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Abstract

Background: Contact-guided protein structure prediction methods are becoming more and more successful

because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction,
effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be
developed.

Results: We develop an improved contact-driven protein modelling method, CONFOLD?2, and study how it may be
effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using
various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and
then clusters the models to obtain the top five models. CONFOLD?2 obtains an average reconstruction accuracy of

0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11
contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean

TM-score of 0.41 on both datasets.

Conclusion: CONFOLD? allows to quickly generate top five structural models for a protein sequence when its
secondary structures and contacts predictions at hand. The source code of CONFOLD?2 is publicly available at https://

github.com/multicom-toolbox/CONFOLD2/.
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Background

The most successful ab initio protein structure methods,
i.e. fragment-assembly based methods, require generating
a lot of decoys to deliver accurate predictions. Methods
that can build models faster and are more residue con-
tact sensitive are needed to realize the promise of ab
initio protein structure prediction driven by the recent
advances in contact prediction [1, 2]. The CONFOLD
method [3] can build high quality secondary structures
(also pairing beta-strands to form beta-sheets) and correct
tertiary structures when predicted contacts are accurate.
It is integrated into other protein structure prediction
methods like CoinFold [4] and PconsFold2 [2]. In this
paper, we develop an improved version of CONFOLD by
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incorporating a soft-square energy function into CON-
FOLD, building models using multiple sub-sets of con-
tacts, adding model selection capability, and rigorously
testing it on various datasets including the Critical Assess-
ment of protein Structure Prediction (CASP) 11 and 12
datasets. CONFOLD?2 also addresses a major limitation
of the CONFOLD method, i.e. generating a decoy of
200 models and not producing top one or top five mod-
els. Compared to fragment-assembly methods that need
to generate thousands of model decoys [5], CONFOLD2
explores the fold space by generating just a few hundred
model decoys, and hence it runs relatively fast.

Implementation

Recently, it is found that energy functions that do not
penalize unsatisfied predicted contacts after certain dis-
tance threshold yield more accurate model reconstruc-
tion [5-7]. Different contact energy functions like FADE
[5], square-well function with exponential decay [6], and
modified Lorentz potential [7] applied to contact-guided
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protein folding have been found to work best for vari-
ous folding algorithms, mostly fragment-assembly based
methods. When distance geometry based approaches are
used to fold proteins with restraints, it has been shown
that soft-square function performs best, with the ‘rswitch’
parameter to be tuned [8].

b
—2— R>d+d

Econtact = min(ceil, w) at Asoftexp = a + dplus + Fsw
AP, R < d + dps + 7sw
(1)

R—(d+ dplus); R>d+ dplus
Error(A) = | (d — dminus) — R, R < d — diinus (2)

0, otherwise

We replaced CONFOLD’s [3] soft-square asymptotic
energy function (designed originally for the experimen-
tal NOE restraints) with the soft-square function (Eq. (1)),
where the error is defined in Eq. (2). The parameter d,
dminus, and dplys define the interval [d-dminus, d+dpluss
where the error is zero. For contacts predicted to be less
than 8 A distance, we set d, dpinus, and dplus t0 3.6,0.1, and
4.4 respectively. The switching parameter r,, defines the
boundary where the square error function starts to taper
into a constant error (see Fig. 1). R is the actual distance
between CB atoms of the predicted contact residue pair
in the model. The exponents, ‘exp’ and ‘softexp’ are both
set to 2. Since the contact weight multiplies the energy
term, the maximum weight (ceil) that any pair of predicted
contacts can have is set to 1000, and ‘w’ is the weight
of each contact pair and is set to 1. The most impor-
tant parameter affecting the quality of reconstruction is
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rsw and we optimized it to be 1.8. @" and ‘b’ are con-
stants determined at run-time such that the function is
smooth at r,, equal to 1.8. Our soft-square contact energy
term is calculated either using a square error function or
approximately constant error function based on a switch-
ing parameter - rg,. It defines a threshold until which
the error increases as a square error function and beyond
which the error tapers to a constant error. Figure 1 demon-
strates how the switching parameter affects the overall
energy calculations.

Using the soft-square function as contact energy term,
CONFOLD? initially predicts 200 models using various
subsets of input contacts, and selects five top models by
clustering them. To effectively explore the fold space cap-
tured by the predicted contacts, we prepare 40 different
subsets of input contacts by selecting top xL contacts,
where x = 0.1, 0.2, 0.3, .., 4.0 and L is length of the
protein, and build 20 models for each subset. For each
subset of contacts, top-five models in the second stage
of CONFOLD modeling are selected based on the con-
tact energy score, resulting in a total of 200 models. Next,
to filter out unfolded models, we rank these 200 models
by calculating their contact satisfaction score using top
L/5 long-range contacts, and filter out the bottom 150
models. The remaining 50 models are clustered into five
clusters by calculating their pairwise structural similarity
measured by TM-score. We select the five models clos-
est to the centroids of these five clusters as the top five
predictions with the rank determined by the satisfaction
score of the top L/5 long-range contacts. SCRATCH suite
[9] is used to predict three-state secondary structure and
Maxcluster [10] to compute pairwise model similarity for
clustering.
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Fig. 1 Behavior of the contact energy term for various rs,, values. For this demonstration desired distance is set to 10 A with a lower-bound of

0 A and upper-bound of 5 A, i.e. the desired distance between the pair of restrained residues is 10.0 A and 15.0 A. The “Existing” energy calculations
refers to the old energy term implemented in CONFOLD method. The plot shows that depending upon the switching parameter, rgy, the energy
calculations can taper early at around 1 or 2 A for re, =2 or at more than 25 A for rg,, = 6
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Results

As the first benchmark, we compared the performance of
CONFOLD?2 with the original CONFOLD method [3] on
the 150 proteins in the PSICOV dataset [11] using the con-
tacts predicted by the PSICOV method [11] (see Table 1).
The original CONFOLD method generates top 200 mod-
els and provides no ranking of the reconstructed models,
so we compare the two methods using best-of-200 mod-
els. On the PSICOV dataset, when best of 200 models
are evaluated, CONFOLD?2 achieves a mean TM-score of
0.57 compared to 0.55 of CONFOLD. This improvement
in CONFOLD?2 is statistically significant per paired t-test
with a p-value of 4 x 10" (see Additional file 1: Table S1
for a detailed comparison).

Next, to evaluate our model selection technique (select-
ing the top five models from 200) we compared our
approach of model selection using clustering with the
model ranking using contact satisfaction score only. On
the same dataset, when we selected the top five models
using contact satisfaction score of top L/5 or L/2 long-
range contacts, we achieved best-of-top-five TM-score
of 0.50. The rationale for using top L/5 or L/2 contacts
(instead of L or more) is that these subsets are found to
best reflect the accuracy of the predicted contacts [12].
In contrast, when we filter out the bottom 150 models,
cluster the remaining 50 into five clusters, and select the
cluster centroids, we obtain best-of-top-five TM-score of
0.52, suggesting that the clustering approach is effective
in selecting models built from contacts. As summarized
in Table 1, we also reconstructed models for the PSICOV-
150 dataset using contacts predicted by MetaPSICOV
[13] and obtained a mean TM-score of 0.62 when best
of top-five models are evaluated (see Additional file 1:
Table S1 for detailed results), indicating that the improved
contact prediction leads to the better tertiary structure
reconstruction.
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For a more rigorous evaluation, on the PSICOV-150
dataset, we compared CONFOLD2’s performance with
two other state-of-the-art modeling methods that use
structural template fragments. First, we evaluated the
top-one models built using CONFOLD2 and compared
against the models built using Rosetta in the Pcons-
Fold method [14]. When top one models are evaluated,
CONFOLD?2’s average TM-score is 0.48 compared to 0.55
using the PconsFold method. Second, upon comparing
the performance of CONFOLD2’s best-of-top-five mod-
els against the best-of-top-five models built using another
fragment-based method, FRAGFOLD [15], we find that
CONFOLD2’s mean TM-score is slightly higher (0.57
vs 0.54). Compared to the FRAGFOLD method which
could recover the correct fold (with TM-score > 0.5) of
100 out of 150 proteins [15], CONFOLD2 recovered the
correct fold of 107 proteins. This further supports the
improved performance of CONFOLD2 over the FRAG-
FOLD method. It is worth noting that CONFOLD2 does
not use any structural template fragment information.

Finally, using CONFOLD?2, we predicted models for the
protein sequence targets in the CASP11 and CASP12
datasets with contacts predicted by the most accurate pre-
dictor in each of the CASP experiments - CONSIP2 [16]
in CASP11 and Raptor-X [17] in CASP12 (see Table 1).
The average TM-score of the reconstructed models for
both datasets (CASP 11 and 12) is 0.46 when best-of-200
models are evaluated and 0.41 when best-of-five models
are evaluated. We obtained the predicted contacts from
the official CASP website www.predictioncenter.org. It is
worth noting that the latest results of RaptorX on the
CASP12 targets are better which can be found in [17].

Discussion
Observing the lower reconstruction accuracy for the
CASP datasets compared to the PSICOV dataset, we

Table 1 Summary of the performance of CONFOLD2 on PSICOV, CASP11, and CASP12 datasets

Dataset Contact Precision (L/5) TM-score of Models
Method PsRr+MR+LR Plr Best-of-200 Best-of-5
PSICOV-150 pSICOV 72.6 64.0 0.57 0.52
PSICOV-150 MetaPSICOV 88.4 77.2 0.65 0.62
CASP12 all Raptor-X 713 586 046 041
CASP12 single domain Raptor-X 706 586 049 044
CASP12 multi-domain Raptor-X 72.0 58.7 044 0.38
CASP11 all CONSIP2 71.8 50.2 0.46 041
CASP11 single domain CONSIP2 75.8 574 0.52 048
CASP11 multi-domain CONSIP2 67.7 424 0.40 0.34

Mean contact precision of top L/5 for (i) all (short-range, medium-range, and long-range: Psgymr+Lr) Contacts, and (i) long-range contacts (P g) is reported for all the datasets.
The TM-score of the best-0f-200 and best-of-5 models reconstructed by CONFOLD?2 are also presented. Results for single-domain and multi-domain subsets of the CASP11

and CASP12 datasets are also reported separately
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investigated if the performance was affected by multi-
domain proteins because we build models for the whole
targets first and evaluated them at domain level. As shown
in Table 1, the reconstruction accuracy is higher for
single domain proteins than multi-domain proteins (see
Additional file 1: Table S2 and S3 for details). Yet, the
reconstruction accuracy for single domain proteins is still
lower than that of the PSICOV dataset. For the further
investigation, from the single domain proteins in both
CASP11 and 12 datasets, we removed some proteins with
low accuracy contact predictions so that both datasets
have the mean contact precision of top L/5 long-range
contacts the same as that of the PSICOV dataset, i.e. pre-
cision = 64%. On such reduced datasets, the average TM-
scores of the best-of-200 models for the CASP11 and 12
proteins are 0.55 and 0.52 respectively, which are slightly
lower than the mean TM-score for PSICOV dataset (0.57).
Since TM-score of 0.5 is the threshold if the topology
of a protein structure is correctly predicted, for all three
datasets, it can be concluded that the fold of single domain
proteins can be reconstructed correctly (TM-score > 0.5)
on average if the precision of predicted long-range con-
tacts is at least 64%. Although the sequence lengths of
the domains in the CASP datasets are much higher than
the PSICOV-150 dataset, which have up to 500 residues,
we did not find any substantial correlation between the
domain length and the reconstruction accuracy. For a dis-
cussion on relationship between the precision of predicted
contacts and the accuracy of reconstructed models see our
recent work at [12].

A head-to-head comparison of CONFOLD2 and CON-
FOLD1 shows that for some proteins in the PSICOV
dataset of 150 proteins, CONFOLD2’s reconstruction
accuracy is slightly worse than that of CONFOLD. For
instance, for the protein ID ‘1g2r’ the reconstruction TM-
score of CONFOLD2’s best of 200 model is 0.49 whereas
one reconstructed using CONFOLD is 0.58. To investi-
gate the possible reasons of poor performance for these
proteins we checked if the improvement from two-stage
modeling in CONFOLD2 is not as much pronounced
as in CONFOLD due to the implementation of the new
energy function in CONFOLD2. For this, we analyzed the
cases in which CONFOLD?2 outperforms/underperforms
CONFOLD and the cases where second stage models are
better/worse than the first stage models. Overall, we did
not observe any meaningful correlations. In summary,
our results suggest that CONFOLD?2 is better than CON-
FOLD, in general. However, if the purpose of modeling
is to explore the fold space (at the expense of computing
resources) then running both versions of CONFOLD may
be slightly helpful. On the other extreme, if CONFOLD2 is
being used for large-scale modeling, skipping the second
stage modeling can save 50% of computing resources at
the expense of around 0.5 lower TM-score, on average.
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Conclusions

We have developed CONFOLD?2, a method for building
three-dimensional protein models using predicted con-
tacts and secondary structures. It explores the fold space
captured in predicted contacts by creating various sub-
sets of predicted contacts and builds decoy sets, and then
clusters the decoys to obtain the top five models. CON-
FOLD2 is significantly better than the original CONFOLD
method. Structure predictions using some recently avail-
able contact prediction datasets, show that the for most
protein sequences CONFOLD?2 is able to capture the
structural fold of the protein.

Availability and requirements

Project name: CONFOLD2

Project home page: https://github.com/multicom-
toolbox/CONFOLD2

Operating systems: Platform independent
Programming language: Perl

Other requirements: Perl interpreter, CNS suite, TM-
score (included), MaxCluster (included), and DSSP
(included)

License: GNU GPL

Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary Tables. Docx file containing various
tables with detailed results. (PDF 167 kb)
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CASP: Critical assessment of protein structure prediction; C8: Carbon-B atom
of a residue; L: Length of protein sequence; NOE: Nuclear overhauser effect
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