Caldonazzo Garbelini et al. BMC Bioinformatics (2018) 19:4
DOI 10.1186/s12859-017-2005-1

BMC Bioinformatics

@ CrossMark

Sequence motif finder using memetic
algorithm

Jader M. Caldonazzo Garbelini” @, André Y. Kashiwabara and Danilo S. Sanches

Abstract

Background: De novo prediction of Transcription Factor Binding Sites (TFBS) using computational methods is a
difficult task and it is an important problem in Bioinformatics. The correct recognition of TFBS plays an important role
in understanding the mechanisms of gene regulation and helps to develop new drugs.

Results: We here present Memetic Framework for Motif Discovery (MFMD), an algorithm that uses semi-greedy
constructive heuristics as a local optimizer. In addition, we used a hybridization of the classic genetic algorithm as a
global optimizer to refine the solutions initially found. MFMD can find and classify overrepresented patterns in DNA
sequences and predict their respective initial positions. MFMD performance was assessed using ChlP-seq data
retrieved from the JASPAR site, promoter sequences extracted from the ABS site, and artificially generated synthetic
data. The MFMD was evaluated and compared with well-known approaches in the literature, called MEME and Gibbs

Motif Sampler, achieving a higher f-score in the most datasets used in this work.

Conclusions: We have developed an approach for detecting motifs in biopolymers sequences. MFMD s a freely
available software that can be promising as an alternative to the development of new tools for de novo motif
discovery. Its open-source software can be downloaded at https://github.com/jadermcg/mfmd.
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Background
Sequence motifs are small sequences capable of acting
as binding sites for a particular transcription factor [1].
In many situations, the localization of the motifs should
be learned without prior knowledge. For that reason, this
problem is called de novo motif discovery [2].

Transcription factors are specific proteins that bind to
distinct sites on the genome. This binding is an essen-
tial process in gene regulation which may lead to changes
in transcriptional activity for a particular gene target
[3]. These sites are short (< 30 bps) and have a typi-
cal nucleotide sequence, although there may normally be
variations due to mutations that occurred because of the
selective pressure that the genome has undergone over
time [4].

According to [5], several approaches have been pro-
posed to solve efficiently this problem. Also, we have
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highlighted in this work the probabilistic and exact
approaches [6].

Probabilistic methods try to maximize the relative
entropy or Kullback-Leibler divergence [7], obtained from
the construction of a Position Specific Score Matrix
(PSSM). There are several algorithms within this set of
which include: MEME (8], CONSENSUS [9] and Gibbs
Motif Sampler [10]. These algorithms usually have a quick
run time. However, they may be “stuck” in local optima.

Exact approaches usually use the consensus sequence
for motif representation, employing some mathematical
optimization as the search model. In general, these algo-
rithms have a high convergence time, in particular for long
motif length [11]. In contrast, they may escape from local
optima due to the exact nature of his search. Examples
include SPELLER [12] and WEEDER [13].

In this paper, we introduce MFMD a memetic algo-
rithm [14] whose goal is to solve De novo motif discovery
problem. MFMD uses a modified version of the Greedy
Randomized Adaptive Research Procedure (GRASP) [15]
to build an initial population of solutions. In addition, we
have included the Variable Neighborhood Search (VNS)
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algorithm [16], that is a greedy local search method that
explores the solution space through systematic exchanges
of increasingly distant neighborhood structures. Also, the
VNS step is important for recombination and mutation
sub-stages to fine-tune individuals previously constructed
by GRASP.

Previous work

We have developed in previous work two approaches
called Discovery Motifs by Evolutionary Computa-
tion (DMEC) [17] and Discovery Motifs by Memetic
Algorithms (DMMA) [18]. In the DMEC, we evolved a
population of PSSM matrices using a canonical evolu-
tionary algorithm and a greedy mutation operator. Good
results were obtained in several synthetic datasets and
some real ones, such as the cyclic-:AMP dataset (CRP).
DMMA is an evolution of DMEC where we have some
heuristics along with traditional evolutionary algorithm.
Furthermore, the DMMA algorithm obtained a substan-
tial gain compared to DMEC. MFMD extends the idea of
DMMA and DMEC including a new mechanism of search
that control the exploration vs exploitation in the search
space.

For most of these approaches, the emphasis is on the
application of canonical evolutionary algorithms to solve
biosequence problems. Our motivation is slightly differ-
ent in that we intend to use the flexibility of evolutionary
algorithms in addition to the efficiency that some heuris-
tics have. Thus, it was possible to develop strategies that
are more applicable to the resolution of discovery motif
problems in real situations.

Problem definition

Although there are several formulations of this prob-
lem, we will begin with the canonical and more general
definition of motif discovery in the following manner.

Let S = {s1,s2, -+ ,s,} be the set of sequences over
¥ = {A,C,G, T} and let w be the motif length. In this
paper, we assume that the length of all sequences is equal
toLand 0 < w < L.

The problem consists in finding the most promis-
ing pattern of subsequences X* = {x1,x9,...,%,} of
size w and their respective initial positions in each
sequence in S. The choice of a particular pattern is
based on the definition of one or more score func-
tions that measure the similarity or difference between
the motifs pattern and their respective occurrences. Li
et al. (1999) proved that the canonical definition of
motif problem is NP-Hard even with the most simplified
assumptions [19].

There are several methods for measuring the quality
of the motifs. The objective functions should be able
to reflect the efficiency of a modeling accurately. An
inadequate evaluation function will not be able to pro-
vide a good solution even whether a strong optimization

Page 2 0of 13

algorithm is used. We have used in this work the Informa-
tion Content Score [20] and the Complexity Score [21] as
objective functions.

Information Content (IC) can be interpreted as an
energy estimate that a set of motifs exerts on its respec-
tive binding site as opposed to the rest of the organism’s
genome [1]. In other words, the IC measures the statisti-
cal difference between a motif from a specific probabilistic
model or a motif from a background probabilistic model
(usually inferred from the genomic sequences of a given
organism). The background statistical model is typically
constructed under a homogeneous Markov chain of order
zero or higher. Complexity score was defined by Gary B.
Fogel and Weekes [21] and penalizes sequences with low
complexity, i.e., whose entropy value is very low. In gen-
eral, this may disrupt the search and should be considered
a noise [22].

Implementation

MEMD was developed using Java programming language
release 8ulll (64-bit) and Ubuntu Linux operating sys-
tem. The algorithm evolves a population of PSSM matrix
and finds solutions that maximize the Information Con-
tent Score and Complexity Score using a bi-objective
Weighted Sum Model. The algorithm receives as input
a typical DNA dataset of co-regulated genes and returns
the initial positions of the found motifs. MFMD was
divided into three steps: Pre-Processing, Pattern Discov-
ery and Pattern Matching. Figure 1 illustrates the simpli-
fied MEMD pipeline.

Preprocessing

This step aims to find and remove subsegment entries that
can direct the search to invalid locations. According to
D’haeseleer [6] these subsequences, called spurious [23],
can contribute negatively to the performance of the search
algorithms. To mitigate this problem, before the algorithm
starts the pattern discovery phase, we execute DUST [24],
to meet the above requirements. DUST is a tool created
by R. L. Tatusov and D. J. Lipman, whose objective is
to remove sub-sequences with low complexity from the
dataset.

Pattern discovery

This step consists of optimizing and discovering the best
PSSM matrix from an input dataset. Moreover, we have
sub-divided the cycle into Initial Population Construc-
tion, Fitness Calculation, Recombination, Mutation and
Selection steps.

Initial population

This step is the most important action of the algorithm
in which each solution is represented by a tree-like data
structure. In this structure, the nodes represent the initial
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1 Remove spurious from
dataset

Raw dataset Normalized dataset

accgaaaaaatgatac accgnnnnnntgatac
attataaaaaatcgatc S attatnnnnnntcgatc
attagcccgaaaaaat — attagcccgnnnnnnt
atcgcaaaaaactagc atcgcnnnnnnctagc
caaaaaacgctcgatc cnnnnnncgctcgatc
2 Find Best model
Normalized dataset PSSM
AN -0.26 174 -2.58 -2.58 -2.58 -2.58
/ S 1.50 258 1.81 -2.58 -2.58 -2.58
— -2.58 -1.58 -2.58 1.81 -2.58 181
-2.58 -2.58 -2.58 -2.58 181 -2.58
3 Matching more patterns
PSSM Normalized dataset

-0.26 174 -2.58 -2.58 -2.58 -2.58

150 258 1.81 -2.58 -2.58 -2.58 >
-2.58 -1.58 258 1.81 -2.58 181
-2.58 -2.58 -2.58 -2.58 181 -2.58

Fig. 1 MFMD pipeline. (1) In Preprocessing step MFMD uses DUST to
remove sub-sequences with low complexity entropy. If DUST can not
be run, MFMD uses an objective function defined in [21] to mitigate
this problem. (2) In Pattern Discovery step, MFMD attempts to find
the best PSSM matrix using GRASP and VNS heuristics. (3) In Pattern
Matching step, MFMD uses the PSSM matrix found in the previous
step to predict the initial positions of the motifs in the dataset

positions, where the root node represents the initial posi-
tion of the first dataset sequence. In this way, the algo-
rithm creates a tree solution for each valid position in the
dataset sequence. For example, whether the dataset has
100 valid positions, then the algorithm will generate 100
trees, each with its starting position.

The total number of valid positions can be obtained by
Equation v = L —w+1 where v is the total number of valid
positions, L is the size of each sequence and w is the size
of a particular motif. In MFMD, solutions are built grad-
ually with the aid of a GRASP-based heuristic. In general,
this paradigm shift led the initial solutions to the most
promising locations in the search space.

Page30f13

The modifications consist in the use of a variable g that
modifies the algorithm behavior and determines whether
it will make a greedy or a random choice. The multi-start
function has also been disabled because in this approach
GRASP is only used as a startup tool. Then, at each iter-
ation, a number #n € [0,1] is uniformly drawn, and the
behavior of the algorithm follows Eq. 1:

greedy, n<gq.
random, otherwise.

choice = { (1)

If the choice is greedy, the algorithm tests whether there
are still other positions having a score equal to the best
score found so far, i.e., whether there is a tie between the
scores from the valid positions list. If so, all tied posi-
tions are added to the tree. If the choice is not greedy,
the solutions are ranked in a Restricted Candidate List
(RCL). Then a solution of the list is uniformly chosen and
included in the tree.

The RCL size and the g parameter can be quite dif-
ferent, but in our experiments we have found the best
values empirically, hence, we have used the following val-
ues RCL = 5 e g = 0.9. Finally, the algorithm is done
when all initial positions are included in the tree, i.e, when
the height of the tree is equal to the number of sequences
minus one.

The algorithm complexity grows according to the size
of the dataset. For example, whether a dataset has N
sequences of length L = 30 and motifs with length w = 5
there will L + w — 1 = 26 valid positions in that dataset.
Thus, the algorithm will make 26 comparisons between
the first and second sequences, plus 26> comparisons
between the second and third sequences, and so on.

Therefore, the final complexity of the algorithm is
O((L — w+ 1)? x N — 1) which can be summarized in
O(N x L?). In the worst case the algorithm can achieve the
complexity O(LN) whether all valid positions of all dataset
sequences should tie in terms of score value. However,
this is extremely unlikely and in practice, we have only
a few draws occurring at each iteration with complexity
O(N x L?) prevails.

The objective of this approach is to establish a compro-
mise between the need to maintain the practical compu-
tational algorithm and the desire to obtain the mathemat-
ically optimal alignment.

Fitness calculation

Fitness is calculated by converting the initial positions
of each individual into a structure called Multiple Local
Sequence Alignment (MLSA). From the MLSA it is possi-
ble to calculate the Position Specific Score Matrix (PSSM).
The PSSM is a zero-order non-homogeneous Markov
chain [7] commonly used to represent probabilistic mod-
els of motifs whose statistical independence between the
different “columns” of an MLSA is assumed. That means,
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from a statistical point of view, the nucleic bases that
form the regulatory elements do not correlate. In prac-
tice, according to Benos et al., this independence is a good
approximation [25].

For a motif of size w, a PSSM takes the form of a matrix
4 x w. More details can be reviewed at [26]. The fitness
of each individual was calculated using the bi-objective
weighted sum model, whose functions were: Information
Content (Eq. 2) and Complexity Score (Eq. 3).

Y log. | @0
IC=) > ©)log, 50s

i=1 j=1

Where w is the motif size, X' is the number of letters
from the alphabet (X = 4 for nucleotides), © is the
matrix of the relative frequencies and ® is the vector
of background probabilities. The IC measures the statisti-
cal difference between a motif from a specific probabilistic
model or a motif from a probabilistic background model
[1]. The specific probabilistic model is constructed using
a non-homogeneous Markov chain of order 0 or higher.
In particular, we use the PSSM model that has zero order.
The background statistical model is typically constructed
under a homogeneous Markov chain of order zero or

higher.
w!
[17 ;! ]

X ow

CS= Z Z logy,
j=1 j=1

Where X is the number of letters from the alpha-

bet. (X 4 for nucleotides), N 4 for nucleotides,

w is the motif size and #; is the total number of

nucleotides i € A,C,G,T. The Complexity Score was

2)

(3)
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defined by Gary B. Fogel and Weekes [21] and penal-
izes low complexity sequences, i.e., sequences whose
entropy value is very low. In general, this may di
srupt the search and should be considered a noise
[22]. For example, the motif “aaaaaa” (n, 6,
ne = 0, ng = 0, n; = 0) will have minimal complexity since
it will obtain a maximum value in IT#;. On the other hand,
the motif “atacgt” (n, = 2,n, = 1, ng = l,n = 2) will
obtain a value of complexity greater than the previous one,
since the value of the function IT#; will be smaller. In this

_ 6! _ 720 _
example, CS(aaaaaa) = geerexene = acesg — 0-0154

and CS(atacgt) = m = 71—260 = 45.
The total fitness of each individual is defined by the
Eq. 4:

Fi=vIC+ (1—-v)CS (4)

In Eq. 4, v €0, 1] are arbitrary weight chosen in a ran-
dom way. The parameter v changes the importance level
of each objective function. In our experiments v = 0.8
is the value that produced the best results. This equation
establishes a relation between the objective functions and
the parameter v. In particular, it becomes important when
is not possible to remove spurious a priori.

Since DUST runs in the preprocessing step, the MEMD
can be reduced to a mono-objective algorithm running
only the Information Content Score. This brings faster
execution and does not compromise the accuracy of the
approach. For palindromic sequences, the reverse motif
complement must also be taken into account. Whether
the motif is a palindrome, this predilection may lead the
algorithm to more accurate results. It is important to
note that when inserting the reverse complement in the

A|C|[T|T|A|C|C|T|G|T|G|C|A|A|A
G|C|G|A|C|A|A|A|A|C|A|A|G|G|G
G|G|A|G|A|C|T|C|A|A|T|C|A|A|C
TIA|C|A|GIA|A|A|G|G|A|A|T|T|A
A|/T|IA|T|A|T|T|C|G|A|C|C|A|A|T
(a) Dataset
ACTTACCTGTGCA =5658 ACTTACCTGTGCA =00913 ACTTACCTGTGCA =0.180
CTTACCTGTGCAA=7523 CTTACCTGTGCAAS=1613 CTTACCTGTGCAA=10.050
TTACCTGTGCAAA=0214 TTACCTGTGCAAA=-1.130 TTACCTGTGCAAA=0.870
GCGA CAAAACAAG=3214 GCGA CAAAACAAG=-0.004 GCGA CAAAACAAG= 0501
CGACAAAACAAGG=1114 CGACAAAACAAGG=-0.792 CGACAAAACAAGG=0.786
GACA AAACAAGG G=2.265 GACA AAACAAGGG=-0.360 GACA AAACAAGGG= 0640
GGAG ACTCA ATCA =8.854 GGAG ACTCA ATCA =2112 GGAG ACTCA ATCA =0.017
GAGA CTCAAT CAA=0.147 GAGACTCAAT CAA=-1155 GAGA CTCAAT CAA=10.876
AGACTCAAT CAAC=0.236 AGACTCAAT CAAC=-1122 AGACTCAAT CAAC=0.869
TACAGAAAGGAAT =2145 TACAGAAAGGAAT =.0405 TACAGAAAGGAAT = 0657
ACAGAAAGGAATT =1125 ACA GAAAGGAATT =-0.788 ACA GAAAGGAATT =0784
CAGA AAGGA ATTA =3.321 CAGA AAGGA ATTA =0.035 CAGA AAGGA ATTA = 0485
ATATATTCGACCA =4112 ATATATTCGACCA =0332 ATATATTCGACCA =039
TATATTCGACCAA =5236 TATATTCGACCAA =0.754 TATATTCGACCAA =0225
ATA TTCGAC CAAT =3.221 ATATTCGAC CAAT =-0.001 ATATTCGAC CAAT = 0500
(b) Scores (c) Z-scores (d) P-values
Fig. 2 a Sequence dataset. b Splitting the dataset into w — mers (w = 13). For each window, the score is calculated using the PSSM matrix found in
Pattern Discovery step. ¢ Transformation of the scores in z-scores. d The p-values are calculated from the z-scores. A cut-off point can be used to sort
new motifs




Caldonazzo Garbelini et al. BMC Bioinformatics (2018) 19:4 Page 50f 13
2 6 6, 63 6, 65 B ©; O3 ©9 O Opy
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G 04 02 02 02 04 02 04 04 02 02 0.2
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Fig. 3 a Motif parameters were calculated using uniform background probability Pr(a) = Pr(c) = Pr(g) = Pr(t) = 0.25 and pseudocounters = 1
b Information Content calculated using motif parameters. ¢ Semi-greedy insertion. d Greedy insertion

score calculation, the PSSM matrix becomes a symmetric
matrix.

Recombination, mutation and selection

The recombination operator is applied in some individ-
uals from the initial population P. The individuals are
selected in a random way. Also, the recombination occurs
between pairs called individuals parents generating child
individuals that are stored in an new population called
intermediate population Q. At each recombination, the
algorithm calculates the scores of parents p; and pa,
selects the best and puts it in p*. After the children ¢; and
¢y are generated, The score of these are also calculated and
compared with p*. If F(c;) < p* then the mutation occurs
through the local search in ¢; using the VNS heuristic. The
same situation holds true for the child ¢;. The mutation is
performed through the following rule (Eq. 5):

VNS (child), F(child) < p*.
child, otherwise.

child — { (5)

After mutation operator, populations P and Q are joined
generating the R population (R = P U Q). Then the R
population is sorted in descending order and the first |P|
solutions from R are put back to the population P.

Pattern matching

This step consists in the application of statistical tech-
niques for the motifs recognition that were not found
along the Pattern Recognition stage. In many cases, the
promoter regions have more than one binding site. There-
fore, it is expected that search algorithms will be able
to find as many motifs as possible from a particular co-
regulated gene.

The MFMD assume the distribution of the final scores
is a Gaussian distribution [27] of mean u and standard
deviation o X (N N (u, 02)). The parameters of the statis-
tical model were estimated using the PSSM matrix found
in the previous step. Thus, the scores are normalized and
transformed into z-scores using Eq. 6:

(6)

Table 1 Summary of JASPAR datasets

D Name Species Number of sequences
MA0003.2 TFAP2A H. sapiens 5098

MAOQ036.2 GATA2 H. sapiens 4380

MAQ037.2 GATA3 H. sapiens 4628

MAO0050.2 IRF1 H. sapiens 1362

MAQ150.2 NFE2L2 M. musculus 726
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Table 2 Summary of real datasets experiments

Page 6 of 13

ID Name Site Number of sequences Number of motifs
CREB cAMP Response Element ABS 17 19
HNF-1 Hepatocyte Nuclear Factor-1 ABS 22 27
MEF2 Myocyte Enhancer Factor-2 ABS 17 17
MyoD Myogenic Differentiation-1 ABS 17 21
NF-kB NF Kappa-Light-Chain-Enhancer ABS 6 8
SRF Serum Response Factor ABS 20 36
TBP TATA-Binding Protein ABS 95 95
PDR3 Pleiotropic Drug Response SCPD 7 18
REB1 RNA polymerase | enhancer SCPD 15 20
MCB Mlu | cell cycle boxes SCPD 6 12
CRP CcAMP Receptor Protein Stormo and Hartzell 18 24

Where x is the raw score, u is the mean and o is the
estimated standard deviation.

Then the p-value is calculated using the cumulative
distribution function defined by Eq. 7:

Fx(x) = / () de @)

Where Fx(x) = P(X < x) or P(a < X < b) = Fx(b) —
Fx(a), whereb=1ea = x.

The objective is to calculate the area under the curve
and find which positions have the highest statistical sig-
nificance. In short, the following actions are performed
in this step (Fig. 2): (1) Split the entire dataset into
fragments of size w; (2) Calculate the probability of each

Table 3 Results achieved by predictors in JASPAR datasets

fragment using the probabilistic model found in the Pat-
tern Discovery step, i.e., calculate the Pr(seq|Model);
(3) Normalize the scores and turn them into z-scores;
(4) Calculate the cumulative distribution function (FDA)
for each z-score; (5) Choose only the values that sat-
isfy significance level (ex. 0.0001) previously set by
the user.

lllustrative examples

Let us consider the dataset S = {seq1,seqa} of length
L = 180 from the alphabet ¥ = A, C, G, T. In addition, we
have a motif size w = 11. There are L — w+ 1 = 170 valid
positions and, for each of them, MFMD constructs a dif-
ferent solution tree. Without loss of generalization and for
simplification purposes we will consider that the dataset

Dataset Predictor Precision Recall F-Score
GATA2 MFMD 0.968 £+ 0.011 0.972 £ 0.021 0.970 £ 0.057
MEME 0.948 0.948 0.948
GIBBS 0.826 0.188 0.307
GATA3 MFMD 0971 £0.015 0.965 £ 0.011 0.968 £ 0.019
MEME 0.965 0.965 0.965
GIBBS 0.440 0.094 0.156
IRF1 MFMD 0.829 £0.018 0.835 £ 0.023 0.832 £0.022
MEME 0.903 0.903 0.903
GIBBS 0.695 0.510 0.588
NFE2L2 MFMD 0.879 £0.011 0.881 £ 0.031 0.880 £ 0.041
MEME 0.866 0.866 0.866
GIBBS 0.754 0.754 0.754
TFAP2A MFMD 0951 £0.013 0.949 £+ 0.070 0.950 £0.010
MEME 0.515 0515 0.515
GIBBS 0.950 0.186 0311
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is normalized and therefore we will use Eq. 2 to calculate
the scores.

Here, we introduce how the tree is generated from the
first valid position (GTCTGTGGTTT) whose parameters
are represented by ® and can be viewed in the Fig. 3a.

>seql

GTCTGTGGTTTtttccgtaaacccaacacaaacaaaccctecegec
gtgaaacggtggcccccgatcaagtggggtctatgaagttatgtg
agcggagcgtaatatagcgtatacaactagatcaccttgtgcagt
gtgattccgcectctecectggetetctetegtegtgggecatatgtt

Table 4 Results achieved by predictors in real datasets experiments
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>seq2

gtctgtggtgtacttgcataaccggatcttcaaccatctcgagga
cggtgtgtgtggtttttccgattagagggttaggtgtcagtggtt
tgctttctaattgatttacgatatatggatcctggacacacacac
tgtaatacttggtggatgcccecggatgttaaggatggcgcacatt

The building of the solutions tree depends on a random
number # € [0, 1] and a constant g = 0.9. Whether n < ¢
the algorithm constructs the tree greedily, otherwise it
uses a Restricted Candidates List RCL = 5 to choose the
next node.

Dataset Predictor Precision Recall F-Score

CREB MFMD 0.647 £0.024 0.578 £ 0.044 0.611 £0.031
MEME 0 0 0
GIBBS 0.529 0473 0.500

CRP MFMD 0.909 £ 0.039 0.833 £0.033 0.869 £ 0.027
MEME 0.904 0.791 0.844
GIBBS 0.941 0.666 0.780

HNF1 MFMD 0.772 £0.013 0.629 £ 0.032 0.693 £ 0.019
MEME 0.136 0111 0.122
GIBBS 0.500 0222 0.307

MCB MFMD 0.999 £ 0.030 0.667 £ 0.042 0.800 £ 0.030
MEME 0.692 0.750 0.719
GIBBS 0.750 0.750 0.750

MEF2 MFMD 0.700 £ 0.033 0.823 £ 0.030 0.756 £ 0.024
MEME 0.705 0.705 0.705
GIBBS 0.176 0.176 0.176

MYOD MFMD 0363 £0.016 0.380 £ 0.024 0372 £0.018
MEME 0.235 0.190 0210
GIBBS 0.208 0.238 0.222

NFKB MFMD 0.667 £ 0.040 0.500 £ 0.099 0.571 £0.062
MEME 0 0 0
GIBBS 0.667 0.500 0.571

PDR3 MFMD 0.850 £ 0.035 0.944 £ 0.046 0.894 £+ 0.034
MEME 0.653 0.944 0.772
GIBBS 0.928 0.722 0.812

REB1 MFMD 0.800 + 0.027 0.600 £ 0.025 0.685 £ 0.021
MEME 0333 0350 0341
GIBBS 0.266 0.200 0.228

SRF MFMD 0.477 £ 0.007 0583 £0.014 0.525 £ 0.008
MEME 0.440 0.611 0511
GIBBS 0514 0.500 0.507

TBP MFMD 0.657 £ 0.004 0.768 £ 0.008 0.708 £ 0.006
MEME 0578 0.578 0578
GIBBS 0.308 0347 0326

Some predictors failed to score in these experiments because they found initial positions with a deviation greater than 2. These data are highlighted in bold
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Whether the choice is greedy, only the node with the
best score is added to the tree. If there is a tie between the
best node and the others, all tied nodes are added to the
tree. Figure 3b illustrates a model where three nodes (0,49
and 80) have the same score (2 < s < 2.2). In this instance
all three nodes would be added to the tree, as shown in
Fig. 3c.

If the choice is semi-greedy, the nodes are sorted in
descending order and the top five are added in the RCL.
Then, a node is uniformly chosen to compose the tree as
shown in Fig. 3d. It is interesting to note that if the choice
is greedy, more than one node can be added to the tree
whereas in semi-greedy choice only one node is added.

Datasets description

The following datasets were used in this paper: (1) Sim-
ulated data: datasets and motifs algorithmically gener-
ated; (2) JASPAR: datasets and motifs extracted from the
JASPAR site [28]; (3) ABS: datasets and motifs extracted
from the ABS site [29]; (4) SCPD: datasets and motifs
extracted from the SCPD site [30]; (5) CRP: dataset and
motifs extracted from the publication of Stormo and
Hartzell [20].

It is important to highlight that the ABS, SCPD, CRP
and JASPAR datasets have real background data and
motifs. For simplicity, at this point we will call the ABS,
SCPD and CRP datasets of real datasets experiments.
We have emphasized the discussion only in ABS, SCPD,
CRP and JASPAR datasets since they are real, publicly
available and they have been used extensively in other
works.

In JASPAR were randomly selected the datasets based
on their identification. Five datasets were chosen using
data collected from ChIP-seq experiments. Table 1 shows
a summary of these datasets. Finally, eleven datasets were
used in real datasets experiments, seven extracted from
the ABS site [29], three extracted from the SCPD site [30]
and one extracted from the publication of Stormo and
Hartzell [20]. Table 2 shows the information about these
datasets.

For details and results about simulated datasets, see
Additional file 1.

Evaluation methods

For each dataset, 30 tests were performed and the results
obtained were compared to two other approaches: Gibbs
Motif Sampler [31] and Meme (Multiple EM for Motif
Elicitation) [8].

To measure the performance of each strategy, we
adopted the initial position that each approach found.
A position is considered correct if it equals the real or
varies two units more or less. For example, if the anno-
tated position of a given motif is 60, all of these values
will be considered correct: 58, 59, 60, 61 e 62. For each
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experiment performed by MFEMD, we calculated the mean
and standard deviation of the performance measures. For
the experiments performed by Meme and Gibbs Motif
Sampler, values were used which showed better execution
performance.

We evaluated the approaches according to the metrics
of information retrieval precision, recall, and f-score [32].
These measures have a minimum value of zero and a max-
imum value of one, where zero represents no predicted
position, and one characterizes a perfect prediction.

Rank analysis

The results were compared using the dominance method
proposed by L. I. Kuncheva and J. ]. Rodriguez [33]. In this
system, each approach receives a score when compared to
the other approaches. The dominance hierarchy is deter-
mined by the classification of methodologies according to
a score calculated through the losses and victories that
each approach has achieved in each f-score measure. This
corresponds to the total number of times that, for exam-
ple, the “A” approach was able to be better than the “B”
approach minus the total number of times that the “B”
approach was better than the “A” approach.

In addition, wins and losses were defined in terms
of the f-score values that each strategy was able to
achieve. Since the f-score represents the harmonic
mean between precision and recall, the magnitude of
its value is directly influenced by both measurements,
i.e., a low precision value will imply a low f-score
even if the recall is high. The inverse relationship is
also true.

Statistical analysis

The objective of this analysis was to compare the
results obtained by the MFMD with the results achieved
by the other approaches using statistical methods of
hypothesis testing. The purpose of this test is to indi-
cate if there is a significant difference between them
and to determine which approach presented the best
performance. Statistical significance tests were per-
formed between the differences of the f-scores by all
approaches.

Table 5 Wins and losses in JASPAR and real datasets experiments

Predictor Dataset Wins Losses Total
MFMD JASPAR 9 1 8
Real 21 0 21
MEME JASPAR 6 4 2
Real 5 17 -12
GIBBS JASPAR 0 10 -10
Real 6 15 -9
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Table 6 Ranking of algorithms according to Table 5 (from best to

worst)

JASPAR datasets:

MFMD MEME GIBBS
Real datasets experiments:

MFMD GIBBS MEME

The hypotheses to be tested were:

Hj : Samples approaches are draw

from distributions with the same mean value.
H; : Samples approaches are draw

from different distributions.

(8)

The analyzes consisted of the following steps: (1) sample
selection: some datasets were selected to compare the sta-
tistical test. There were 2 of each synthetic group, 5 ChIP-
seq and 2 real datasets experiment, totaling 21 datasets;
(2) statistical analysis: the analyzed parameter was the
f-score calculated from the 30 executions performed in
each dataset by each algorithm; (3) the Shapiro-Wilk test
[34] was applied to each set of parameters. In the case of
normality being verified, a paired Student’s T test [35] was
applied. Otherwise, the non-parametric test used was the
Wilcoxon [36] paired; (3) the significance level used was
0.05 or 95%.

Results and discussion

Tables 3 and 4 illustrate the results obtained by the
predictors in JASPAR and real datasets experiments,
respectively. It is important to note in Table 4, that in
some datasets MEME obtained zero in precision, recall
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and f-score measures. In particular, MEME reached this
value in datasets CREB and NFKB. Also, it is evident
that the deviation measured by the initial positions pre-
dicted by MEME was higher than two, leading to the
true positive (TP) counts to zero. Consequently, this
led to the values of precision, recall and f-score also
at zero.

Table 5 shows the results obtained by the approaches
in the ranking analysis. Moreover, it is possible to
observe that MFMD presented a higher score (ranking)
in relation to the other approaches compared for all
datasets analyzed. The good relationship between pre-
cision and recall evidenced that the MFMD achieved a
balance between the true positives and the predicted false
positives.

In Table 6 all approaches are ordered according to the
performance obtained in Table 5. In this case, the left-
most algorithm indicates a better performance compared
to the rightmost algorithm (ordering from best to worst).
From the analysis of Table 6, we can verify that MEME
performed well in the JASPAR datasets. This was even
more evident in the data presented in Tables 3 and 7,
where we highlight the good behavior of this algorithm
in the GATA3 and IRF1 datasets. On the other hand, the
Gibbs Motif Sampler has obtained good results in real
datasets experiments. However, MFMD still figures first
in both. This demonstrates the good capability of MEMD
to handle datasets of varying sizes.

This is even more visible in smaller datasets, as shown in
Table 4, where the MFMD performed considerably better
than MEME and Gibbs Motif Sampler. The MCB, PDR3
and NF-Kb are the smallest real datasets, having 6, 7 and
6 sequences respectively. MEMD ties with Gibbs Motif

Table 7 Statistical test between MFMD vs GIBBS and MFMD vs MEME approaches

Type Group/Dataset Approach P-value Result Approach P-value Result
ChIP GATA2 MFMD 22e —16 + MFMD 1327e =3 +
GIBBS MEME
GATA3 MFMD 22e—16 + MFMD 0.1599 =
GIBBS MEME
IRF1 MFMD 22e—16 + MFMD 2200e — 16 -
GIBBS MEME
NFE2L2 MFMD 22e—16 + MFMD 0.0476 +
GIBBS MEME
TFAP2A MFMD 22e —16 + MFMD 2.200e — 16 +
GIBBS MEME
Real SRF MFMD 3.736e — 08 + MFMD 1407e — 10 +
GIBBS MEME
TBP MFMD 22e—16 + MFMD 2.200e — 16 +
GIBBS MEME

+ There is statistical difference (MFMD better); = There is no difference; - There is statistical difference (MFMD worse)
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Sampler in NF-Kb and wins both in the others. In this con-
text, with less number of samples, the estimation of the
probabilistic model loses precision, but MEMD was able
to recognize a greater number of motifs. In general, the
best performance achieved by MFMD can be attributed
to its optimization architecture and the most effective
way that its heuristics are applied, allowing to explore the
search space more efficiently and thus achieving better
results.

Table 7 shows the result of the statistical test per-
formed with the f-scores obtained by each approach.
The following experiments were conducted: MEMD vs
Gibbs Motif Sampler and MFMD vs MEME and the
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results were presented as follows: (+) there is statis-
tical difference favorable to MFMD; (=) there is no
statistical difference; and (-) There is statistical differ-
ence unfavorable to MFMD. The statistical test corrob-
orates the results presented in Table 6 (ranking) where
MEMD obtained an advantage in relation to the other
approaches.

MEMD uses in construction step g = 0.9. Whether
q = 1 then the algorithm is greedy. On the other hand,
whether g = 0, then the algorithm is random. While low
values of ¢ promote randomness and consequently low-
quality solutions, high values of g lead the algorithm to
local optima.
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The same is true of RCL. If RCL = 1, then the algorithm
becomes greedy, even though g = 0. Conversely, if RCL =
L — w+ 1, the algorithm becomes random. It is important
to note that in both cases a compromise must be found
between randomness and greediness.

The significance level used in the Pattern Matching
step was 0.0001. The addition of this value would lead
to greater permissibility to the method, increasing the
number of predicted false positives. On the other hand,
its decrease would leave the approach more “rigid” and
consequently a smaller number of true positives would
be observed. Therefore, the correct adjustment of this
parameter directly implies the prediction quality of the
algorithm.

Although all the programs compared in this work are
based on probabilistic models, there are considerable
differences in the results obtained due to the size of
the search space and the existence of a large number
of possible solutions. Optimization algorithms, such as
MEME for example, can optimize the statistical mod-
els locally. However, the inherent multi-modality of the
search space, in general, does not allow purely local driven
optimization procedures to explore many different solu-
tions. The MFMD architecture allows greater flexibility
of search engine space because it applies an evolutionary
process to a population of possible candidate solutions.

Finally, Figs. 4 and 5 compare the logos obtained by
MEMD in the JASPAR and real datasets experiments with
the logos generated from the real motifs. In them, we can
see that the logos generated by the MEMD is very similar
to the real logos.

Conclusions

In this work we propose a new algorithm for the motif
discovery in DNA sequences using local search and evo-
lutionary algorithms as an optimization strategy.

The proposed approach, called MFMD, starts from a
population of gradually generated motifs and performs an
extensive search through operations such as recombina-
tion, mutation, and local search.

To demonstrate the efficiency of MFMD, several exper-
iments were carried out in four groups of datasets: sim-
ulated datasets; JASPAR (datasets and motifs extracted
from ChIP-seq experiments) and real datasets exper-
iments. Through the comparisons made between the
MEMD and other approaches found in the literature, it
can be concluded that the MFMD was able to achieve
better results in most of the experiments in all datasets.

Although there are several more robust probabilistic
models than PSSM, such as Dinucleotide Weight Matrices
(DWM) [37] and Transcription Factor Flexible Models
(TFEM) [38], the objective of this work was to high-
light the efficiency of the hybrid evolutionary approach in
relation to approaches Literature.
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In future works, we intend to investigate other forms of
representation. While there is a considerable effort in the
scientific community, it remains a complex challenge for
computational biologists to predict convincing regulatory
elements in DNA sequences.

Current paradigms of motif discovery can be seen as
an approximation of biological reality, although recent
efforts have sought to include correlation between motif
positions [39], phylogenetic information [40], and syner-
gistic relationships among transcription factors [41]. As
the complexity of these models increases, the need arises
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to develop increasingly sophisticated algorithms that can
find optimal solutions for these models and this will
become increasingly important over time.

Availability and requirements

Project Name: Sequence motif finder using memetic
algorithm

Project Home Page: https://github.com/jadermcg/mfmd
Operating System(s): Linux Ubuntu 16.04 LTS
Programming Language: Java

Other Requirements: Java 8 (https://www.java.com/down-
load/) or higher, Weblogo 3 (http://weblogo.threeplus-
one.com/), R 3.3.3 (https://cran.r-project.org/) or higher
License: GNU GPL

Additional file

Additional file 1: Simulated datasets details. This file contains the
description of the simulated datasets used in this paper. (PDF 114 kb)
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