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Gene flow analysis method, the D-statistic,
is robust in a wide parameter space
Yichen Zheng* and Axel Janke

Abstract

Background: We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene
flow between closely related species. This method has been applied to a variety of taxa with a wide range of
divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been
systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of
loci were examined in a sensitivity analysis.

Result: The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e.
the population size scaled by the number of generations since divergence. This is consistent with the fact that the
main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity
of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined
the ability of the f-statistics, f̂ G and f̂ hom, to estimate the fraction of a genome affected by gene flow; while these
statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene
flow happened, they can be used to compare datasets with identical or similar demographic background.

Conclusions: The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances
(divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical
reservation to taxa where population sizes are large relative to branch lengths in generations.
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Background
Traditional phylogenetic analyses that assume a bifurcat-
ing tree fails to model complicated evolutionary pro-
cesses such as incomplete lineage sorting (ILS), gene
flow, and horizontal gene transfer [1]. Gene flow, or
introgression, refers to alleles from one species entering
a different (and usually closely related) species through
migration and hybridization. It is a violation of the as-
sumption in traditional phylogenetics that speciation is a
sudden event and no exchange of genetic information
occurs thereafter. Incomplete lineage sorting refers to an
occurrence where lineages of a certain locus fail to co-
alesce in the branch directly in the past of their popula-
tion divergence, resulting in three or more un-coalesced
lineages existing in a population [1, 2]. This can result in
discordance between the genealogy of that locus (gene

tree) and population split history (species tree). These
factors caused phylogenetics to enter an era of multi-
locus analysis and is facilitated by availability of whole-
genome sequencing [3]. There are multiple methods
designed to reconstruct a “species tree,” a tree that
describes speciation processes as splitting of populations
[4–7]. However, these methods still aim for a completely
bifurcating tree. To fully resolve the complexity during
speciation and divergence, one would need to treat
“phylogenetic incongruence [as] a signal, rather than a
problem” [8].
Analysis of gene flow must take ILS into account,

because both processes generate gene trees that are in-
congruent with the species tree. Among the earliest
methods to detect gene flow are a homoplasy-based
analysis that finds taxa that are intermediate between
putative parent species [9], and a gene tree comparison
that identifies locus divergence younger than the species’
divergence [10]. Later methods can be generally sepa-
rated into two categories: likelihood-based/Bayesian-
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and parsimony-based, using different interpretations of
the coalescent models. Likelihood or Bayesian methods,
such as Phylonet [11, 12] and CoalHMM [13] are based
on a priori evolutionary models, and are applicable
across a large range of conditions. However, their disad-
vantages often include excessive computation times and
the need to estimate a large number of parameters and
to specify priors that are difficult to obtain accurately,
but which can crucially affect the outcome.
The D-statistic, also known as the ABBA-BABA

statistic, is a useful and widely applied parsimony-like
method for detecting gene flow despite the existence
of ILS [14, 15]. This method is designed to be used
on either one of two types of data: (1) sequence
alignment where there is only one or a few samples
per taxa, or (2) SNP data where the frequency of
each allele in each population is known. This method
compares the number of ABBA and BABA sites –
parsimony-informative sites that support a different
phylogeny than the species tree, and determine
whether they are statistically equal in number. The
two genealogies discordant with the species tree,
ABBA and BABA are equally likely to be produced by
ILS; therefore they should not differ in number if
only ILS, but not gene flow is present. A significant
difference between ABBA and BABA sites indicates
that two non-sister species are more similar to each
other than expected, which is interpreted as a signal
of gene flow. The D-statistic has been used in numer-
ous studies to detect gene flow between closely re-
lated species of bears [16], equids [17], butterflies
[18] as well as hominids [14], and plants [19, 20], and
even microbial pathogens [21].
The D-statistic (see Methods for formula) is used for a

group of four taxa with an established phylogeny (Fig. 1)
to detect gene flow between two ingroups that are not
sister species (in this case, H2 and H3). The value of D
is affected by a number of parameters; a) fraction of
gene flow (f ), b) divergence times, c) time of gene flow

and d) population size. The “fraction of gene flow” refers
to the fraction of recipient genome that descended from
the donor population. The value of f cannot exceed 0.5,
otherwise the source of gene flow will contribute more
to the recipient’s genome than its lineage described in
the species tree. As a result, the species tree would need
to be changed to represent the lineages that provide the
majority of the genome. Given the above parameters, the
expected value of D is (formula from [15]):

E Dð Þ ¼ 3f T3−Tgf
� �

3f T3−Tgf
� �þ 4N 1−fð Þ 1− 1

2N

� �T3−T2 þ 4Nf 1− 1
2N

� �T3−Tgf

Here f is the fraction of gene flow, N is the population
size, T3 is the divergence time between the donor and
recipient of gene flow, T2 is the divergence time between
the recipient of gene flow and its sister species that have
not received gene flow, and Tgf is the time of the gene
flow event. All times are in units of generations. The ex-
pected value of D does not have a linear or mathematic-
ally simple relationship with the fraction of gene flow.
Therefore, the calculation of f from D is impossible
without knowing the divergence times, time of gene
flow, and population size with high accuracy [22]. As a
result, the D-statistic is often used as a qualitative meas-
ure where a significant D indicates presence of gene
flow. Furthermore, the D-statistic can be highly suscep-
tible to random variation in short sequences, making it
unfit for detecting which regions have been affected by
gene flow [22].

Durand et al. [15] proposed an alternative measure, f̂ G
(see Methods for formula), which is expected to have a
linear relationship with the actual fraction of gene flow,
f, and is unaffected by population size. This is based on
an assumption that a locus that underwent 100% gene
flow will convert H2 into a member of the H3 popula-
tion. Martin et al. [22] developed two additional estima-

tors of f, f̂ Hom and f̂ d . f̂ Hom (see Materials and Methods
for formula) uses the sequences of H3 as a control to de-
termine how much of H2’s genome is affected by gene
flow (see Materials and Methods), under an assumption
that as the gene flow increases, H2 and H3 will be com-
pletely homogenized (which is only correct if the gene

flow is extremely recent). f̂ d compares H2 and H3 in a
site-by-site basis and choose a “donor population” in
which the derived allele has a higher frequency (there-
fore requiring population-level data), thus being able to
explicitly model gene flow for both directions H2 - > H3

and H3 - > H2. Martin et al. [22] showed that both f̂ G
and f̂ Hom have a high variance among loci and occasion-
ally had a value above 1, indicating that they are subject

Fig. 1 A four-taxon tree required to implement the D-statistic. The
four taxa are designated as H1, H2, H3 and H4, with H4 serving as
the outgroup. Gene flow between H2 and H3 (shown with arrows)
or H1 and H3 can be detected with the D-statistic. T3, T2 and Tgf
denotes the time passed since each event.
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to higher stochasticity; on the other hand, f̂ d performs
in a more stable way.
However, little is known about the parameter space in

which the D- and f-statistics can be reliably used, which
is of particular interest to biologists. The D-statistic is
commonly used on species that diverged recently or
have small genetic distances; it was originally developed
to test hybridization between humans and Neanderthals,
which diverged about 270,000–440,000 years ago (some
20,000 generations), and have a DNA sequence distance
of 0.3% [14]. On the other hand, the method has been
applied to species groups such as butterflies Heliconius
timareta and H. melpomene [18], which were estimated
to have diverged two million years ago with a DNA
sequence distance of more than 1% [23]. This corre-
sponds to 8 to 24 million generations, given a generation
time estimate between one and three months [24, 25].
To date the maximal sequence divergence on which the
D- and f-statistics have been applied is 4 to 5%, in mos-
quitoes of the genus Anopheles [26] and plants of the
genus Mimulus [27]. It is still unknown if the D-statistic
will be less effective on taxa that are highly diverged; an
intuitive prediction would be the deterioration of the D-
statistic’s effectiveness with increasingly divergent taxa,
due to signals being overwhelmed by noise such as mul-
tiple substitutions and even saturation.
In the original simulation tests [15], the times of diver-

gence and gene flow were not varied, and all poly-
morphic sites were independent without linkage. In the
simulation tests by Martin et al. [22], the divergence
times were strictly proportional to population size, not
allowing variation of one without the other. The prob-
ability of two lineages (H1 and H2) coalescing on the
branch leading to their divergence is determined by the
ratio of branch length (in generations) and population
size [28, 29]. If they fail to coalesce within the branch, a
third lineage (H3) will appear in the population, leading
to ILS, which produces two alternative gene trees that
lead to ABBA and BABA sites at a same rate. The ratio
of population size to divergence time, being a direct
determinant of frequency of incongruent gene trees [1],
is expected to have an effect on the sensitivity of the D-
and f-statistics, i.e. how likely a gene flow event can be
detected given that it exists. We predict that the D-
statistic is less sensitive, and the f-statistics are less
robust, in datasets with a higher population size relative
to divergence time.
Therefore, we raise the question whether the effective-

ness of the D- and f-statistics are affected by variation of
divergence and gene flow time as well as population size,
particularly when the ratio between population size and
time scale is varied. In addition, we analyzed the statis-
tical significance of the D-statistic instead of the statistic
itself, particularly its sensitivity, because it is better

suited as a qualitative measure. Finally, we will analyze
the effect of gene flow direction and locus size on the
statistical significance of the D-statistic, and the inter-
action between these variables (in particular, divergence
times and gene flow direction). We are convinced that
this will provide a valuable guide for future geneticists
to better judge limits of incorrect interpretation of the
D- and f-statistics as a method to detect and measure
gene flow.

Methods
Definition of the D and f-statistics
According to the notions used by [15, 22] we review the
parameters and their definitions used in the D and f-
statistics for this study. Assume aligned or mapped DNA
sequences are sampled from an asymmetric phylogeny
of four taxa, (((H1, H2), H3), H4). NABBA(H1,H2,H3,
H4) is defined as the number of nucleotide sites in
which H2 and H3 share an allele, while H1 and H4 share
a different allele. Similarly, NBABA(H1,H2,H3,H4) is the
number of nucleotide sites in which H1 and H3 share an
allele, while H2 and H4 share a different allele. These
numbers can refer to either one locus or the entire gen-
ome. The D-statistic is denoted as:

D H1;H2;H3;H4ð Þ ¼ NABBA H1;H2;H3;H4ð Þ−NBABA H1;H2;H3;H4ð Þ
NABBA H1;H2;H3;H4ð Þ þ NBABA H1;H2;H3;H4ð Þ

The numerator of this formula is represented by S(H1,
H2,H3,H4).
In addition to the D-statistic, we examined two f-

statistics that can be calculated without requiring the

allele frequency in populations. These statistics, f̂ G and

f̂ hom, are estimators of f, the fraction of gene flow. While
they utilize four taxa with the same tree as the D-

statistic, f̂ G has an additional requirement that at least
two samples must be collected from the H3 population.
The f-statistics are calculated as:

f̂ G ¼ S H1;H2;H3;H4ð Þ
S H1;H3a;H3b;H4ð Þ

f̂ hom ¼ S H1;H2;H3;H4ð Þ
S H1;H3;H3;H4ð Þ

H3a and H3b are two samples from the H3 lineage,
assuming to be two unrelated individuals in the same

population. The H3 used in the calculation of f̂ G can be

either H3a or H3b. For f̂ hom , H3 is used twice in the
denominator; NBABA(H1,H3,H3,H4) is always zero,
because H3 cannot be different from itself, so S(H1,H3,
H3,H4) is identical to NABBA(H1,H3,H3,H4), i.e., alleles
shared by H1 and H4 but not by H3.
Tests of significance for the D- and f-statistics were

done with a jackknife method, in which 5 Mb blocks
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were removed one at a time to estimate a standard error
that is approximately normally distributed [30, 31].

Simulating of species trees, gene trees and DNA
sequences
We used coalescence models to simulate gene trees from
species trees, in order to take in account ILS in addition
of gene flow. A species tree with fixed topology (Fig. 2)
was used as the basis of the simulation, in which Tgf, T2,
T3 and T4 are independent variables we control in input.
Of note is that H3a and H3b represent two samples

from the same population, used to calculate f̂ G . H2f and
H3f are used as lineages introduced by gene flow, that
originates from H2 and H3 respectively. The parameters
were set according to Table 1 (Scheme 1), producing 27
species trees with different branch lengths. Note that
both branch length and population size were scaled with
the reciprocal of substitution rate, 1/μ, so that the results
would be applicable to organisms with a wide range
of substitution rates. Along a branch with the length
T = k × 1/μ generations, k substitutions per nucleotide
are expected.
SimPhy [32] was used to simulate gene trees from

species trees, using a coalescence-based Wright-Fisher
model [33, 34]. The population size, Ne, is constant
throughout the tree and proportional to divergence level
(Table 1, Scheme 1). Gene trees were produced from
each species tree; 15 sets of 50,000 gene trees were pro-
duced, which include three replicates for each of the five
population sizes. In each gene tree, a sample of each
lineage (H1, H2, H2f, H3a, H3b, H3f and H4) was taken
and the divergence times between samples were

simulated as constrained by the species tree, i.e. diver-
gence times between populations. The resulting gene
tree may have a different topology than the species tree.
We denote the ratio Ne/T3 as the “relative population
size.” A total of 135 parameter combinations and 405
datasets were generated. All other parameters were set
to default.
The branch lengths in the simulated gene trees were

then converted from units of generations to units of sub-
stitutions per nucleotide, during which the parameter 1/
μ was cancelled out. The program INDELible [35] was
used to simulate non-coding DNA sequences from gene
trees. A 20-kb-long locus was simulated from each gene
tree. The sequence evolution model was HKY with a
transition/transversion ratio of 3.6 [36, 37], gamma dis-
tribution of substitution rate with shape factor α = 1, and
a GC content of 40%. Each of the 135 parameter combi-
nations produced 50,000 unlinked loci, with a total size
of 1Gb. A typical mammalian genome is 3Gb and con-
tains about a half repeat sequences; thus, 1Gb is close to
the size of a mammalian genome alignment with repeats
and difficult-to-map regions (such as centromeres and
telomeres) excluded.

ABBA and BABA site counts for D, the f̂ G and f̂ hom
statistics were calculated in each locus, under three al-
ternative situations: (1) under no gene flow, H1, H2,
H3a and H4 are used as the four sampled sequences,
and H3a and H3b are used as two samples of H3 to cal-

culate f̂ G ; (2) under gene flow from H3 to H2. Here H1,
H3f, H3a and H4 are used as the four sampled se-
quences, and H3a and H3b are used as two samples of

H3 to calculate f̂ G ; (3) under gene flow from H2 to H3,
H1, H2, H2f and H4 are used as the four sampled se-

quences. Calculation of f̂ G in (3), as it requires sampling
two individuals in the gene flow recipient, is deemed to
be beyond the scope of this study. The reason is that
when two samples of H3 (recipient of gene flow) are
taken, it is possible that only one sample is introgressed
in a certain locus; however this possibility is dependent
on whether the introgressed allele is fixed, which re-
quires a more complicated coalescence model.
Hereafter, an “introgression test” refers to the follow-

ing procedures: given a fraction of gene flow of a certain
direction, f (0 ≤ f ≤ 0.5), in a 1Gb dataset, 50,000 × f loci
are randomly chosen to be under gene flow, while the
other 50,000 × (1-f ) loci are not under gene flow. Using

this combination, the D, f̂ G and f̂ homstatistics are calcu-
lated using the formulae detailed above and tested using
the jackknife method, where every 250 loci (5Mbp) are
used as one block [14]. A test is significant if the result-
ing Z score (the value of D-statistic divided by its stand-
ard error) is above 3, a value chosen for strong
significance based on [14, 38] corresponding to p < 0.0013.

Fig. 2 The species tree used for the coalescent-based gene tree
simulation. Tgf, T2, T3 and T4 are respectively divergence or gene flow
times of the corresponding event, measured in the unit of generations.
H3a and H3b represent two independent samples from the same H3
population. H2f represents an introgressed lineage originating from
the H2 population, and similarly H3f represents an introgressed lineage
originating from the H3 population
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The Z score of the D, f̂ G and f̂ hom statistics are cal-
culated separately, therefore, their significance are also
determined separate from each other. In summary, an
introgression test is a test for the D- and f-statistics
and their significance, given the fraction of gene flow,
f, and the dataset.

Sensitivity test
A sensitivity test is an analysis on parameters that would
cause false negatives in a test. In our case, the sensitivity
test is a power analysis; determining the power of the D-
statistic to detect gene flow. Sensitivity tests were con-
ducted in two steps. In the first step, f values of 0, 0.001,
0.002, …, 0.009, 0.01, 0.015, 0.02, 0.03, …, 0.09, 0.1, 0.15,
0.2, 0.3, 0.4, and 0.5 (hereafter called the “basic f list”)
were used for introgression tests. Each f value other than
0 was tested 3 times. The smallest f for which all 3 times
tested positive was denoted f0; the number two places
before f0 in the “basic f list” was denoted fmin (if f0 =
0.001 or 0.002, fmin = 0.001), and the number immedi-
ately after f0 was denoted fmax (if f0 = 0.5, fmax = 0.5). In
the second step, f values between fmin and fmax were
tested with an interval of 0.001. Each f value was tested
500 times. Using a logistic regression, the smallest f that
have an 80% probability to produce a significant result
was used as the threshold value to indicate sensitivity, as
standard for power analyses [39]. This threshold is called
MF80, (Minimal Fraction for 80% significance), and
lower MF80 indicates better sensitivity. If the predicted
probability of the D-statistic being significant is still less
than 80% when f = 0.5, the D-statistic is not usable in
this dataset. In this situation, MF80 is set as 0.501 for
the downstream statistical analysis rather than treating it
as missing data, so that we can make use of the
knowledge that the D-statistic is extremely insensitive in
this dataset. It will only cause underestimation of the

correlations between sensitivity and parameters as the
true MF80 (had we allow f > 0.5) will be at least 0.501.

The f̂ G and f̂ homstatistics were linearly regressed with
the input f using the data from the entire “basic f list”;

the slope of this regression is used as estimate of f̂ G /f

and f̂ hom/f.

Analyzing the effect of outgroup distance
In this section, we studied how the genetic distance be-
tween outgroup (H4) and ingroups (H1-H3) affect the
sensitivity of the D- and f-statistics, given an otherwise
identical species tree. The variables used in this section
are described in Table 1 (Scheme 2). Of note is that the
highest level of divergence is not included because it is
least realistic, and the T4/T3 ratio is the main variable
under study. From each parameter combination, three
replicates each of 50,000 gene trees were simulated, and
from each gene tree, 20 kb of non-coding DNA se-
quences were simulated, using the same method as the
previous section. A total of 150 datasets were produced.
Analysis of sensitivity of the D- and f-statistics are also
conducted using the same methods as the previous
section.

Analyzing the effect of number and size of independent
loci
In this section, we studied the impact on the D- and f-
statistics by the number of independent loci, given the
same species tree and total sequence length. The vari-
ables used in this sections are described in Table 1
(Scheme 3). Of note is that the highest level of diver-
gence is removed, and the locus number is the main
variable under study. Under a constant total sequence
length of 1Gb, the lengths of each locus under each
value are 500 kb, 200 kb, 100 kb, 50 kb, 20 kb and
10 kb. From each parameter combination, three replicate

Table 1 Variables and constant parameters used in the study

Variable Scheme 1: analysis of branch l
engths and population

Scheme 2: analysis of
outgroup distance

Scheme 3: analysis of
number and size of loci

Scheme 4: analysis
of diploid data

Divergence (T3) 0.001, 0.01 or 0.1 × 1/μ Generations 0.001 or 0.01 × 1/μ Generations 0.001 or 0.01 × 1/μ Generations 0.001 or 0.01 × 1/μ
Generations

Tgf/T2 0.25, 0.5 or 0.75 0.5 0.5 One of these combinations:
0.25 and 0.1; 0.5 and 0.5;
or 0.75 and 0.9.T2/T3 0.1, 0.5 or 0.9 0.5 0.5

T4/T3 2 1.5, 2, 5, 10 or 20 2 2

Population size 0.2, 0.5, 1, 2 or 5 T3 0.2, 0.5, 1, 2 or 5 T3 0.2, 0.5, 1, 2 or 5 T3 0.2, 1, or 5 T3

Number of loci 50,000 50,000 2000, 5000, 10,000, 20,000,
50,000 or 100,000

50,000

Replicates 3 3 3 3

Total datasets 405 150 180 54

Datasets were simulated in three schemes, focusing on different parameters. Parameters not varied in that scheme are in italics
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datasets were simulated, producing 180 datasets in total.
Analysis of the D- and f-statistics were conducted using
the same methods as in previous sections.

Robustness of f-statistics
This section describes an analysis on the robustness of
the f-statistics against random variation caused by locus
sampling. We used data from 18 parameter combina-
tions in Simulation Scheme 1: T3 = 1 × 104 or 1 × 105

Generations; Population size = 0.2, 1 or 5 T3; Tgf/T2 and
T2/T3 are one of these combinations: 0.25 and 0.1, 0.5
and 0.5, or 0.75 and 0.9.

The f-statistics we examined are f̂ G and f̂ hom in H3

- > H2 gene flow, and f̂ hom in H2 - > H3 gene flow. For
each real f value on the “basic f list” (see above section
“Sensitivity Test”) we estimated 500 replicate sets of the
f-statistics. In each replicate, 50,000 loci are randomly
selected from the combined pool of 150,000 loci of the
three replicates of that parameter combination (Table 1);
within which, f × 50,000 of them are under gene flow
and (1-f ) × 50,000 are not under gene flow. The f-
statistics were calculated and their confidence intervals
were determined as (statistic ±2× standard deviation)
[15]. In a small number of replications, the jackknife

variance of f̂ G was calculated as negative (the variance is
based on a weighted measure where the weight of a
jackknife block is based on the denominator of the f-

statistic, which can be negative in some blocks for f̂ G ,
because the formula includes a subtraction); in these
cases the confidence intervals were treated as missing
data.
Pairwise comparisons were conducted in these procedures:
Let i and j be real f values from the “basic f list”, where

i ≤ j. Compare each of the 500 replicate f̂ G values where

the real f is i ( f̂ G ið Þ ), and each of the 500 replicate f̂ G
values where the real f is j ( f̂ G jð Þ ); in the 500 × 500 =
250,000 comparisons, record the proportion of compari-

sons where f̂ G ið Þ is numerically smaller than f̂ G jð Þ, and
where f̂ G ið Þ is significantly smaller than f̂ G jð Þ ; in the
case where i = j, record the proportion of comparisons

where f̂ G ið Þ is not significantly different from f̂ G jð Þ .
Significant difference is defined by non-overlapping con-
fidence intervals. The same procedures were also used

to compare f̂ hom from gene flow of both directions. The
recorded proportions are estimates of the probability
that the difference between real f values (or lack thereof )
were correctly identified using the f-statistic.

Diploid data
To study whether our findings are applicable to diploid
data, we simulated additional datasets. The variables

used in this section are described in Table 1 (Scheme 4),
and the 18 parameter combinations are a subset of the
ones from Scheme 1: T3 = 1 × 104 or 1 × 105 Generations;
Population size = 0.2, 1 or 5 T3; Tgf/T2 and T2/T3 are
one of these combinations: 0.25 and 0.1, 0.5 and 0.5, or
0.75 and 0.9. Gene trees and sequences were simulated
using the same procedures as in previous schemes, ex-
cept that we specified two sequences were sampled from
each taxon. One combination of parameters (T3 = 1 ×
105 Generations, Population size = 5 T3, Tgf/T2 = 0.5, T2/
T3 = 0.5) had an additional replication simulated, be-
cause one of the original replications resulted in a false
positive (Z > 3 when no gene flow is present) and was
discarded.
Analysis of sensitivity of the D-statistic were con-

ducted using similar methods as the previous sections
with special consideration taken for diploid data. During
the introgression tests, two methods were used to draw
the loci under gene flow for the recipient taxon. In the
“same loci” method, the same 50,000 × f loci are ran-
domly chosen to be under gene flow for both genome
copies; in the “random loci” method, two independent
sets of 50,000 × f loci (allowing overlap) are chosen for
the two genome copies. Sites that are heterozygous in
any analyzed taxon were excluded from the ABBA and
BABA site counts.

Results
Sensitivity of the D-statistic in relation with divergence
time, branch lengths, population size and direction of
gene flow
Sensitivity of the D-statistic is described with the min-
imal fraction of gene flow to have an over 80% probabil-
ity producing a significant (Z > 3) test result. We call this
value MF80 (Minimal Fraction for 80% significance),
and lower MF80 indicates better sensitivity. Figure 3
shows the relationship between four parameters and
MF80. Our simulations show that, counterintuitively,
MF80 has only a marginal negative correlation with di-
vergence time (r = −0.146, p = 0.003; for log MF80 and
log divergence time, r = −0.105, p = 0.034), which indi-
cates a (slightly) better sensitivity in high divergence
datasets. MF80 does not change markedly even with
large divergences (sequence differences) (Fig. 3a), where
H1/H2 and H3 have a genetic distance of over 20%. For
comparison, mouse and rat have a sequence difference
of 15–17% [40].
On the other hand, MF80 is affected by the population

size (Fig. 3b, r = 0.151, p = 0.002), indicating better sensi-
tivity with small populations. The correlation between
log population size and log MF80 is stronger (r = 0.361,
p < 0.0001); this is because population sizes were varied
on a logarithmic scale, making the numbers crowd on
the lower side when not log-transformed. The strongest
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signal, however, occurs when we compare MF80 with
relative population size (Fig. 3c). Relative population size
is defined as the ratio of population size and T3, which
is number of generations passed since H1, H2 and H3
split in the species tree. For example, human and
Neanderthal have a divergence time of 20,000 genera-
tions and an effective population size of about 10,000, so
the relative population size is estimated as 10,000/
20,000 = 0.5 [14]. The correlation between MF80 and
relative population is r = 0.693 (p < 0.0001), and increases
to r = 0.890 (p < 0.0001) if both are logarithmically trans-
formed. Within each divergence category (0.001, 0.01 or
0.1 × 1/μ Generations), the pattern of correlation is same
as for the entire combined dataset.
Finally, there is a weak correlation between the Tgf/T3

ratio and MF80 (Fig. 3d, r = 0.371, p < 0.0001; with log
MF80, r = 0.349, p < 0.0001), indicating that gene flow
events that are more recent are easier to detect. From
the correlation analyses, it can be concluded that the
sensitivity of the D-statistic is primarily determined by
relative population size, and secondly determined by
time of gene flow; indeed, these two variables can largely
predict the output MF80 under a simple linear (Fig. 4a)

or log-linear (Fig. 4b) model, with the latter being more
accurate.
Gene flow from H2 to H3 was also simulated with the

same methods, and the D-statistic’s sensitivities were
measured as MF80 in all datasets. Regardless of diver-
gence, population size or relative time of gene flow, the
D-statistic is less or at most equally sensitive compared
to gene flow from H3 to H2 (Fig. 5).
Correlations between input parameters to MF80 on

the H2- > H3 direction were calculated with the same
methods. Similar to the H3- > H2 direction, MF80 is not
affected by the divergence (Fig. 3a, r = −0.098, p = 0.048;
if both log transformed, r = −0.090, p = 0.070), weakly by
absolute population size (Fig. 3b, r = 0.239, p < 0.0001; if
both log transformed, r = 0.342, p < 0.0001), but strongly
by relative population size (Fig. 3c, r = 0.826, p < 0.0001;
if both log transformed, r = −0.090, p < 0.0001).
However, the correlation between MF80 and the Tgf/
T3 ratio is r = −0.234 (Fig. 3d, p < 0.0001), meaning
that younger gene flow events are more difficult to
detect than older ones, a counterintuitive finding. The
correlation becomes weaker if log(MF80) is used
instead (r = −0.130, p = 0.009). Further investigation

a b

c d

Fig. 3 Sensitivity and input parameters. The relationship of sensitivity as measured with MF80, the minimal fraction of gene flow that produces
over 80% significant D-statistics, and various input parameters: a Divergence, measured in generations between H3’s divergence and current time
(T3); b Population size; c Relative population size, the ratio of population size and divergence generations; d Relative time of gene flow, the ratio
of time of gene flow (Tgf) and T3. Red points represent gene flow from H3 to H2, and green points represent gene flow from H2 to H3; the colors
are slightly offset on the x-axis to ease reading
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(Additional file 1) showed that MF80 is positively
correlated with Tgf/T2 ratio (r = 0.235, p < 0.0001), but
strongly and negatively correlated with T2/T3 ratio
(r = −0.440, p < 0.0001). This pattern is not found in
the H3 - > H2 direction. When H1 and H2 diverged
later (relative to H3 divergence time), i.e., T2/T3 ra-
tio is lower, there are more shared alleles between
H1 and (un-introgressed) H2. Under H3 - > H2 gene
flow, these shared alleles become different, produ-
cing more ABBA sites. Under H2 - > H3 gene flow,
on the other hand, these shared alleles become
shared by all H1, H2, H3, producing BBBA patterns,
and thus not counted. The ability of MF80 predic-
tion by relative population size and Tgf/T3 ratio is
weaker than the H3 - > H2 direction (Fig. 4c, d).
For detailed MF80 on both directions for each dataset,

see Additional file 2.

Sensitivity of the D-statistic in relation with the distance
of outgroup and number of loci
An intuitive expectation would be that the test’s sensitiv-
ity decreases when the outgroup (H4) is more distant, as

a b

c d

Fig. 4 Comparison of measured and predicted sensitivity. Comparison between sensitivity as measured with MF80 measured from our analysis
and MF80 predicted with a linear (a, c) or log-linear (b, d) model based on the relative population size and Tgf/T3 ratio. a, b Direction of gene flow
is H3 - > H2; c, d Direction of gene flow is H2 - > H3. The sloped line indicates when the measured and predicted MF80 are equal
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Fig. 5 Comparison between sensitivity as measured with MF80 from
two gene flow directions. Each point represents one of 405 datasets.
The sloped line indicates where the MF80 from two directions are
equal; all dots are on or above the line, implying that MF80 from H2
- > H3 gene flow is never lower than MF80 from H3 - > H2 gene flow
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a distant outgroup reduces the information quality and
amount. Here we tested the effect of the outgroup dis-
tance, described by T4/T3 ratio, in a range from 1.5 to
20. In comparison, the ratio is about 7.9 times in the
earliest usage of the D-stat where H3 is Neanderthal and
H4 is chimpanzee ([14]; human-Neanderthal mean se-
quence divergence estimated as 825,000 years and
human-chimpanzee as 6.5 million years). Figure 6 shows
the sensitivity of the D-statistic, measured with MF80,
under different T4/T3 ratio (x-axis) and relative popula-
tion size (color). It is evident that MF80 is primarily
determined by relative population size, but it is
unaffected by the T4/T3 ratio. The correlation between
T4/T3 ratio and MF80 is calculated to be r = −0.078 (p =
0.342), or r = −0.021 (p = 0.795) if log transformed. How-
ever, the interaction between T4/T3 ratio and relative
population size is significant (p = 0.005). Therefore, we
showed that the D-statistic is robust regarding the gen-
etic distance between ingroups and the outgroup.
In each of the above datasets, 1Gb of DNA sequences

were simulated as 50,000 unlinked loci each of 20 kb.
Here we analyzed the effect of locus number and size on
sensitivity under a constant total sequence length of
1Gb. Figure 7 shows the sensitivity of the D-statistic,
measured with MF80, for different numbers of loci (x-
axis) and different relative population sizes (color).
While the effect of the number of loci is not as strong as
that of the relative population size, there is a trend that
MF80 becomes smaller (more sensitive) in datasets with
shorter sequences of each locus, but increasing number
of loci. The correlation between locus number and

MF80 is r = −0.273 (p = 0.0002), or r = −0.297 (p <
0.0001) when both are log transformed. The interaction
between locus number and relative population size is
not significant (p = 0.534) when both are transformed.

The D-statistic when no gene flow is present
One potential source of error in this study comes
from the difference between ABBA and BABA site
numbers even when no gene flow is occurring, due to
the sampling error during gene tree and sequence
simulation. For example, one would expect the MF80
to be underestimated if the zero-f dataset has a posi-
tive D-statistic, or vice versa. We used the Z-score of
the D-statistic when f = 0 as an indicator of such bias.
None of the 405 datasets have a significant Z-score
(|Z| > 3) when f = 0 (which would constitute a false
positive). This Z-score is significantly correlated with
MF80 (Fig. 8) in the H3- > H2 direction, the correl-
ation is r = −0.143 (p = 0.004), but not in the H2- > H3
direction, where r = −0.089 (p = 0.072). This indicates
that the sensitivity is indeed affected by random sam-
pling error, albeit only weakly so. However, we argue
that this random noise is canceled out when all 135
datasets are used and it does not bias our general
findings. The absolute value Z-score when f = 0 is not
correlated with most input parameters (p = 0.926 for
divergence, p = 0.076 for relative population size, and
p = 0.056 for Tgf/T3 ratio). For the individual Z-scores
when f = 0 in each dataset, see Additional file 2.

Fig. 6 Sensitivity and distance of outgroup. The relationship between
T4/T3 ratio (x-axis), and sensitivity as measured with MF80 (y-axis). A
higher T4/T3 ratio indicates that the outgroup is more distant to the
ingroups, relative to the distance among the ingroups. Colors represent
results from analyses for different relative population sizes, with red
being the smallest and purple the largest. The analyses show that MF80
is positively and strongly correlated to the relative population size,
while MF80 is not notably affected by the T4/T3 ratio, either as a whole
or within each relative population size

Fig. 7 Sensitivity and number of independent loci. The relationship
between the number of independent loci in each 1Gb dataset (x-axis),
and sensitivity as measured with MF80 (y-axis). Colors represent results
from analyses for different relative population sizes, with red being the
smallest and purple the largest; MF80 is positively and strongly correlated
with relative population size. MF80 is also correlated with number of loci,
with a larger number of loci (thus smaller loci) resulting in lower MF80.
The correlation between loci number and MF80 is weaker than the
correlation between relative population size and MF80
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Usage and robustness of the f-statistics

In addition to the D-statistic, we tested the f̂ G and f̂ hom
statistics, which are estimates of f, the fraction of gen-
ome affected by the gene flow event; they were proposed
because the D-statistic is qualitative and cannot be used
to estimate how strong the gene flow is. In each of the 405

datasets, f̂ G and f̂ hom are both linearly correlated to f
where the gene flow direction is H3- >H2, with correl-
ation coefficient r no smaller than 0.98 in any dataset. The

ratios f̂ G /f and f̂ hom/f are calculated with linear regression
models; the estimated parameters of the models can be

found in Additional file 2. As expected from [15], f̂ G /f is

roughly equal to 1− TGF
T 3

. On the other hand, the ratio f̂ hom

/f can be most closely estimated as 1− TGF
T3

� �
= 1þ Ne

T 3

� �

(See Additional file 2 for the predictors’ precision).

The intercept of the linear regression between f̂ G (or

f̂ hom ) and f indicates an error, where the f-statistics are
non-zero even without actual gene flow. In some datasets
with low to medium divergence and large population

sizes, f̂ G

���
��� can be above 0.05 even when f = 0, meaning

that there will be a false positive of gene flow if it is used

solely as a predictor of f. All 17 datasets where f̂ G

���
���

> 0:03 have divergence of 0.001 or 0.01 × 1/μ generations
and a relative population size of 5. On the other hand,
f̂ hom

���
��� when f = 0 does not exceed 0.01 in all datasets,

indicating that it is more robust against false positives
compared to f̂ G.

Significance of f̂ hom can be tested in a similar way to
the D-statistic, using jackknife subsampling. Indeed, the
sensitivity of f̂ hom is almost identical to D; the MF80,
minimal fraction of gene flow for 80% chance of signifi-
cance (Z ≥ 3), are equal or close to equal in all datasets.
On the other hand, f̂ G is much more difficult to evaluate
statistically. The main reason is that the jackknife makes
use of the denominator in each block to determine the
weight of each block in the entire dataset; the denomin-
ator of f̂ G is the difference between two non-zero site
counts, which can be negative or even zero, rendering
the jackknife algorithm inapplicable.

f̂ G under H2 - > H3 gene flow was not calculated, be-
cause our model cannot predict whether the same intro-
gressed loci are fixed for multiple samples in the

recipient population. For most datasets, f̂ hom is linearly
correlated with f, similar to the H3 - > H2 direction.
However, the correlation is very weak in datasets with low
T2/T3 ratio (very recent divergence between H1 and H2)
and high relative population size, indicating that f cannot

be predicted with f̂ hom even if all parameters are known.

The slope of linear regression, f̂ hom /f can be estimated as
T2
T3
− TGF

T 3

� �
= 1þ Ne

T 3

� �
(See Additional file 2 for the predic-

tor’s precision). This ratio is always smaller than what it
could be if the direction of gene flow is H3 - > H2; the
difference is stronger when T2/T3 ratio is low.
Figure 9 shows the difference between the estimated

f-statistics from randomly drawn loci and the expected
number calculated from the above formulae. The vari-
ation of the estimated f-statistics is insensitive to the
value of real f. Given the same divergence and intro-

gression times and the same relative population size, f̂ G
has a larger margin of error than f̂ hom , while f̂ hom for
both gene flow directions have similar error (Fig. 9a, b,
c). The variance of the f-statistics also increases with

relative population size (Fig. 9b, d, e for f̂ hom in H3 - >

H2; for f̂ hom in H2 - > H3 and f̂ G the result is similar).

There is a slight bias for f̂ hom when the real f is above
0.2, towards a lower value for H3 - > H2 gene flow and
a higher value for H2 - > H3 gene flow (Fig. 9b,c).
However, the expected value of the f-statistic is smaller

when the real f is smaller, which means the relative error
can be large in such cases (Fig. 10). Although in extreme
cases with large relative population size and low real f the
mean error can be over 10 times the expected value
(Fig. 10c), such gene flow events lie outside of the D-
statistic’s sensitivity and would not be qualitatively
detected at the first place. Generally, the f-statistics can be
estimated within ±20% for gene flow events that can be
detected, given that population size and divergence and
introgression times are known.

Fig. 8 Z-score for the D-statistic under no gene flow. The relationship
between the Z-score of the D-statistics under f = 0 (x-axis), and sensitivity
as measured with MF80 (y-axis). Red points represent gene flow from H3
to H2, and green points represent gene flow from H2 to H3. The Z-score
of the D-statistics under f = 0 is expected to be zero; any deviation
is caused by random sampling error of loci (noise). There is a weak
correlation between MF80 and Z-score of the D-statistics under f = 0,
indicating that measured sensitivity is slightly influenced by sampling
error of loci
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Pairwise comparisons showed similar trends (Fig. 11).
When the real f are equal, almost all (>99%) of compari-
sons showed no significant difference regardless of
demographic scenario, indicating that the false negative
rate of f-statistic comparison is very low (circles on the
diagonals).
Relative population size is the main factor in determin-

ing whether comparisons between two f-statistics cor-
rectly identify the relationship of the real f, either by

numerical comparison or statistical significance. Two f
values both above the sensitivity of the D-statistic can be
confidently correctly compared by numerical f-statistic
comparison, even if statistical significance can be lacking
with small differences between the f values. While f̂ G
(Fig. 11a, d, g) and f̂ hom (Fig. 11b, e, h) for H3 - >H2 gene
flow shows the same level of robustness, f̂ hom for H2 - >
H3 (Fig. 11c, f, i) is clearly more difficult to estimate and
to compare, under the same divergence and demographic

a b c

d e

Fig. 9 The difference between the estimated and expected f-statistics. For each scenario and each real f value, 500 bootstrap replicates were
calculated. Gray boxes indicate real f values below the sensitivity of the D-statistic in the same scenario (mean of three replicates). In all graphs,

the divergence time T3 = 1 × 105 generations, TGF = 0.5 T2 = 0.25 T3. a Ne = T3; f̂ G , gene flow direction H3 - > H2; b Ne = T3; f̂ hom , gene flow

direction H3 - > H2; c Ne = T3; or f̂ hom , gene flow direction H2 - > H3; d Ne = 0.2 T3; data for f̂ hom , gene flow direction H3 - > H2; e Ne = 5 T3; data

for f̂ hom , gene flow direction H3 - > H2
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parameters. This is consistent with our results in previous
sections where the D-statistic is less sensitive to H2 - >H3
gene flow. In extreme cases with large relative population
sizes (Fig. 11i), f values between 0.15 and 0.5 were rarely
distinguishable with statistical significance.
The effects of relative divergence and introgression

times on robustness of the f-statistics is also similar to
that on sensitivity of the D-statistic (data not shown). A
larger range of real f values are undistinguishable signifi-
cantly in datasets with older H1-H2 divergence and

introgression, for both f̂ G and f̂ hom in the gene flow dir-
ection H3 - > H2. On the other hand, for the direction
H2 - > H3 the situation is more complicated, with recent
divergence causing the most uncertainty and intermedi-
ate divergence causing the least.

Diploid data
In studies based on biological samples, the final genomic
sequence is often the consensus of two copies from a
diploid organism. The two genome copies from the gene
flow recipient population may have different sets of
introgressed loci, but our model does not allow explicit
estimation of how much the overlap may be. Instead, we
simulated two extreme conditions: the two genome cop-
ies have either the exact same set of loci affected by gene
flow, or independently drawn sets of loci. A realistic ex-
pectation lies between these two conditions.
We found that while the effect of ploidy on the sensi-

tivity (as measured by MF80) of the analysis is not

significant (p = 0.580 for H3 - > H2, and p = 0.537 for
H2 - > H3 gene flow), it is significant for H3 - > H2
(p = 0.002) as well as for H2 - > H3 (p = 0.035) when
MF80 is log-transformed. Figure 12 shows the de-
tailed effects of parameters and ploidy on sensitivity.
It is evident that diploid data with independent sets
of introgressed loci (blue dots) showed considerably
increased MF80 values, but only under low relative
population size. For datasets with a relative popula-
tion size of 0.2 (lowest), the sensitivity increased from
lower than 0.01 to between 0.01 and 0.05, reaching
0.1 in some cases of H2 - > H3 gene flow. Note that
this does not affect datasets with the same set of
introgressed loci in both genome copies (green dots).

Discussion
Relative population size as the key factor in parameter
space
The D-statistic was invented to analyze gene flow be-
tween Neanderthals and anatomically modern humans
[14]. While it is suitable for both sequence data and
population-wide allele frequency data [15], the D-
statistic is more often being used on sequences
collected from closely-related taxa. Our research ex-
plored the parameter space of the phylogeny and
demographics of the studied taxa, and determined
how these parameters affect the sensitivity of the D-
statistic. Sensitivity is described with MF80, the
minimal fraction of genome affected by gene flow to
produce significant D-statistics in 80% of permutations.

a b c

Fig. 10 The mean errors (of either direction) of estimated f̂ G (gene flow direction H3 - > H2) compared to the expected value, as the percentage
of the expected value. For each scenario and each real f value, 500 bootstrap replicates were calculated. Gray boxes indicate real f values below
the sensitivity of the D-statistic in the same scenario (mean of three replicates). In all graphs, the divergence time T3 = 1 × 105 generations,
TGF = 0.5 T2 = 0.25 T3. a Ne = 0.2 T3; b Ne = T3; c Ne = 5 T3
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An MF80 of 0.01 means that the D-statistic can detect a
1% gene flow.
Our study marks one of the first attempts to explore

the parameter space in which the D-statistic is reason-
ably sensitive. We have shown that the relative popula-
tion size, which is the ratio of population size and
divergence time in generations, is the most important
factor on the sensitivity of the D-statistic. Indeed, the
“coalescence time unit” as a measure of branch length is
the reciprocal of the relative population size, and the
probability of gene tree differs from the species tree in a
three-species tree is (2/3)e-t where t is the number of co-
alescence time units [28, 29]. Similarly, the proportion

T2/T3 and Tgf/T3 affects sensitivity through the lengths
of branches separating the divergence and gene flow
events. Branches short in coalescent time units are likely
to produce ILS which add to both ABBA and BABA
counts, diluting information for the D-statistic [1]. Our
usage of relative population size describes how large the
population size is compared to the entire history of the
(H1, H2, H3) complex, in contrast to the coalescent time
unit, which is used to measure the length of individual
branches. In case of changing population sizes, the har-
monic mean is commonly used [41]; future research
may focus on obtaining a mean population size of mul-
tiple diverged populations or species.

a

h

fed

g i

cb

Fig. 11 Pairwise comparison between the f-statistics in the same scenario. Each box represents 500 × 500 = 250,000 data points. Upper-left
triangle: probability of the higher real f value result in a statistically higher f-statistic, based on comparison of confidence intervals. Lower-right
triangle: probability of the higher real f value result in a numerically higher f-statistic. Diagonal line (circles): probability of no statistically significant
difference given the same real f values. Gray-shaded areas indicate real f values below the sensitivity of the D-statistic in the same scenario (mean
of three replicates). In all graphs, the divergence time T3 = 1 × 105 generations, TGF = 0.5 T2 = 0.25 T3. a, b, c Ne = 0.2 T3; d, e, f Ne = T3; g, h, i

Ne = 5 T3. a, d, g f̂ G , gene flow direction H3 - > H2; b, e, h f̂ hom , gene flow direction H3 - > H2; c, f, i f̂ hom , gene flow direction H2 - > H3
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Sequence divergence, or genetic distance is not a
crucial factor on the D-statistic’s sensitivity alone, at
least within a 0.2% to 20% range. The D-statistic ana-
lysis has been applied to biological questions with se-
quence divergences as low as 0.3% [14] and as high
as about 5% [26, 27]. The analyses show that within
reasonable range, sequence divergence is only a minor
concern. A caveat, however, exists in the form of
non-substitution mutations. Long-term evolution can
accumulate mutations such as insertions, deletions
and duplications in the genomes, causing incorrect
mapping and alignment, which may affect the gene
flow analysis by aligning non-homologous sites and
producing artefactual ABBA or BABA sites. Therefore,
high-coverage genomes and good alignment tools are
essential for such studies.

We scaled both branch lengths and population sizes
with the reciprocal of the substitution/mutation rate μ,
as it does not affect gene trees (branch lengths measured
in substitutions per nucleotide) in a neutral model. This
allows the interpretation of our results to be applicable
to diverse organisms; humans have a rate of 1.3 to 2.5 ×
10−8 mutations per nucleotide per generation [42, 43],
while in Heliconius butterflies the rate is approximately
2 to 3 × 10−9 mutations per nucleotide per generation
[18, 44, 45]. The relative population size, being a ratio of
two parameters both scaled with 1/μ, is completely inde-
pendent from mutation rate in our model.
In the Neanderthal-human analysis, the relative

population size is about 0.5 assuming Ne = 10,000 and
T3 = 20,000 generations [14]. For the Heliconius butter-
flies, Ne = 0.5 to 2 million and T3 = 8,000,000

a

b

Fig. 12 Comparison of sensitivity of the D-statistic in haploid and diploid data. “Same loci” indicates two genome copies share the same set of
introgrossed loci, while “random loci” indicates two genome copies have independently drawn sets of introgressed loci. The direction of gene
flow is a H3 - > H2; b H2 - > H3
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generations give a relative population size of 0.06 to 0.25
[46]. A study on gibbons gave Ne = circa 100,000, gener-
ation time of ten years and T3 of circa 5 million years,
so the relative population size is 0.2 [47]. These values
all fall into a reasonable range in our study. In a study of
gene flow among equids, Ne = 200,000, generation time
of eight years and divergence time at some 2 million
years, giving a relative population size of 0.8 [17]. While
this is higher than the previously mentioned studies,
strong gene flow over 10% of the genome can still be de-
tected by the D-statistic analyses. Finally, in a study on
dogs and wolves, the ancestral Ne was estimated at
35000, generation time of three years and a dog-wolf di-
vergence of circa 15,000 years, resulting in a relative
population size of 7 [48]; however, bottlenecks during
domestication could have reduced the actual effective
population size and consequently incomplete lineage
sorting. As a rule, when the relative population size is
0.5 or less, the D-statistic appears to be reliable. On
groups with higher population sizes, alternative methods
may be required to correctly identify inter-population or
inter-species hybridization, using multiple samples
within each population. However, studies that find all
negative results for the D-statistic may choose not to in-
clude these findings in the published manuscript.

Effects (or lack of effects) of outgroup distance and loci
number
Other parameters, such as outgroup distance and loci
number, were also explored on their effect on the statis-
tical analysis. A distant outgroup has been shown to, for
example, reduce accuracy of phylogenetic rooting [49].
Counterintuitively, the distance between the outgroup
and the ingroups within reasonable range seems not to
be relevant to the sensitivity of the D-statistic as well as
the errors of the f-statistics. The determining of ances-
tral allele in ABBA or BABA sites is based on the
outgroup. It might be expected that a distant outgroup
would cause more false positives and negatives in
identifying such sites due to multiple substitutions
(randomization), reducing the efficiency of the D-
statistic to detect gene flow. Simulating multiple substi-
tution is possible with the program INDELible, because
it evolves DNA sequences with each mutation being in-
dependently assigned. While the concern about align-
ment and mapping artifacts with a very distant outgroup
still exist, it is a reassurance that the D-statistic analysis
can be used even when a closely related species as an
outgroup cannot be found.
The D-statistic is also shown to be more sensitive in a

large number of smaller loci, given a constant size of
analyzed genome. The most likely reason is a lower
sampling error; even without gene flow, a single locus
can favor ABBA or BABA sites due to incomplete

lineage sorting. A larger number of loci means that the
number ABBA-favoring and BABA-favoring loci are
more similar to each other.
While we did not use a complex recombination model,

loci number can be seen as a proxy of recombination
rate. A higher recombination rate will break up linkage
more often, which leads to an increase of locus number.
Based on our results, when other conditions are similar,
taxa with higher recombination rates are more sensitive
to the D-statistic. Furthermore, given a constant rate of
recombination, longer divergence time between taxa
means more recombination events, thus increasing sen-
sitivity because of reduced locus size; as we have shown
in a previous section, genetic distance alone does not re-
duce sensitivity. Our main simulation scheme provides
20 kb loci, while the shortest loci are 10 kb. Further
reduction of length (thus increasing the number of inde-
pendent loci) is constrained by computation time limita-
tions. In biological datasets, if the loci are even shorter,
one can expect even better sensitivity of the D-statistic
compared with our results. In the future, backward sim-
ulations based on coalescence algorithms, such as
msprime [50], can be employed to further pinpoint the
effects of locus size and recombination rate.

Direction of gene flow
The D-statistic was developed to detect gene flow in both
directions, i.e. H2 - > H3 and H3 - >H2. In the studies on
Neanderthal and human genomes, Neanderthals are ex-
tinct and multiple non-African modern human popula-
tions were used, therefore it is reasonable to claim that
the direction is from Neanderthal to modern humans
[14, 15]. However, with studies where all sampled
taxa are extant and only one sample is available for
each of the four taxa, the D-statistic alone cannot de-
termine the direction of gene flow. A five-taxon stat-
istic known as D-FOIL is able to determine direction
of gene flow in some situations [51].
We have observed that, other parameters being identi-

cal, H3 - > H2 gene flow is easier to detect than H2 - >
H3 gene flow. A mutation that produces ABBA sites
under H3 - > H2 gene flow must occur after H3 diverged
from H1/H2 (T3) and before the gene flow (TGF); but
such mutation under a H2 - > H3 gene flow must occur
after H2 diverged from H1 (T2) and before the gene flow
(TGF). The former timespan is longer than the latter
under the same demographic scenario; therefore, when
the f is equal, H3 - > H2 gene flow produces more ABBA
sites than H2 - > H3, making it easier to be detected with
the D-statistic.
There is also an interesting finding regarding the dir-

ection of gene flow: more recent divergence between H1
and H2 hinders the detection of H2 - > H3 gene flow but
helps the detection of H3 - > H2 gene flow. The former

Zheng and Janke BMC Bioinformatics  (2018) 19:10 Page 15 of 19



can be explained by that the timespan between T2 and
Tgf, required for ABBA sites under H2 - > H3, is reduced
when T2 is smaller. The latter may be explained by that
more recent H1-H2 divergence means their (pre-intro-
gression) sequences are more similar, providing a clearer
background for the introgressed sites to be detected.

False positives
False positives are also a potential problem for the D-
statistic. While only one simulated dataset in a total of
789 has a |Z| > 3, 45 out of the these datasets in the
main simulation scheme have |Z| > 1.96, which would be
significant had we set the significance level to be p <
0.05; this is consistent with the proportion of such data-
sets (5.7%). There are two main sources of false positives
in the D-statistic. One is loci sampling error. ILS pro-
duce gene trees that group H1 and H3 together (favoring
BABA sites) at the same rate as gene trees that group
H2 and H3 together (favoring ABBA sites), which theor-
etically cancel out with each other. However, as the
number of sampled loci is finite, the two types of gene
trees may have different frequencies by chance, causing
BABA and ABBA site number to be unbalanced. The
other source of error is that the sequence from H1 being
more or less distant than H2 from the H1-H2 common
ancestor. This can be caused by a different evolutionary
rate or sequencing error, the latter of which have been
analytically tested by [15] for one specific set of param-
eter values.
To date, there is no simulation-based study on false

positives of the D-statistic from either source, nor ana-
lysis on the interaction of them and other factors such
as population size. This is possibly due to the fact that
specificity tests, i.e. tests of false positive rates, require
independent replicate datasets on which the D-statistic
would be calculated under no gene flow. If all 135 par-
ameter combinations of our main data scheme are simu-
lated 500 times in parallel, the total running time would
be estimated as 4.5 years. Future studies may focus on
finding methods of permutation and subsampling so that
independent or almost independent datasets can be gen-
erated within limited computation power, on which false
positives can be studied.

Usage of the f-statistics

Our result showed that both f̂ G and f̂ hom are largely
linearly correlated with the real fraction of gene flow, f,
but the usage of them to estimate f is hindered by
parameters that are often unknown. These include the
direction of gene flow and the Tgf/T3 ratio - the relative
chronologic placement of the gene flow event. Sampling
error due to finite number of loci can also introduce un-
certainty, particularly when the fraction of gene flow is

small. We conclude that the f-statistics cannot be used
to reliably estimate the true fraction of gene flow
without polymorphism data from a larger number of in-
dividuals in each population, or reliable estimates of di-
vergence and introgression times as well as population
sizes.
The linearity between the real f and f-statistics can be

exploited to compare the extent of introgression be-
tween different genomic regions with the same set of
taxa, or taxa that have similar divergence times and
population sizes. Our results showed that within the
sensitivity of the D-statistic (which means that gene flow
events can be detected at the first place), the random
error of the f-statistics are moderate; a ± 20% error must
be taken into account. However, a higher real f may not
be statistically significant especially when the f values
are just above the D-statistic’s sensitivity. It is common
for a higher real f to always report a numerically higher
f-statistic but seldom statistically significant. Therefore,
when comparing the f-statistics resulting from multiple
tests under the same evolutionary scenario, it is pre-
ferred to choose numerical comparison under difficult
conditions (large relative population size, early diver-
gence/introgression and small difference between gene
flow fractions), and to choose statistical comparison
otherwise.
A few other f-statistic applications exist, but some of

them require more sampled lineages than three ingroups
and one outgroup; an example is f4-ratio estimation [31].
Others require population data, in which the allele fre-
quencies from different populations are used, such as f2
and f3 statistics [38] as well as f̂ d [22]. Here we focused
on the situation that only one or two sequences are sam-
pled from each taxon, and four taxa (three ingroups and
one outgroups) are sampled; our conclusion is that, in

such cases, f̂ G and f̂ hom are not very reliable estimator
of actual fraction of gene flow, f, except in special cases
when population is very small and the time of gene flow
is known.

Diploid data
We have shown that the sensitivity from diploid se-
quences where the two genome copies have different
introgressed loci can be worse than haploid sequences
or diploid sequences with the same set of introgressed
loci, especially when the sensitivity is good at the first
place (low relative population size). It is expected that,
the more recent the gene flow happens, the more likely
that two genome copies would have different set of
introgressed loci. The reason for this is that alleles from
recent migrants may not be fixed or lost yet, and segre-
gate in the recipient population leading to heterozygous
sites. When the heterozygous sites were removed in
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constructing a consensus sequence, valuable data to
estimate gene flow were also lost. Therefore, our sugges-
tion is that haploid sequence (acquired by sequencing
haplotypes, or randomly assign one nucleotide for
heterozygote sites) instead of consensus sequence from
diploid samples should be used, when gene flow is
recent and relative population size is small; otherwise
consensus from diploid data is sufficient.
Still, our model does not explicitly predict how many

introgressed sites are shared by the two genome copies,
but analyzed two extreme situations and interpolated. In
the future, it is possible that a more sophisticated
coalescent-based model can be used to further investi-
gate the effect of diploid data on the D-statistic.

Potential gene flow from an extinct or unsampled lineage
Another possibility is that the gene flow originates from
a lineage that is extinct or unsampled, commonly
referred to as a “ghost lineage.” Figure 13 shows three
possible origins of such a lineage. When the “ghost”
diverged after H3 did (Fig. 13a), the event cannot be de-
tected by the D-statistic, as a single mutation on the tree
of an introgressed loci cannot produce either ABBA or
BABA patterns. When the “ghost” is a sister species of
H3 (Fig. 13b), the situation is identical to gene flow from
H3 at the time when H3 and “ghost” diverged; any mu-
tation occurring on the bolded branch can produce a
species-tree-discordant site pattern. However, when the
ghost diverged before H3 did (Fig. 13c), the situation is
more complicated. A mutation occurring on the bold
branch would have descendants in H1, H2 and H3, and
if then the locus in H2 is replaced by a plesiomorphy
from the ghost lineage, the site pattern will be “BABA,”
just like a gene flow from H3 to H1. Durand et al. [15]
calculated the expected D-statistic during such a
situation, but using only four taxa there is no method to
differentiate such a “ghost introgression” from a gene
flow from H3. Biologists would need to sample a larger
range of species to determine where an introgression
lineage come from.

Conclusion
In this study, we have shown that the D-statistic is more
sensitive in detecting gene flow events when a) the
population size to divergence ratio is small, b) gene flow
is recent, and c) in the direction of H3 - > H2 (compared
to H2 - > H3), and d) the data contains larger number of
independent loci. On the other hand, the D-statistic is
less sensitive to different levels of sequence divergence
among ingroups or between ingroups and the outgroup.
We have established the reliability of the D-statistic
under a large range of parameter space. The f-statistics,
while linearly correlated with the fraction of genome
affected by gene flow, is not reliable for most

a

c

b

Fig. 13 Three possibilities with a “ghost lineage.” A ghost lineage is an
extinct or unsampled lineage (in gray), that introgressed into a
sampled lineage (H2 in this case). a Ghost lineage diverged after H3
did, making it a sister lineage of (H1 + H2). In this case it is impossible
to have one mutation produce an ABBA or BABA site pattern. b Ghost
lineage as a sister lineage of H3. In this case it is similar to gene flow
originating from H3; if a mutation occurs in the bolded branch it can
produce an ABBA site pattern, which can be interpreted as evidence of
gene flow between H2 and H3. c Ghost lineage diverged before H3
did. If a mutation occurs in the bold branch it can produce a BABA site
pattern, which can be (incorrectly) interpreted as evidence of gene
flow between H1 and H3
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applications with individual (rather than population)
samples, because its dependence on too many parame-
ters, such as the time of gene flow event which can be
difficult to accurately estimate; however it can be used
to compare amount of introgression in the same demo-
graphic scenario. We have established that, as a rule of
thumb, under a population size that equals or less than
half of the number of generations since divergence of all
tested species, the D-statistic is a sensitive method to de-
tect gene flow.
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Description: The relationship of sensitivity as measured with MF80, the
minimal fraction of gene flow that produces over 80% significant D-
statistics, and various input parameters: A. the ratio of divergence times,
T2 and T3; B. the ratio of time of gene flow (Tgf) and T2. Red points
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