA GeForce GTX
TITAN X. The machine runs the GNU/Linux operat-
ing system and CUDA 8.0 was used for programming
the GPU.

Scalability and performance of RK45 on GPU
Figure 5 shows the speedup in terms of number of GPU
threads used of the RK45 implementation when inte-
grating a single ODE as well as a performance improve-
ment of between 1.5 and 4.23 times compared to a CPU
implementation. The number of operations of this model
is in the order of O(n2), meaning that when compar-
ing 50 and 100 age categories, the latter has 4 times as
many operations. As noted by previous work [21–23],
small-scale ODE integration cannot fully utilize the GPU.
By increasing the amount of age categories, the number
of ODE equations grows proportionally and allows more
GPU threads to be effectively used.
Filling the GPU up to capacity, however, requires an

even larger ODE system. In contrast, the approach taken
by this paper is to integrate many small-scale ODEs at the

Fig. 5 The bottom row depicts the model execution timings on GPU when using three different amounts of age categories. The x-axis depicts the
amount of GPU threads used when evaluating an ODE, while the y-axis depicts the execution timing in milliseconds. The number of operations is in
the order ofO(n2), meaning that when comparing 50 and 100 age categories, the latter has 4 times as many operations. One can see that when
there are more age categories available, the better the GPU will perform when compared to the CPU. The top row depicts the speedup of the GPU
when compared with the best CPU timing for each of the three age category settings

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 8 of 11

same time. Figure 6 shows that the execution time grows
linearly for both CPU and GPU as the number of ODEs
increases. Thus the GPU implementation remains up to 4
times faster, regardless of the amount of work.
The following experiments always use the introduced

SIR model with 100 age-categories as it is commonly used
and represents a realistic range of ages.

Particle swarm optimization
To demonstrate the performance of the heterogeneous
approach compared to the CPU-only implementation,
both synchronous and asynchronous versions of the PSO
algorithm are run with 256 and 2048 particles. Execution
is terminated after 100 iterations, under the assumption
that convergence rates are the same for both versions,
in order to effectively compare execution times. All tun-
able parameters, such as number of CPU/GPU threads
and fibers, are explored and the best configuration is
reported.
Results are illustrated in Fig. 7. The synchronous ver-

sion benefits from the acceleration of the ODE integration
on GPU. However, as shown in Fig. 3, integration times
can vary significantly for different candidate values. The
trade-off in terms of batch size is clearly visible, even in
the synchronous case. Decreasing the batch size allows
CPU threads to commence post-processing more quickly,
instead of waiting for the slowest integration to finish. As
the barrier prohibits fast batches of particles to continue
to the next iteration, this benefit is not substantial. The
maximal speedup measured was 6.2 and 5.3 when using
256 and 2048 particles, respectively.
The asynchronous implementation removes the latter

problem, permitting some particles to run ahead of slow
particles, resulting in a significant speedup and the batch
size playing a more important role. The trade-off between
the ability to deal with imbalance and the overhead of
offloading multiple batches is clearly visible; a batch size
that is too small introduces too much overhead. Maximal

speedup measured for the asynchronous implementa-
tion was 12 and 10 when using 256 and 2048 particles,
respectively.
Figure 8 shows that the use of fibers has no signifi-

cant influence on execution time. For example, 32 CPU
threads, each one fiber, performs equally well when com-
pared to using one CPU thread with 32 fibers. The same
can be said over a moderate, eight-core system with four
fibers.

Conclusion
A crucial part in performing parameter inference for epi-
demiological models is integrating a set of ODEs. The
efficient implementation of RK45 on GPU is capable of
integrating up to 4 times faster than a CPU implemen-
tation. Concurrent offloading of many small-scale ODEs
can fill up the GPU to capacity while maintaining this
performance. The efficiency of the implemented RK45
method can also be improved by making it customized to
the SIR model instead of the generic approach proposed
in this paper.
The proposed method keeps optimization methods

on the CPU. Such a heterogeneous approach to asyn-
chronous particle swarm optimization, as described in
this paper, provides a way to perform parameter infer-
ence while efficiently utilizing resources of both CPU
and GPU and decreases execution time. Evaluating all
particles at once, the overall execution time is deter-
mined by the slowest evaluation. Grouping particles into
batches mitigates this variance in execution time and
increases performance. The removal of the synchroniza-
tion barrier, prohibiting particles to continue to the next
iteration, allows certain batches to run ahead of other
batches. Note, however, that a trade-off has to be made
between the ability to deal with imbalance and the over-
head of offloading multiple batches of particles. The opti-
mal batch size in our experiments achieves a speedup up
to 12 times.

Fig. 6 Each line represents the execution time for CPU and GPU when integrating an increasing number of ODEs. The x-axis depicts the number of
ODEs used and the y-axis depicts the execution time in milliseconds. Both approaches scale linearly when given more work to process with the GPU
remaining competitively faster

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 9 of 11

Fig. 7 Employing the heterogeneous, asynchronous, PSO algorithm using 256 and 2048 particles, respectively. Each bar represents the execution
time in milliseconds and each color represents a different batch size. The figure depicts that the asynchronous approach not only benefits from a
fast integration method on GPU, but keeping both CPU and GPU busy with useful work is more preferable when compared to the synchronous
approach. Given possible imbalance when evaluating ODEs, it is advisable to evaluate the particles in small batches

Fig. 8 Given that batches of particles can be evaluated asynchronously, one can ship off multiple batches of particles to the GPU in parallel. Once a
CPU thread ships off a batch of particles to the GPU, it needs to wait for it to be finished before continuing to work. Using fibers, a CPU thread can
process multiple batches at the same time and therefore increases performance. The x-axis depicts the amount of fibers per CPU thread and the
y-axis depicts the speedup of the GPU compared to the best CPU timing. A total of 2048 particles were used with 64 particles per batch

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 10 of 11

The proposed contributions enable researchers, for
example, to deal with urgent situations like epidemic out-
breaks, where a rapid assessment of intervention strate-
gies is required. Future research should ascertain how
these contributions perform on newer GPU architectures
as well as how they perform on real-life epidemiolog-
ical scenarios. Also, the proposed approach has been
programmed to work with all available GPUs on a host
system. However, such a setup has not been evaluated by
the authors and is well worth looking into.

Abbreviations
CAS: Cohort age structured; CPU: Central processing unit; CKE: Concurrent
kernel execution; FOI: Force of infection; GPU: Graphics processing unit; ODE:
Ordinary differential equation; PSO: Particle swarm optimization; PDE: Partial
differential equation; RAS: Realistic age structured; RK45: Runge-Kutta-Fehlberg;
SIR: Susceptible-infected-recovered; SIMD: Single-instruction multiple-data;
SIMT: Single-instruction multiple-threads; WAIFW: Who aquires infection from
whom; SM: Streaming multiprocessor; MLE: Maximum likelihood estimation

Acknowledgements
TK acknowledges support from a Methusalem research grant from the Flemish
government. NH gratefully acknowledges support from the University of
Antwerp scientific chair in Evidence-Based Vaccinology, financed by a gift
from Pfizer (2009-2017) and GSK (2017). This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement 682540 -
TransMID) and from the Special Research Fund of Hasselt University.

Availability of data andmaterials
Belgian demographic data was used to determine the initial age-specific
population distribution as well as an age-specific daily mortality rate. Both
datasets were obtained from Eurostat (http://ec.europa.eu/eurostat/data/
database, then click on “Tables by themes”, “Population and social conditions”,
“Population”, “Demography”, “Population”, and “Population on 1 January”).

Authors’ contributions
TK and TH both conceived, designed, and performed the experiments and
analyzed the resulting data. NH contributed the materials and analysis tools. All
authors wrote the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Center for Statistics, I-BioStat, Hasselt University, Agoralaan building D, 3590
Diepenbeek, Belgium. 2Expertise Centre for Digital Media, Hasselt University,
Wetenschapspark 2, 3590 Diepenbeek, Belgium. 3Centre for Health Economic
Research and Modelling Infectious Diseases, Vaccine and Infectious Disease
Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

Received: 28 July 2017 Accepted: 5 March 2018

References
1. Colizza V, Barrat A, Barthelemy M, Valleron A-J, Vespignani A. Modeling

the worldwide spread of pandemic influenza: baseline case and
containment interventions. PLoS Med. 2007;4(1):13. https://doi.org/10.
1371/journal.pmed.0040013.

2. Stohr K, Esveld M. PUBLIC HEALTH: enhanced: will vaccines be available
for the next influenza pandemic? Science. 2004;306(5705):2195–6.
https://doi.org/10.1126/science.1108165.

3. Gyawali N, Bradbury RS, Taylor-Robinson AW. The global spread of Zika
virus: is public and media concern justified in regions currently
unaffected? Infect Diseases Poverty. 2016;5:37. https://doi.org/10.1186/
s40249-016-0132-y.

4. Siettos C, Anastassopoulou C, Russo L, Grigoras C, Mylonakis E.
Modeling the 2014 ebola virus epidemic - agent-based simulations,
temporal analysis and future predictions for Liberia and Sierra Leone.
PLoS Currents. 2015;7. https://doi.org/10.1371/currents.outbreaks.
8d5984114855fc425e699e1a18cdc6c9.

5. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE,
Purcell TJ. A survey of general-purpose computation on graphics
hardware. Comput Graph Forum. 2007;26(1):80–113. doi:
10.1111/j.1467-8659.2007.01012.x.

6. Buck I, Govindaraju N, Harris M, Krüger J, Lefohn A, Luebke D, Purcell T,
Woolley C. Gpgpu: General purpose computation on graphics hardware.
In: ACM SIGGRAPH 2004 Course Notes. SIGGRAPH ’04. New York: ACM;
2004. doi:10.1145/1103900.1103933. http://doi.acm.org/10.1145/
1103900.1103933.

7. Lindholm E, Kilgard MJ, Moreton H. A User-programmable Vertex
Engine. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. New York: ACM;
2001. p. 149–58. https://doi.org/10.1145/383259.383274. http://doi.acm.
org/10.1145/383259.383274.

8. Flynn MJ, Rudd KW. Parallel architectures. ACM Computing Surveys
(CSUR). 1996;28(1):67–70.

9. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture
Programming Guide. Santa Clara, CA: NVIDIA Corporation; 2007.

10. Elsen E, LeGresley P, Darve E. Large calculation of the flow over a
hypersonic vehicle using a gpu. J Comput Phys. 2008;227(24):10148–61.
https://doi.org/10.1016/j.jcp.2008.08.023.

11. Niemeyer KE, Sung CJ. Accelerating Reactive-Flow Simulations Using
Graphics Processing Units. Aerospace Sciences Meetings. Grapevine:
American Institute of Aeronautics and Astronautics; 2013.
doi:10.2514/6.2013-371. https://doi.org/10.2514/6.2013-371.

12. Liu Y, Deng L. In: Wang G, Zomaya A, Martinez Perez G, Li K, editors.
Acceleration of CFD Engineering Software on GPU and MIC. Cham:
Springer; 2015. pp. 835–48.

13. Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of
IEEE International Conference on Neural Networks, vol. 4. Perth: IEEE;
1995. p. 1942–48. doi:10.1109/ICNN.1995.488968.

14. Lustig D, Martonosi M. Reducing gpu offload latency via fine-grained
cpu-gpu synchronization. In: High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium On. Washington,
DC: IEEE Computer Society; 2013. p. 354–65.

15. Veronese L, Krohling RA. Swarm’s Flight: Accelerating the Particles Using
C-CUDA. In: Proceedings of the Eleventh Conference on Congress on
Evolutionary Computation. Piscataway: IEEE Press; 2009. p. 3264–70.
http://dl.acm.org/citation.cfm?id=1689599.1690035.

16. Wachowiak MP, Foster AEL. GPU-based asynchronous global
optimization with particle swarm. J Phys Conf Series. 2012;385(1):12012.

17. Mussi L, Nashed YSG, Cagnoni S. GPU-based Asynchronous Particle
Swarm Optimization. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation. GECCO ’11. New York: ACM;
2011. p. 1555–62. https://doi.org/10.1145/2001576.2001786. http://doi.
acm.org/10.1145/2001576.2001786.

18. Hung Y, Wang W. Accelerating parallel particle swarm optimization via
GPU. Optim Methods Softw. 2012;27(1):33–51. https://doi.org/10.1080/
10556788.2010.509435.

19. Hawick K, Playne DP, Johnson M. Numerical Precision and Benchmarking
Very-High-Order Integration of Particle Dynamics on GPU accelerators.
In: Proceedings of the 2011 International Conference on Computer
Design (CDES’11). 2011. p. 83–89.

20. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes
3rd Edition: The Art of Scientific Computing, 3rd edn. New York:
Cambridge University Press; 2007.

21. Seen WM, Gobithaasan RU, Miura KT, Ismail MT, Ahmad S, Rahman RA.
GPU Acceleration of Runge Kutta-Fehlberg and Its Comparison with
Dormand-Prince Method. AIP Conf Proc. 2014;1605(1):16–21. https://doi.
org/10.1063/1.4887558.

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database
https://doi.org/10.1371/journal.pmed.0040013
https://doi.org/10.1371/journal.pmed.0040013
https://doi.org/10.1126/science.1108165
https://doi.org/10.1186/s40249-016-0132-y
https://doi.org/10.1186/s40249-016-0132-y
https://doi.org/10.1371/currents.outbreaks.8d5984114855fc425e699e1a18cdc6c9
https://doi.org/10.1371/currents.outbreaks.8d5984114855fc425e699e1a18cdc6c9
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1145/1103900.1103933
http://doi.acm.org/10.1145/1103900.1103933
http://doi.acm.org/10.1145/1103900.1103933
https://doi.org/10.1145/383259.383274
http://doi.acm.org/10.1145/383259.383274
http://doi.acm.org/10.1145/383259.383274
https://doi.org/10.1016/j.jcp.2008.08.023
http://dx.doi.org/10.2514/6.2013-371
https://doi.org/10.2514/6.2013-371
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dl.acm.org/citation.cfm?id=1689599.1690035
https://doi.org/10.1145/2001576.2001786
http://doi.acm.org/10.1145/2001576.2001786
http://doi.acm.org/10.1145/2001576.2001786
https://doi.org/10.1080/10556788.2010.509435
https://doi.org/10.1080/10556788.2010.509435
https://doi.org/10.1063/1.4887558
https://doi.org/10.1063/1.4887558

Kovac et al. BMC Bioinformatics (2018) 19:101 Page 11 of 11

22. Niemeyer KE, Sung CJ. Accelerating moderately stiff chemical kinetics in
reactive-flow simulations using GPUs. J Comput Phys. 2014;256:854–71.
https://doi.org/10.1016/j.jcp.2013.09.025.

23. Niemeyer KE, Sung CJ. In: Kindratenko V, editor. GPU-Based Parallel
Integration of Large Numbers of IndependentODESystems. Cham: Springer;
2014, pp. 159–82. http://dx.doi.org/10.1007/978-3-319-06548-9_8.

24. Murray L. GPU Acceleration of Runge-Kutta Integrators. IEEE Trans Parallel
DistributedSyst. 2012;23(1):94–101. https://doi.org/10.1109/TPDS.2011.61.

25. Koh BI, George AD, Haftka RT, Fregly BJ. Parallel Asynchronous Particle
Swarm Optimization. Int J Numeric Methods Eng. 2006;67(4):578–95.
https://doi.org/10.1002/nme.1646.

26. Venter G, Sobieszczanski-Sobieski J. Parallel particle swarm optimization
algorithm accelerated by asynchronous evaluations. J Aerospace Comput
Inf Commun. 2006;3(3):123–37.

27. Mussi L, Daolio F, Cagnoni S. Evaluation of parallel particle swarm
optimization algorithms within the CUDA architecture. Inf Sci.
2011;181(20):4642–57. https://doi.org/10.1016/j.ins.2010.08.045.

28. Wende F, Cordes F, Steinke T. On Improving the Performance of
Multi-threaded CUDA Applications with Concurrent Kernel Execution by
Kernel Reordering. In: 2012 Symposium on Application Accelerators in
High Performance Computing. Chicago: IEEE; 2012. p. 74–83.

29. Wende F, Steinke T, Cordes F. Multi-threaded Kernel Offloading to
GPGPU Using Hyper-Q on Kepler Architecture. Technical Report 14-19,
ZIB, Takustr.7, 14195 Berlin; 2014.

30. Goeyvaerts N, Willem L, Kerckhove KV, Vandendijck Y, Hanquet G,
Beutels P, Hens N. Estimating dynamic transmission model parameters
for seasonal influenza by fitting to age and season-specific influenza-like
illness incidence. Epidemics. 2015;13:1–9. https://doi.org/10.1016/j.
epidem.2015.04.002.

31. Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling
Infectious Disease Parameters Based on Serological and Social Contact
Data, 1st edn. Statistics for Biology and Health, vol. 63. Springer
Heidelberg Dordrecht London New York: Springer New York; 2012. p. 300.
https://doi.org/10.1007/978-1-4614-4072-7.

32. Vynnycky E, White RG. An Introduction to Infectious Disease Modelling.
Oxford: Oxford University Press; 2010.

33. Schenzle D. An age-structured model of pre- and post-vaccination
measles transmission. IMA J Math Appl Med Biol. 1984;1(2):169–91.

34. Capasso V. Mathematical Structures of Epidemic Systems. Springer-Verlag
Berlin Heidelberg: Springer; 2008.

35. Keeling MJ, Rohani P. Modeling infectious diseases in humans and
animals. Princeton: Princeton University Press; 2008.

36. Strikwerda JC. Finite Difference Schemes and Partial Differential
Equations. Belmont: Wadsworth Publ. Co.; 1989.

37. Courant R, Isaacson E, Rees M. On the solution of nonlinear hyperbolic
differential equations by finite differences. Commun Pure Appl Math.
1952;5(3):243–55. https://doi.org/10.1002/cpa.3160050303.

38. Fehlberg E. Low-Order Classical Runge-Kutta Formulas with Step Size
Control and their Application to Some Heat Transfer Problems. Technical
report, NASA Marshall Space Flight Center, Huntsville, AL, United States
1969.

39. CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/. Accessed 20 Jan 2017.

40. Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD. Parallel Global
optimization with the particle swarm algorithm. Int J Numeric Methods
Eng. 2004;61(13):2296–315. https://doi.org/10.1002/nme.1149.

41. Conway ME. Design of a separable transition-diagram compiler. Commun
ACM. 1963;6(7):396–408. https://doi.org/10.1145/366663.366704.

42. Threading Building Blocks. https://www.threadingbuildingblocks.org/.
Accessed 20 Jan 2017. • We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://doi.org/10.1016/j.jcp.2013.09.025
http://dx.doi.org/10.1007/978-3-319-06548-9_8
https://doi.org/10.1109/TPDS.2011.61
https://doi.org/10.1002/nme.1646
https://doi.org/10.1016/j.ins.2010.08.045
https://doi.org/10.1016/j.epidem.2015.04.002
https://doi.org/10.1016/j.epidem.2015.04.002
https://doi.org/10.1007/978-1-4614-4072-7
https://doi.org/10.1002/cpa.3160050303
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1002/nme.1149
https://doi.org/10.1145/366663.366704
https://www.threadingbuildingblocks.org/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Solving epidemiological models on GPUs
	The SIR model
	Runge-Kutta-Fehlberg on GPU
	Using a block of threads
	Calculating the force of infection

	Asynchronous parameter inference
	Particle swarm optimization
	Asynchronous particle swarm optimization
	Heterogeneous approach

	Results and discussion
	Scalability and performance of RK45 on GPU
	Particle swarm optimization

	Conclusion
	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

