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Abstract

Background: Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In
comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and
diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored,
which drive us to do this work.

Methods: The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB)
using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise
metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized
for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for
predicting novel metabolic markers of diseases using random walk.

Results: Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites
are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites
as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As
a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies
for identifying novel metabolites of diabetes mellitus were validated in the recent studies.

Conclusion: In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior
performance validates its reliability for exploring novel metabolic markers of diseases.
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Introduction
Complex and ordinal chemical reactions in the human
body are essential for maintaining human life. The whole
process is called metabolites [1, 2]. The maintenance,
growth and reproduction of organisms are depended on
the metabolites [3]. In terms of gaining energy, metabo-
lites are divided into two sections. One is obtaining
energy by the catabolism of large molecules, such as

cellular respiration. The other one is getting energy by
the synthesis inside the cells, such as proteins and
nucleic acids [4]. Once people get sick, the exchange of
substances and energy would occur abnormity. Then a
series of abnormal metabolites would be generated.
Therefore, metabolites can effectively diagnose and treat
diseases [5].
Nowadays, recognizing diseases in the molecular level

can be achieved by the advanced technology, which is
really helpful to the researchers [6–14]. Many re-
searchers aim to find out the role of single gene, single
mRNA transcript and protein towards diseases [15]. This
leads to a high explanation of diseases. While the
complex genes and micro-RNAs often interact with
others, it is hard to analysis the underlying mechanism
of diseases. However, metabolisms are the final
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production of the mechanisms, which have already been
a significant factor to identify diseases.
Firstly, due to the correlations between different

diseases, the similarity of diseases can be calculated
depend on genes and their corresponding proteins.
For example, the colorectal cancer has a strong rela-
tionship with ulcerative colitis, which is reported in
the PM Choi’s paper [16]. Achalasia and Parkinson’s
disease share similar features to some extent, so SJ
Qualman et al. [17] found out the similarity of the
two diseases. Furthermore, a various researches have
reported the methods to obtain the similarity of dis-
eases. J Li et al. [18] developed a method named
DOSim to compute the similarity of diseases, and the
method has been packaged into a R-based software
package. J Wang et al. [19] proposed a method to cal-
culate the phenotype similarity scores, then the score
can be used to obtain the similarity of diseases.
Rischer et al. [20] built a gene-to-metabolites network
to explain the mechanism of catharanthus roseus
Cells. Mounet et al. [21] also built a network of genes
and metabolites to find out the candidate gene for
tomato’s composition and development. To improve
the robust of metabolites’ network, Huss [22] divided
the network into small subnetworks and removed the
most abundant substrates. Based on the 3D-structure
similarity of metabolites, Ohtana et al. [23] found out
the relationship between biological activities and me-
tabolites. Steve O′ Hagan and Douglas B. Kell [24]
analyzed the similarity between drug and metabolites.
Kang et al. [25] classified the plants by their metabo-
lites’ similarity.
Since metabolites are the key to explain the diseases’

mechanisms. Analyzing the metabolisms is very attractive
to researchers because the number of compounds which
are needed to be identified and quantified is relatively low
[26]. In 2009, Vladimir V.Tolstikov [27] developed a
method that can find out more related metabolites to
the data analysis. In 2010, H Zur et al. [28] predicted
the enzymes’ metabolic flux by a novel method
‘iMAT’. Paige et al. [29] had collected the metabo-
lisms of depressed patients and did the analysis. M
Cuperlović-Culf et al. [30] identified the individual
cell lines, groups of cancer and normal cell lines,
non-invasive and invasive tumor cell lines by
metabolites.
Therefore, we try to find out more related metabolites

by analyzing the data of metabolites and diseases. Firstly,
we calculated the similarity of different diseases, then
the similarity of metabolites could be obtained based on
the similarity of diseases, finally a network could be
built, where each disease could reach the metabolites on
the network. Then we can obtain more disease-related
metabolites by the network.

Methods
Work frame
To clarify the research that we did, a flow chart of our
research work is showed in Fig. 1. Firstly, we should get
the information of different diseases and metabolites.
After getting three data sets, we need to integrate data
into a one-to-one corresponding data format between
disease and metabolites through a semantic text mining
algorithm.Besides, we should also obtain some known
metabolites which are related to the diseases. Then the
method ‘InfDisSim’ is employed to calculate the simila-
rity of different diseases. After that, the method ‘MISM’
is applied to obtain the similarity of metabolites. Then
we could build a network of similarity of metabolites.
Finally, we found out some novel disease-metabolite
relationships by Random Walk.
To obtain the basic relationship between metabolites

and diseases, three datasets are used as following:
HMDB, NCBO Annotator and Diseases ontology.

Data collection and database content
Human metabolome database
We downloaded the metabolites data from Human
Metabolome Database (HMDB) [31]. The most widely
used and complete database involves more than 40,000
kinds of metabolomes. It contains three kinds of data in-
formation: Chemical data, Clinical data and Biochemical
data. They collected this information from thousands of
public sources.

Fig. 1 The roadmap of our research work
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The dataset we got is the diseases’ related metabolites
which has many complex files. So we would use the
other datasets to future understand these data.

Disease ontology
Diseases Ontology [32] started as a part of NUgene pro-
ject in Northwestern University in 2003. By summarizing
other datasets, Diseases Ontology can strongly support
the heredity, environmental factor and other induce-
ments of diseases, which help researchers understands
diseases better.
Each disease or the concept of the diseases is a node.

They all have cross literature comments and a DOID
name is given for each disease. The nodes in the lower
layer are subclasses or subtypes of the nodes in the
upper layer, and the parent-child relationship between
the DOID is preserved in the data information. All the
diseases are classified into seven groups: diseases caused
by environmental origin, diseases caused by infectious
agent, diseases of anatomical entity, diseases of behavior,
diseases of biological process, hereditary disease, disease
syndrome and gene ontology. All the nodes are con-
nected by the Directed Acyclic Graph (DAG).
After obtaining the data of diseases-related metabolites

by HMDB, we used the Diseases Ontology to annotate
the diseases. Therefore, we can know the name and the
related information of the diseases.

National center for biomedical ontology
In order to improve the semantic expression ability and
open interconnection ability of data, National center for
biomedical ontology (NCBO) [33] proposed a data
sharing project to solve the lack of integration tools for
scientific ontologies. The dataset of each domain are
presented in the form of information islands. Most of
the information can not be semantically identified by the
machine, so that there is an obstacle to the interaction
between the information nodes, which goes against to
biomedical research and knowledge discovery. NCBO
has six core components, including computer science
and biomedical informatics research, promoting biology
projects and external research collaboration, infrastruc-
ture, education, communication and management.
We can further understand and annotate the HMDB

data through NCBO. Then a disease-to-metabolic data
file can be obtained.

Method
Calculating similarity of pair-wise diseases
There is a certain similarity between diseases, whereas
the similarity is often caused by the same molecular
origins. Protein-coding genes’ interaction can reflect the
mechanism of the diseases to some extent. Therefore,

the similarity of diseases can be achieved by the genes
behind the diseases.
In this paper, to calculate the similarity of the diseases

we used the method named ‘InfDisSim’ [13, 34]. This
method measured the similarity of diseases by gene
functional network. Gene functional network can pro-
vide the information flow which can be used to calculate
the disease similarity. To analyze the information flow,
ITM Probe [35] is employed which included three
models: absorbing, emitting and channel. Each disease is
a boundary node in the network, besides, each gene is a
transient node.
Each disease has several related metabolites, if the

number of the metabolites is N, the weight vector of dis-
ease t1 would be:

WVt1 ¼ w1;1;w1;2; … ;w1;i; … ;w1;N
� � ð1Þ

Here WVt1 is the weight vector of t1, w1, ithe weight
score of t1 on the ith dimension. The cosine of their vec-
tors is used to represent the disease similarity, the equa-
tion is as following:

Inf t1; t2ð Þ ¼

XN
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The similarity of disease is defined as following:

InfDisSim t1; t2ð Þ ¼ Inf t1; t2ð Þ G1j j G2j j
GMICAj j2 ð3Þ

WhereG1,G2 indicates metabolites set of t1 and t2, re-
spectively. GMICAis the metabolites set of t3. And ∣. ∣
represents the number of terms in the specified set.
Then we could obtain the similarity of the diseases.

Calculating similarity of pair-wise metabolites
A method named ‘MISIM’ was proposed by Dong Wang
et al. [36] which is used to estimate the similarity of
micro-RNAs. In the research, they pointed out that the
genes which have similar functions are often associated
with similar diseases, so the similarity of diseases could
be computed by DAG. This idea is quite similar with the
work we did in the ‘InfDisSim’, in addition, this is also
the premise of calculating similarity of metabolites. Due
to the thought and the miRNA-disease association data,
they presented ‘MISM’ to infer the functional similarity
of miRNAs by the diseases relationship.
Compared with our research, we tried to compute the

similarity of the metabolites. Since the background and
theoretical basis are the same, we applied the ‘MISM’ to
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calculate the similarity of metabolites by the similarity of
diseases.
Firstly, the semantic similarity which is the relationship

between diseases should be defined. Then the similarity of
disease to one group of diseases can be calculated as
follows:

S d;Dð Þ ¼ max
1≤ i≤ k

S d; dið Þð Þ ð4Þ

Here d represent one disease and D means one disease
group. S(d,D) is the maximum similarity between one
disease and one disease set.
After getting the similarity of diseases, we could calcu-

late similarity of metabolites. D1 involves m diseases and
D2 involves n diseases. If D1 is one metabolite which is re-
lated to the group of disease and D2 is another metabolite
which is related to another group of diseases, the simila-
rity of the two metabolites could be computed by:

Similarity M1;M2ð Þ ¼

X

1≤ i≤m

S d1i;D2ð Þ þ
X

1≤ i≤n

S d2i;D1ð Þ

mþ n

ð5Þ
Then similarity between M1 and M2could be obtained.

Predicting novel disease-metabolite relationships using
random walk
Random Walk is an important part of stochastic process.
For example, if an ant starts from Xt, it takes a step for-
ward by the probability of 0.5 (Xt + 1 = Xt + 1) or takes a
step back by the probability of 0.5 (Xt + 1 = Xt − 1). Then
the points which the ant arrives at each moment can
constitute a one-dimensional random walk process.
Random walk can be regarded as a special case of

Markov chain. In the case of current knowledge and
information, the past (the historical state) is irrelevant to
the prediction of the future (the future state). At each
step of the Markov chain, the system can change from
one state to another or maintain the current state
according to the probability distribution. The change of
the state is called transfer, and the probability associated
with different states is called the transition probability. If
G is the adjacency matrix of graph A, we can normalize
A as following:

P ¼ D−1A ð6Þ
D is the degree matrix of A which is a diagonal matrix.

The diagonal element is D(i, i) = ∑A(i, j). Here P is the
random walk matrix, and the sum of the jump probabil-
ities of each node and all other nodes is 1.
A random walk matrix corresponds to a Markov chain,

that is, any two states can reach each other. Starting
from an arbitrary state, the probability at the next state
is as following:

Atþ1 ¼ AtP ð7Þ

The process keeps moving, and after a certain period
of time, equilibrium state is reached. The equilibrium
state means that the probability distribution of the state
is no longer changing. The method to calculate equilib-
rium state is as following:

π ¼ D i; jð Þ=
X

i

X

j

A i; jð Þ ð8Þ

When πP = π, the equilibrium state is reached.
The basic matrix of Markov chains is defined as:

Z ¼ I−P−Wð Þ−1 ð9Þ

Where I is a unit matrix, P is the corresponding
random walk matrix, and W is a matrix which the equi-
librium state’s rows are stacked. For a regular Markov

Fig. 2 Random Walk on Identifying Diseases-related Metabolites
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chain, W can be considered as the case where n in Pn

tends to infinity.
The algorithm flow is as following:

Step 1:

Given initial iteration point x, step length is λ, control accuracy is ℓ

Step 2:
Iteration times is N, k is the current iteration time

Step 3:
When k < N, randomly generate a N-dimension vector u = (u1, u2 …
un).then finish the first walkx1 = x + λu'

Step 4:
If f(x1) < f(x), k = 1 and return to the step 2, else k = k + 1 and return to
the step 3.

Step 5:
If the optimal solution is not found in N times, the optimal solution is
centered on the current optimal solution.

RWR is a global network ranking algorithm. In terms
of the probabilities of the edges between the two nodes,
one or several seed nodes can randomly transit to their
neighbor nodes. The probability of returning to the start
seed node is supposed as γ, and then RWR algorithm
can be defined as follows:

Ptþ1 ¼ 1−γð ÞAPt þ γP0 ð10Þ

Here, A is the column-normalized adjacency matrix,
P0is the initial probability vector and Pt is the probability
vector which element at node i at step t. According to
the previous study, γ would be 0.85 [37].
The Fig. 2 shows the calculation process of Random

Walk of identifying diseases-related metabolites. Firstly,
we should set parameters, then start the circle until the
difference between Pt + 1 and Pt is lower than the
threshold. Finally, we could get all the possible diseases-
related metabolites.

Results
Data analysis
First, we use NCBO Annotator and Disease Ontology to
process the data we get in HMDB. Then the data would
be integrated by metabolites and disease one by one.
Finally, we made a statistic of the corresponding diseases
and metabolites.
As we can see in the Fig. 3, most of the diseases are

related to only a few metabolites. There are 122 diseases
that only related to one metabolite. However, for some
complex diseases, the number of the corresponding
metabolites is quite high, for example, there is a disease
that related to more than 80 metabolites. Here we made
a hypothesis that most of the diseases should be related
to more metabolites.
In the Fig. 4, there is a common metabolite which is

related to more than 300 diseases. And about 150
diseases are related to two same metabolites. Several
various diseases are related to the same 12 metabolites.
After analyzing the two figures, we could speculate

that there are more metabolites related to the diseases.
To understand the mechanism of diseases, we need to
know all the related metabolites.

The metabolites related to diseases
Further, we calculate the similarity of diseases by
InfDisSim. We totally get 3524 diseases and we calculated
the similarity between each two diseases.
Since there are 3524 diseases, so we totally get

6,211,050 similarities. In these similarities, most of them
are lower than 0.1. To be more precisely, the number is
5923125. In addition to that, 99.92% of the similarities
are lower than 0.2. Then we excluded these similarities,
and use the rest similarities to draw the Fig. 5. As we
can see in the Fig. 5, most of the diseases’ similarities are
lower than 0.3. The number of similarities which are

Fig. 3 The density of the numbers of correlated metabolomes for one disease
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higher than 0.5 is quite small. Using these similarities,
we could calculate the similarity of metabolites.
Then we calculate the similarity of metabolites by

MISM. In terms of the similarity of metabolites, we
could draw the figure as following:
We totally get 604 metabolites, so we get the 182,710

similarities from these metabolites. Among these
similarities, 90.8% of them are lower than 0.1. Therefore,
we use the rest similarities which are higher than 0.1 to
draw the Fig. 6. As we can see in the Fig. 6, very few
similarities are higher than 0.7. Every point of the figure
means the probability between two points on x axis.
Take the first point as an example, about 10% of the rest
similarities are higher than 0.1 and lower than 0.2. Due
to the huge amount of similarities, we need to filter the
similarities which are lower than 0.7. So 0.7 is the
threshold to select similarities. Therefore, we
excluded more than 90% of the rest similarities to
continue the rest research. The number of similarity
we collected is 2589.
There are totally 453 metabolites in these 2589

similarities. Therefore, the network should have 453

nodes, while the figure would be too huge to show in
the paper. To show the network we build up, we
selected 20 of these metabolomes to draw the Fig. 7.
We distributed 20 nodes in a circle whose radius is 1,

and connected them by lines in terms of their similarity.
Each note represents a metabolite in the network. If
there is relationship between the two nodes, they would
be connected by the lines. on the contrary, if the two
nodes do not have similarity, they would be
divided.Through the lines of the network, diseases can
be linked to more metabolites through several known
metabolites. In terms of the lines, we could get every
metabolite’s probability. We can sort this probability and
obtain the candidates of diseases-related metabolites.
After building up the network of 453 metabolites, we

use RW algorithm to get the metabolites related to the
228 diseases. For every disease, they may only relate to
several metabolites in the known dataset. By the
network, we could identify more related metabolites
towards every disease.
As we can see in the Fig. 8, we sorted the diseases by

the number of related metabolites. Since we excluded

Fig. 4 The density of the numbers of correlated disease for one metabolomes

Fig. 5 Statistics of the number of different similarities
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most of the original metabolites, more than 100 diseases
could not be found by the related metabolites. Then we
can find out more related metabolites to the rest
diseases.
For example, the Alzheimer’s disease is related to 86

metabolites in our original dataset. But we do not know
which metabolite has the strongest relationship with it
and we also do not know the important degree of
different metabolites to this disease. After processing the
RW, we could get the rank of metabolites as the
following figure:
As we can see in the Fig. 9, there are more than 300

metabolites related to the Alzheimer’s disease. Since
Alzheimer’s disease is so complex that we could not
precisely know the rank of related metabolites. By this
way, we could estimate the rank and analysis the
important metabolites.

Performance evaluation using leave-one-out validation
To validate the performance of our method for
prioritizing the metabolite-disease pair, the leave-one-
out validation method was utilized here based on exist-
ing metabolite-disease associations. Step 1, one

metabolite-disease pair was removed from prior know-
ledge. Step 2, the metabolite network was constructed
based on the remained metabolite-disease associations.
Step 3, the removal metabolite-disease pair was defined
as positive group (PG), and other pairs of metabolites
and this disease not in the prior knowledge were defined
as negative group (NG). Step 4, we utilized the RWR
method to score all the metabolites and disease in the
PG and NG based on the network. Step 5, the above
steps was iterated for all the metabolite-disease pairs in
the prior knowledge. The area under the receiver opera-
ting characteristic cure (AUC) was then calculated to
validate the performance of our method based on all the
NGs and PGs. The high AUC (0.7048) validate the
superior performance of our method for predicting novel
metabolite-disease associations.

Case study
Since we mapped the metabolites to the diseases, we
found more metabolites which are related to the
diseases. To prove the relationship that we found is
correct, we conducted a case study.

Fig. 6 The probability distribution of metabolomes’ similarity

Fig. 7 The network of 20 metabolites
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A good case in point is diabetes mellitus, it is
originally related to 28 metabolites, and we found it
related to 242 metabolites. Although some of these
metabolites’ relationships with diabetes mellitus are
weak, there must be some connection between diabetes
mellitus and metabolites for sure.
To verify the novel relationship, we selected one of the

novel related metabolites to explore whether it is related
to the diabetes mellitus. We selected HMDB004793-
Methylhistidine which is not reported in the dataset we
used in section 2(A). Kuan-Hsing Chen et al. [38] have
found this metabolite is related to diabetes mellitus.
DPK Ng et al. [39] have reported that

Hydroxyphenylacetic acid is related to the diabetes mellitus.
Whereas the original database did not include these
metabolites as a related metabolites of diabetes mellitus, we
found the relationship between Hydroxyphenylacetic acid
and diabetes mellitus by RW.
These two evidences proved that our method is

suitable and effective to identify relationship between
diseases and metabolites.

Discussion
We got the data from three public datasets: HMDB,
Diseases Ontology and NCBO. Then we got the data
which metabolites and disease are one–to-one
correspondence. Firstly, we observed the situation that
metabolites map to the diseases. Then we speculate that
there should be more metabolites that are related to the
diseases.
Firstly, we used the ‘InfDisSim’ to calculate the

similarity of the diseases. By the genes related to the
diseases, we could get the similarity of diseases. Then
the similarity of metabolites could be obtained by the
similarity of the diseases. The ‘MISM’ gives us a chance
to build up a network of metabolites’ similarities. Finally,
we used the Random Walk to find more metabolites
which are related to the diseases.
By the network of metabolites’ similarity, more

metabolites could be connected to the diseases by the
lines. The correlation coefficient between the diseases
and metabolites could also be obtained. Then we could
sort these scores and understand which metabolites are

Fig. 8 The diseases related to metabolites

Fig. 9 The related metabolites to Alzheimer’s disease
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most likely to be associated with disease and which ones
are less related to the diseases. The rank could be the
important information for researchers to find out the
candidate metabolites. The researchers should not be
limited by the metabolites reported, the complex
metabolites network might give them more chances to
understand the mechanism behind diseases.
The presented approach in this paper is also used to

predict central nervous system disease-related SNPs and
risk pathways by constructing virtual SNP-SNP network
and pathway-pathway network [12, 40–43].

Conclusions
The complex diseases are caused by complex gene
interactions. It is hard to explain the mechanism behind
diseases by these complex gene networks. However, the
corresponding micro-RNAs may not fully explain the
way diseases work. Metabolites, as a production of the
complex mechanism have become the vital factor to
understand the diseases.
The result shows the power of our method and it

would be helpful to the further research. We found the
unreported metabolites which are related to diabetes
mellitus are reported in other researchers’ works.
Through our network, these unknown metabolites could
be mapped to the diseases.
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