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Abstract

Background: Automated bioinformatics workflows are more robust, easier to maintain, and results more reproducible
when built with command-line utilities than with custom-coded scripts. Command-line utilities further benefit by
relieving bioinformatics developers to learn the use of, or to interact directly with, biological software libraries. There is
however a lack of command-line utilities that leverage popular Open Source biological software toolkits such as BioPerl
(http://bioperl.org) to make many of the well-designed, robust, and routinely used biological classes available for a
wider base of end users.

Results: Designed as standard utilities for UNIX-family operating systems, BpWrapper makes functionality of some of
the most popular BioPerl modules readily accessible on the command line to novice as well as to experienced
bioinformatics practitioners. The initial release of BpWrapper includes four utilities with concise command-line
user interfaces, bioseq, bioaln, biotree, and biopop, specialized for manipulation of molecular sequences, sequence
alignments, phylogenetic trees, and DNA polymorphisms, respectively. Over a hundred methods are currently available
as command-line options and new methods are easily incorporated. Performance of BpWrapper utilities lags that of
precompiled utilities while equivalent to that of other utilities based on BioPerl. BpWrapper has been tested on BioPerl
Release 1.6, Perl versions 5.10.1 to 5.25.10, and operating systems including Apple macOS, Microsoft Windows, and
GNU/Linux. Release code is available from the Comprehensive Perl Archive Network (CPAN) at https://metacpan.org/
pod/Bio::BPWrapper. Source code is available on GitHub at https://github.com/bioperl/p5-bpwrapper.

Conclusions: BpWrapper improves on existing sequence utilities by following the design principles of Unix text utilities
such including a concise user interface, extensive command-line options, and standard input/output for serialized
operations. Further, dozens of novel methods for manipulation of sequences, alignments, and phylogenetic trees,
unavailable in existing utilities (e.g., EMBOSS, Newick Utilities, and FAST), are provided. Bioinformaticians should
find BpWrapper useful for rapid prototyping of workflows on the command-line without creating custom scripts
for comparative genomics and other bioinformatics applications.
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Background
Bioinformatics workflows typically consist of serially
dependent operations including reading and parsing in-
puts, storing parsed data in memory as data structures,
and computing on the stored data to generate desired out-
puts [1]. While individual steps could be accomplished
manually using bioinformatics tools with graphic user
interface (GUI) such as Galaxy [2], tools with command-
line interface (CLI) are essential for automated processing.
Take for example inference of bacterial phylogeny. It is
desirable to compute a phylogenetic tree based on codon-
based alignments rather than on directly aligned nucleotide
sequences. There are two distinct approaches to develop a
command-line pipeline for this purpose, both relying on
biological Application Programming Interfaces (APIs) such
as BioPerl and BioPython [3–5]. In one approach based on
the BioPerl toolkit, one may compose a custom Perl script
that calls the Bio::SeqIO module to read the nucleotide
sequences and store them as Bio::Seq objects. Next, the
nucleotide sequences will be translated into protein se-
quences, which are written out to a temporary file. The script
will then call an external program (e.g., MUSCLE [6]) to
align the protein sequences and produce a second temporary
file, which will subsequently be read back and turned into a
Bio::SimpleAlign object. Finally, the script will invoke the
“aa_to_dna_aln()” method of the Bio::Align::Utilities module
to produce the codon-based alignment using nucleotide se-
quences stored as Bio::Seq objects and the protein alignment
stored as a Bio::SimpleAlign object. In a second approach, one
may use existing (or design new) command-line utilities for
each of the above steps and then accomplish the same task
exclusively using commands on a Unix-like operating sys-
tem, such as GNU/Linux or macOS.
The second, utility-based approach is preferable to the

first, custom-script approach for the following reasons.
First, Unix utilities are designed for serialized computation.
In particular, by reading and writing on the standard
streams and with the use of the pipe (“|”) operator, Unix
utilities increase efficiency by keeping the rate-limiting step
of reading and writing temporary files to a minimum. In
the above example, both temporary files could be elimi-
nated (see Advanced Usage (3) below). Second,
bioinformatics applications built on utilities are more
amenable for testing and results more reproducible. In our
experience, it is far easier to maintain a code base of utilities
that can be flexibly combined into robust pipelines than to
maintain a repository of custom-made, single-use scripts.
Third and more importantly, as a new computational layer
between biological APIs and applications, bioinformatics
utilities relieve bioinformaticians from the need to learn or
to interact directly with the APIs. As such, the utility-based
approach makes the APIs accessible to all users including
non-programmers, meanwhile increasing the productivity
of experienced users by allowing them to focus on
computation and not on creating custom scripts prone to
bugs and a short shelf life.
The enduring success of Unix-family text-parsing util-

ities illustrates the importance of well-designed
command-line utilities for biological computing, mean-
while suggesting ways for designing such toolkits. Design
of durable biological utilities would do well by following
the so-called Unix Philosophy, with stipulations such as to
“[M]ake each program do one thing well. Expect the out-
put of every program to become the input to another, as
yet unknown, program” [7]. EMBOSS (European Molecu-
lar Biology Open Software Suite, http://emboss.sourcefor-
ge.net/), a comprehensive collection of more than 100
command-line applications, is perhaps the most com-
monly used set of bioinformatics utilities [8]. The Newick
Utilities (http://cegg.unige.ch/newick_utils) are a set of 18
command-line utilities for manipulation and visualization
of phylogenetic trees [9]. More recently, the FAST (Fast
Analysis of Sequences Toolbox, https://github.com/tlawr-
ence3/FAST) suite explicitly follows the “pipes-and-filters”
design principle of UNIX text utilities and currently con-
sists of about more than 20 command-line utilities for ma-
nipulation of biological sequences [10].
Here we describe BpWrapper, a novel suite of

command-line utilities for manipulating biological objects
including sequences, alignments, and phylogenetic trees.
Unlike EMBOSS and Newick Utilities but similar to FAST,
BpWrapper utilities are built upon a robust and popular
library of biological APIs with an active community of
volunteer developers. BioPerl (http://bioperl.org), a part of
the Open Bioinformatics Foundation (http://www.open-
bio.org), is a pioneering and successful model for develop-
ing high-quality Open-Source software toolkits for life
science applications [4, 5]. By wrapping BioPerl modules
instead of programming from scratch, BpWrapper bene-
fits from the continuous testing and development by the
BioPerl community. Compared with EMBOSS, Newick
Utilities, and FAST, BpWrapper improves usability by
having a more concisely named user interface consisting
of only four commands each with more extensive options,
also in the tradition of Unix text-parsing utilities.

Implementation & Results
Basic usage
BpWrapper utilities are coded with Perl and BioPerl. The
first release of BpWrapper consists of four utilities includ-
ing bioseq, bioaln, biopop, and biotree for the processing of
sequences, alignments, aligned allelic sequences, and phylo-
genetic trees, respectively (Fig. 1). Each utility reads a file
(or from standard input) with a default file format and ren-
ders the file contents into an instance of a corresponding
BioPerl class. Each option of the utilities either generates
descript statistics of the object or outputs a transformed text
stream onto standard output. The first three utilities could be

http://emboss.sourceforge.net/
http://emboss.sourceforge.net/
http://cegg.unige.ch/newick_utils
https://github.com/tlawrence3/FAST
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used either independently or jointly due to class inheritance.
For example, one could apply bioseq options to an align-
ment (but not vice versa). A selection of frequently used op-
tions and their basic usage are shown in Table 1. A
complete list of options and their usages are available as em-
bedded POD, accessible on the command line with the perl-
doc command or the “--help”, “-h”, or “--man” options.
Advanced usage

(1)The following is a command-line pipeline to select a
sequence (by matching the identifier containing the
string “B31” using regular expression) from an
alignment (“test-bioaln.aln” in the “test-files” directory),
remove alignment gaps, and translate into an
amino-acid sequence. It uses both bioaln and bioseq, to
a b

Fig. 1 Four command-line utilities in BpWrapper. a bioseq reads sequences (in FA
in BioPerl (blue), and generates sequence statistics (green) or a modified FASTA fi
as the default) as input, renders them into a Bio::SimpleAlign object in BioPerl, an
allelic sequences (in FASTA format as the default) as inputs, renders them into Bio
statistics. d biotree reads a phylogenetic tree (in NEWICK format as the defa
tree statistics or a modified tree. Note that since the Bio::PopGen class in BioPer
class, options in bioseq are applicable to alignments as well as to allelic sequenc
Documentation of these utilities are self-contained through the Perl POD mecha
command or the “--help”, “-h”, or “--man” options. A reference card of all option
take advantage of inheritance of the Bio::SimpleAlign
class from the Bio::Seq class:

bioaln –o “fasta” test-files/test-bioaln.aln | bioseq –p
“re:B31” | bioseq –g | bioseq –t1

(2)The following piped commands cleans up an initial
phylogenetic tree (“test-biotree.dnd” in the “test-files”
directory) by rooting it at the mid-point, removing
branches with less than 100% bootstrap support, and
discarding two unwanted OTUs (identified as “B31”
and “N40”). This pipeline was used to produce a phylo-
genetic tree of the PFam32 gene family in genomes of
the Lyme disease pathogen Borrelia burgdorferi [11].

biotree –m test-files/test-biotree.dnd | biotree –D
“1.0” | biotree –d “B31,N40”
c d

STA format as the default) as inputs, renders them into Bio::Seq objects
le (purple). b bioaln reads a sequence alignment (in CLUSTALW format
d generates alignment statistics or a modified alignment. c biopop reads
::PopGen objects, and generates SNP (single-nucleotide polymorphism)
ult) as inputs, renders it into a Bio::Tree::Tree object, and generates
l inherits the Bio::SimpleAlign class, which in turn inherits the Bio::Seq
es and options in bioaln are applicable to allelic sequence alignments.
nism and viewable on the command line through the “perldoc”
s and their usage is provided in the Additional file 1



Table 1 A selection of options and their usage

Utility Option Usage Example

bioseq --length, -l Print lengths of sequences bioseq –l foo.fasta

--num-seq, -n Print number of sequences bioseq –n foo.fasta

--composition, -c Print base/residue composition bioseq –c foo.fasta

--revcom, -r Reverse & complement bioseq –r foo.fasta

--pick, -p Pick sequences by identifiers bioseq –p ‘id:B31,N40’ foo.fasta

Pick sequences by order bioseq –p ‘order:1-3’ foo.fasta

Pick sequences by pattern bioseq –p ‘re:B31’ foo.fasta

--delete, -d Delete sequences by identifiers bioseq –d ‘id:B31,N40’ foo.fasta

Delete sequences by order bioseq –d ‘order:1-3’ foo.fasta

Delete sequences by pattern bioseq –d ‘re:B31’ foo.fasta

--subseq, -s Get a sub-sequence bioseq –s ‘10,20’ foo.fasta

--translate, -t Translate in the 1st reading frame bioseq –t1 foo.fasta

Translate in three reading frames bioseq –t3 foo.fasta

Translate in all six reading frames bioseq –t6 foo.fasta

--input, -i Read a GenBank file bioseq –i ‘genbank’ foo.gb

--restrict Print fragments by a restriction digest bioseq –-restrict ‘EcoRI’ foo.fasta

bioaln --length, -l Print alignment length bioaln –l foo.aln

--num-seq, -n Print number of sequences bioaln –n foo.aln

--avg-pid, -a Print average percent identify bioaln –a foo.aln

--pick, -p Pick sequences by identifiers bioaln –p ‘id1, id2’ foo.aln

--delete, -d Delete sequences by identifiers bioaln –d ‘id1, id2’ foo.aln

--slice, -s Slice an alignment bioaln –s ‘10,20’ foo.aln

Slice to the end bioaln –s ‘20,-’ foo.aln

Slice from the start bioaln –s ‘-,20’ foo.aln

--input, -i Read a FASTA alignment bioaln –I ‘fasta’ foo.fasta

--output, -o Write a PHYLIP alignment bioaln –o ‘phylip’ foo.aln

--concat, -A Concatenate alignments bioaln –A *.aln > concat.aln

--pep2dna, -P Generate a codon-based alignment bioaln –P ‘cds.fas’ pep.aln > codon.aln

biopop --segsites, -s Print number of segregating sites biopop –s pop.fasta

--pi, -p Print average nucleotide differences biopop –p pop.fasta

--mis-match, -m Obtain pair-wise mismatch distribution biopop –m pop.fasta

--snp-coding, -c Print coding SNP statistics biopop –c pop.fasta

--stats, -t Print population statistics biopop –t ‘pi,theta’ pop.fasta

biotree --length, -l Print total tree length biotree –l foo.newick

--mid-point, -m Re-root at mid-point biotree –m foo.newick

--del-otus, -d Delete OTUs by identifies biotree –d ‘id1,id2’ foo.newick

--subset, -s Obtain a sub-tree of specified OTUs biotree –s ‘id1,id2,id3,id4’ foo.newick

Obtain a sub-tree from an internal node biotree –s ‘node1’ foo.newick

--reroot, -r Re-root with a outgroup biotree –r ‘otu1’ foo.newick

--del-low-boot, -D Delete low-support branches biotree –D ‘75’ foo.newick

--dist-all Print pair-wise OTU distances biotree –-dist-all foo.newick

--as-text, -t Preview tree in ASCII biotree –t foo.newick
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(3)The following more sophisticated workflow uses
three BpWrapper utilities and two external programs
to produce a phylogenetic tree from a set of
homologous protein-coding nucleotide sequences
(“cds.fas” in the “test-files” directory). It first
translates them into peptide sequences, which are
then aligned with MUSCLE [6]. Subsequently, bioaln
is called to generate the corresponding codon-based
alignment, which are read by FastTree [12] to
produce an approximate maximum-likelihood tree
including estimates of branch support. Finally,
biotree is called to generate a mid-point rooted tree
with high bootstrap supports. The whole workflow is
accomplished without generating a single temporary
file or composing any custom shell script.

bioseq –t1 cds.fas | muscle –clwstrict | bioaln
--pep2dna “cds.fas” –o “fasta” | FastTree –nt |
biotree –D “0.9” | biotree –m.

Performance
We compared performance between BpWrapper and a
selected set of sequence utilities by running the same
task with the same input file and on the same computer
system (with a AMD Opteron Quad-Core 2.1GHz
Processor, Ubuntu Release 14.04 operating system, and
16GB physical memory). For example, we ran six-frame
translation of an input file 100 times using the “bioseq
-t6” command from BpWrapper and the “transeq –frame
= 6” command from EMBOSS. The EMBOSS run was
significantly faster than the BbWrapper run (mean system
CPU time of 1.54 s for transeq and 9.41 s for bioseq, p =
2.5e-4 by t-test). Similarly, we calculated the depths of
OTUs of a tree 100 times using the “biotree --depth”
command from BbWrapper and the “nw –distance” utility
from Newick Utilities. The Newick Utilities run was sig-
nificantly faster than the BbWrapper run (mean system
CPU time of 0.253 s for nw_distance and 1.33 s for bio-
tree, p = 1.59e-2 by t-test). However, BbWrapper performs
at similar levels as the FAST utilities. For example, we cal-
culated sequence lengths 100 times using the “bioseq
--length” command from BbWrapper and the “faslen” util-
ity from FAST. The FAST Utilities run was slightly faster
than the BbWrapper run (mean system CPU time of 1.63 s
for faslen and 2.46 s for bioseq, p = 0.019 by t-test). These
results are not surprising since EMBOSS and Newick Util-
ities are both pre-compiled binaries with no external de-
pendency while BbWrapper and FAST both consist of Perl
scripts compiled during runtime and with dependency on
BioPerl.

Testing & Support
We followed modern standard industry practice for soft-
ware testing to assure proper functioning of BpWrapper.
As the first tier of tests, our source code is hosted on a
public repository Github under the BioPerl namespace
(https://github.com/bioperl/p5-bpwrapper). Every time a
change is committed to the repository, tests are run to
assure that code still runs as expect. By this process of
continuous Integration, we tested the code on every
major release of Perl since 5.10 using an Ubuntu Virtual
machine (provided by Travis CI). Further, we released
BpWrapper on CPAN (https://metacpan.org/release/Bio-
BPWrapper) to take advantage of efforts by volunteer
testers who have downloaded the code from CPAN, run
it, and made test results publically available (http://
matrix.cpantesters.org/?dist=Bio-BPWrapper+1.11). This
aspect is somewhat unique to the Perl community and
allows CPAN code to be tested on a wider number and
variety of versions of Perl than would otherwise be feas-
ible with our own efforts. As a result, our code has been
tested and run successfully on 86 configurations by the
network of volunteer computers. Finally, when a user in-
stalls BbWrapper from CPAN using the cpan or cpanm
command, our test scripts are run to make sure that the
code runs in the user-specific computing environment.
BpWrapper is in constant development and support is
available by contacting the corresponding author.

Discussion
While dependence on BioPerl confers BpWrapper with
advantages including a robust development framework,
continuous community support, and a longer life span,
these benefits come with a cost of significantly reduced
performance in comparison with pre-compiled utilities
such as EMBOSS and Newick Utilities [8, 9]. Nevertheless,
we routinely use BbWrapper to process a large amount of
genome-scale data, e.g., concatenating ~ 2000 alignments
and transforming trees with ~ 400 OTUs, without
encountering excessive delay or code breakage.
Whereas existing sequence utilities (e.g., EMBOSS,

Newick Utilities, and FAST) offer methods for manipulat-
ing sequences or Newick trees but not both, BpWrapper
includes over a hundred methods for manipulating
sequences, alignments, and phylogenetic trees, many of
which are novel and not found in existing utilities.
BpWrapper utilities are most similar to FAST utilities in
design, implementation, and performance by virtual of
their shared dependency on BioPerl. BpWrapper, however,
offers dozens more new methods for manipulation of
alignments than FAST, including, for example, bootstrap-
ping an alignment (--bootstrap|-b), alignment concatenation
(--concat|-A), obtaining a codon alignment based on aligned
protein sequences (--pep2dna|-P), and various alignment per-
mutations for evolutionary analyses (--shuffle-sites --mutate-
sites). In addition, the command-line user interface of
BpWrapper is simpler. FAST consists of 24 utilities named
after Unix text utilities. We believe that the user interface of

https://github.com/bioperl/p5-bpwrapper
https://metacpan.org/release/Bio-BPWrapper
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BpWrapper, with consolidated four utilities named after ob-
jects (sequence, alignment, population and tree), is more con-
cise and more intuitive to end users.
From the onset, we took the “wrap-don’t-write” strat-

egy in developing BbWrapper utilities to minimize the
amount of independent code not vested by BioPerl. At
current stage, however, many BbWrapper methods (e.g.,
picking and deleting sequences and OTUs) are custom
routines that would be ideally merged into the corre-
sponding upstream BioPerl classes. Future development
of BbWrapper will also involve code optimization,
additional methods, and scalable solutions.
Since BbWrapper hides the APIs from the end-users,

it is not hard to envision a future when the four utilities
are supported by APIs other than BioPerl, by a mixture
of APIs, or by pre-compiled binaries. Indeed, as bioinfor-
matics evolves, it is our hope that a universal and endur-
ing set of commands (e.g., bioseq, bioaln, biopop, and
biotree) and their associated options emerge for basic ma-
nipulations of sequences, alignments, and phylogenetic
trees that outlast any particular operating systems or APIs,
in the way that the concisely named and well-designed
Unix text utilities (e.g., grep, cut, and sort) have outlived
and prospered well beyond their original host operating
systems.
Conclusions
BpWrapper is a set of command-line utilities developed
by wrapping upon some of the most commonly used
BioPerl classes. Its user interface is designed by closely
following the principles of Unix text utilities, including
reading and writing on the standard streams, a concise
namespace of main commands each specialized for a
single type of biological object, and an extensible set of
command options for object manipulations. With novel
and up-to-date methods and by drastically reducing the
need for composing one-off scripts, BpWrapper is
suitable for rapid prototyping of bioinformatics pipelines
for comparative genomics and other bioinformatics
applications, to be used either alone or in conjunction
with other sequence utilities.
Additional file

Additional file 1: A reference card for the four BpWrapper utilities
(PDF 758 kb)
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