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Abstract

Background: Knowledge of catalytic residues can play an essential role in elucidating mechanistic details of an
enzyme. However, experimental identification of catalytic residues is a tedious and time-consuming task, which can be
expedited by computational predictions. Despite significant development in active-site prediction methods, one of the
remaining issues is ranked positions of putative catalytic residues among all ranked residues. In order to improve ranking
of catalytic residues and their prediction accuracy, we have developed a meta-approach based method CSmetaPred. In
this approach, residues are ranked based on the mean of normalized residue scores derived from four well-known
catalytic residue predictors. The mean residue score of CSmetaPred is combined with predicted pocket information to
improve prediction performance in meta-predictor, CSmetaPred_poc.

Results: Both meta-predictors are evaluated on two comprehensive benchmark datasets and three legacy datasets using
Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves. The visual and quantitative analysis of ROC and
PR curves shows that meta-predictors outperform their constituent methods and CSmetaPred_poc is the best of
evaluated methods. For instance, on CSAMAC dataset CSmetaPred_poc (CSmetaPred) achieves highest Mean Average
Specificity (MAS), a scalar measure for ROC curve, of 0.97 (0.96). Importantly, median predicted rank of catalytic residues is
the lowest (best) for CSmetaPred_poc. Considering residues ranked <20 classified as true positive in binary classification,
CSmetaPred_poc achieves prediction accuracy of 0.94 on CSAMAC dataset. Moreover, on the same dataset CSmetaPred_
poc predicts all catalytic residues within top 20 ranks for ~73% of enzymes. Furthermore, benchmarking of prediction on
comparative modelled structures showed that models result in better prediction than only sequence based predictions.
These analyses suggest that CSmetaPred_poc is able to rank putative catalytic residues at lower (better) ranked positions,
which can facilitate and expedite their experimental characterization.

Conclusions: The benchmarking studies showed that employing meta-approach in combining residue-level scores
derived from well-known catalytic residue predictors can improve prediction accuracy as well as provide improved
ranked positions of known catalytic residues. Hence, such predictions can assist experimentalist to prioritize residues for
mutational studies in their efforts to characterize catalytic residues. Both meta-predictors are available as webserver at:
http://14.139.227.206/csmetapred/.
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Background

In the post genomic era, one of the challenges is accurate
protein function annotation as these could provide clues
to insights into molecular details of biological processes
[1, 2]. The task of protein function annotation combines
cumbersome experimental studies with automated
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computational prediction methods, which usually allow
molecular function annotation based on: establishing
sequence/structure relationship between proteins of un-
known function to proteins of known function, predicting
putative binding sites for metals/chemical compounds/
DNA/RNA /protein and prediction of catalytic residues of
enzymes [2]. The knowledge of catalytic residues can also
assist in elucidation of reaction mechanism apart from
providing enhanced function annotation of enzymes.

In the past decade, many sequence and/or structure-
based catalytic residue prediction methods have been
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developed that rely on remote homology recognition,
statistical and machine-learning algorithms. The se-
quence based prediction methods used sequence hom-
ology information or/and conserved family patterns/
motifs [3—5], sensitive sequence-based scoring functions,
amino acid stereochemical features [6, 7], conservation
scores such as Von Neumann entropy, relative entropy,
Jensen-Shannon divergence and sum-of-pairs measure
[3, 8] to predict catalytic residues. Other prediction
methods used phylogenetic motifs and phylogenetic
trees [9, 10]. CRpred is one of the best sequence based
methods that uses various sequence features such as
residue type, hydrophobicity, and PSI-BLAST profiles
[11] in a Support Vector Machine (SVM) based binary
classification of residues into catalytic and non-catalytic
residues. With the availability of tertiary structures,
many methods were developed that used structure simi-
larity searches with pre-calculated active site structural
motif/template library [12-14], such as CATSID [13].
Many other structure-based methods used structural
features such as hydrophobicity distribution in protein
[15], electrostatics [16], chemical properties [17], net-
work centrality measures [18, 19], distribution of cata-
lytic residues with centroid of structure [20], unusual
central atomic distances [21], geometry based [22], con-
tact density [23], structural neighbourhood [24] and
side-chain orientation of catalytic residues [25, 26].
Many of these methods combine sequence and struc-
tural features to improve prediction accuracy [27-33].
For example, EXIA2 employs side-chain orientation of
polar/charged residues and sequence features [25]; and
DISCERN uses statistical models based on phylogenomic
conservation score of sequence and several structural
features [31] to predict catalytic residues.

Despite significant development in catalytic residue
prediction methods, the ranked positions of known cata-
lytic residues are on an average high among the list of
all ranked residues. Improving the ranked positions of
putative catalytic residues will facilitate and expedite
their experimental identification and characterization.
Moreover, an improved ranking of catalytic residues will
also increase their prediction accuracy. To address these
issues, we have developed methods based on meta-
approach to predict active site residues that combine
results from four well-known predictors to generate a
consensus ranked list of residues. In the meta-predictor
CSmetaPred, the residues are ranked based on the mean
of normalized residue scores (meta-score) obtained from
four predictors. Next, we included the predicted pocket
information with the mean residue score or meta-score
to further improve prediction performance in another
meta-predictor, CSmetaPred_poc. Previously, meta-
approaches have been shown to improve accuracy for
protein structure and binding site predictions [34—36].
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Methods

Benchmark datasets

We used five benchmark datasets to evaluate meta-
predictors that include three datasets from previous
studies, which we primarily used as a legacy dataset to
compare predictions from previous prediction methods.
In the present work, we compiled 2 datasets macie-254
and csalit-688. Macie-254 is derived from the MACIE
(mechanism, annotation and classification in enzymes)
database [37], which provides manually curated list of
catalytic residues with their putative roles in mechanistic
steps of an enzymatic reaction. From 335 MACIE en-
tries, enzymes having catalytic site defined in single pdb
chain were used to prepare a non-redundant set of 254
proteins at 60% sequence identity using CD-HIT [38].
Similarly, a non-redundant csalit-688 dataset (60%
sequence identity) was generated from only literature
annotated catalytic residues of pdb entries in Catalytic
Site Atlas (CSA) database [39] and those not present in
MACIE dataset. CSA database may annotate more than
one catalytic site for a given single pdb chain depending
on its reference source. Here, we merged two or more
catalytic sites in a single pdb chain that have at least one
common residue between them. The two datasets
macie-254 and csalit-688 are combined to form a non-
redundant CSAMAC dataset at 60% sequence identity
using CD-HIT. Additionally, an unbound non-
redundant (60% sequence identity) dataset, UB-137, was
prepared from CSAMAC pdb entries, which are not
bound to any ligand (pdb entries without HETATM rec-
ord). The Table S1 in Additional file 1 provides list of
datasets with pdb entries and their known catalytic
residues. From earlier works, we took EF-Fold, POOL-
160, and PW-79 datasets along with their respective
catalytic residues definition [17, 30, 33] and pruned
them to construct POOL-148, EF-Fold-164 and PW-79
(for details, see Additional file 2: S1 Text). Three data-
sets are pooled to construct a non-redundant (at 60% se-
quence identity) EF_POOL_PW dataset. Since pdb
entries of EF_ POOL_PW datasets are redundant with
CSAMAC, we have described evaluation on CSAMAC
dataset in the main text, whereas results from legacy
datasets are provided in the supplementary material
(Additional file 2). The average (standard deviation)
number of catalytic residues in CSAMAC and
EF_POOL_PW datasets is 3.3 (1.9) and 3.2 (1.9)
respectively.

Overview of method

We have chosen four well-known active site prediction
methods viz. CRpred, CATSID, DISCERN and EXIA2
for implementing in meta-predictors. These methods are
selected primarily based on their prediction perfor-
mances and their availability either as source code or
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easily automatable webservers. Moreover, these also are
representative of different input features (sequence or/
and structure) used for catalytic residue prediction.
Among these, CRpred rely on only sequence derived fea-
tures, CATSID uses only structural features, whereas,
DISCERN and EXIA2 employ both sequence and struc-
tural properties for prediction of catalytic residues.

In order to combine varied prediction output types
such as binary prediction from CRpred, structurally
similar active-site templates from CATSID and resi-
dues scores from EXIA2/DISCERN, first, we obtain or
assign a score possibly for every residue from each
method and then normalize residue scores to calcu-
late mean normalized residue score or meta-score.
This meta-score is used for ranking of residues in
CSmetaPred. The rationale behind this is that a
residue having high score consistently from several
predictors is most likely to be the catalytic residue. In
CSmetaPred_poc, we combine meta-score with pre-
dicted pocket information to predict catalytic residues.
Overview of both methods is shown in Fig. 1.

The webservers of CATSID (http://catsid.llnl.gov/) and
EXIA2 (http://203.64.84.196/) were used for catalytic
residues predictions. We have used EXIA2 webserver for
prediction of proteins in benchmark studies. However,
due to temporary unavailability of EXIA2 webserver, we
have recoded EXIA2 and implemented in CSmetaPred
webserver. We locally executed CRpred and DISCERN
suites of program to predict catalytic residues using the
packages obtained from developers’ websites (http://bio-
mine.ece.ualberta.ca/ CRpred/CRpred.htm) and (http://
phylogenomics.berkeley.edu/software/) respectively. The
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procedure to derive residue score for various predictors
is described below.

The score assigned to each residue from DISCERN
and CRpred outputs are taken for meta-score calcula-
tion. These DISCERN and CRpred scores are referred to
as Sg and S respectively. From EXIA2 webserver
parsed outputs, we took rank score and WCN assigned
to residues as two independent scores for computing
meta-score. The residue rank score, combines score for
average side chain vector directions of its neighboring
residues, amino acid combinations, structural flexibility
and sequence conservation [25]. WCN score is a meas-
ure of structural flexibility that is either obtained from
EXIA2 output or is calculated using previously described
algorithm [40]. The rank score (S;) is defined only for
12 amino acids (R, N, D, C, Q, E, H, K, S, T, Y and W),
whereas WCN score (Sye,) is derived for all residues.
Unlike other predictors, the CATSID outputs a list of hit
templates and their associated template score, which is a
measure of likelihood that a query protein shares
catalytic function with the template. CATSID also
provides alignment between the query and catalytic
residues of template. To obtain residue score (S.,), we
assign a template score to the aligned query residues
in the alignment between query and template. If a
residue is present in more than one alignment, we
sum the score from each query template alignment
and assign this summed score to the residue. Here,
we have used all templates irrespective of any previ-
ously suggested score cut-off.

To compute meta-score for each protein residue, first
we normalize residue score obtained from each method

determined or Modelled structure)

[ Given protein structure (Experimentally
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2 v
Binding site prediction
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Fig. 1 Overview of methodology. Flowchart showing important steps in CSmetaPred and CSmetaPred_poc methods
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with their respective mean and standard deviation. The
normalized residue score zSc(ij) is defined as:

z8c(ij) = (S()-p()) /o ()

where, zSc(ij) and S(ij) are normalized and raw scores of
residue i for method j respectively; u(j) and ofj) are
mean and standard deviation for method j scores
respectively. Then, we calculate mean of normalized
residue scores for each residue referred to as meta-score
or av-csc score, which is defined as:

5
%, 2Sc(i) + ()
A2

X p(j)

=1

av-csc(i) =

where, z8c(ij) is z-score of residue i for method j and
p(j) is binary function with p(j) =1 for residue having a
assigned score, or 0 otherwise. The av-csc score is used
in CSmetaPred to rank residues for every protein,
wherein high score represents a greater chance for it to
be a catalytic residue.

Exploiting the fact that most catalytic residues are
either part of substrate binding sites or spatially prox-
imal to these sites [24], we have developed another
version of CSmetaPred referred as CSmetaPred_poc. In
this approach, we combine residue meta-score with
pockets/clefts predicted from Fpocket [41] and LIGSITE
[42]. For this, first we select predicted pockets from
Fpocket and LIGSITE and then merge these pockets to
generate a combined list of pockets. To select pockets
for merging, we rank pockets based on pocket score
(poc_sc). For each pocket i, poc_sc(i) is defined as:

, Nres(i) , R
poc_sc(i) = (Z/’:l av- csc(}))/Nres(t)

where, av-csc(j) is meta-score of pocket residue j,
Nres(i) is number of residues in a given pocket i.

We selected top 5 ranked pockets from both methods
and merge two pockets having >50% number of
common residues between them. Thus, we generate a
combined list of predicted pockets from both LIGSITE
and Fpocket. The parameters for pocket ranking and
merging were optimized using macie-254 dataset
(Additional file 2: Figure S1).

Next, each residue lining the pocket is assigned a
pocket residue score (poc_Rsc), which is essentially
pocket score (poc_sc) of the pocket. If a residue is
present in more than one pocket, the maximum of
poc_Rsc from all pockets is computed and assigned to
that residue. A poc_Rsc score of 0 is assigned to residues,
which are not part of any pocket. The poc_Rsc is linearly
combined with av-csc to calculate residue av-csc-poc
score, defined as:
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av- csc—poc(i) = av— csc(i) + poc_Rsc(i)

In CSmetaPred_poc, residues are ranked based on av-
csc-poc score.

Generation of homology models

To improve catalytic residues prediction of enzymes,
without known tertiary structure, we have evaluated
meta-predictor performance on homology modelled pro-
tein structures built using MODELLER [43]. The protein
models are built based on a single template structure
with sequence identities ranging from 40% to 90%
between query and template sequences. Details of
dataset and construction of template library are given in
supporting information (Additional file 2: S1 Text).

Each full-length protein sequence from CSAMAC
dataset is queried against template library (LIB_TEMP)
using profile_build() module of MODELLER to select a
set of 335 proteins, which have sequence identity from
40 to 90% and coverage >70% to template sequences.
The templates for 335 protein sequence is identified by
searching these sequence against template library (LIB_-
TEMP) using profile_build() module of MODELLER.
The templates with sequence identity <40% and >90% or
query coverage <70% are discarded from the list of pos-
sible templates. Next, each query and template
alignment having sequence identity ranging 40%—90% is
grouped into sequence identities bins of 40-50%, 50—
60%, 60—70%, 70-80% and 80-90% (see Additional file
2: S1 Text) with each bin having 235, 135, 53, 22 and 23
query-template alignments respectively. For each query-
template alignment, we generated 10 models using
align2d() module and the best model (having the lowest
DOPE energy score) was used for prediction. Thus, we
generated a total of 468 models for 335 query protein
sequences.

Evaluation of method
The predictors are primarily evaluated using Receiver
Operating Characteristic (ROC) and Precision Recall
(PR) curves, which are frequently used in assessment of
binary classifiers. As most of methods used in this study
provide ranked list of residues, we create a binary classi-
fication by selecting top n ranked list as predicted
catalytic residues and rest as non-catalytic residues.
Hence, true positives (TP) are correctly predicted
catalytic residues; false negatives (FN) are -catalytic
residues predicted as non-catalytic; false positives (FP)
are non-catalytic residues predicted as catalytic; true
negatives (TN) are correctly predicted non-catalytic
residues. The precision, True Positive Rate (TPR) and
False Positive Rate (FPR) are defined as:

Precision = TP / (TP + FP)

TPR (recall) = TP / (TP + EN)
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FPR (1-specificity) = FP/ (FP + TN)

We have used vertical average ROC curves to repre-
sent and compare prediction performance that is gener-
ated by averaging recall values at all FPR values (0-1)
[44] for all proteins in the dataset. TPR is linearly inter-
polated, in case it is not computed at a given FPR. As a
scalar measure to assess performance and compare ROC
curves, we calculate Area Under Curve of ROC curve
(AUCROC) and Mean Average Specificity (MAS) [17],
which is mean of Average Specificity (AveS):

e — TraS(r) = pos(r)
Npos

where, r is rank, N is number of residues in a protein,
pos(r) is binary function with pos(r) =1 for known cata-
Iytic residue or 0 otherwise and S(7) is the specificity at a
given cutoff rank », Npos is the total number of positive
examples (catalytic residues in this case).

It has been shown that PR curves can show differences
among classifiers not apparent in ROC curves in data-
sets having a skew in the total number of positives with
negative counts [45, 46]. As the number of catalytic resi-
dues (positives) is far less than non-catalytic residues, we
have employed PR curves to evaluate performance in the
present analysis. The average PR curve for all proteins in
a dataset is generated by averaging precision for every
recall value. If a protein does not have recall value, it is
interpolated using local skew [45]. We have used
AUCCalculator to generate data for PR curves [45]. To
compare average PR curves using a single measure, we
calculate Area Under PR Curve (AUCPR) and Mean
Average Precision (MAP) [47], which is frequently used
in information retrieval. MAP is mean of average preci-
sion (AP), which is defined as the arithmetic mean of
precisions for a set of top n residues after each true posi-
tive (catalytic residue) is retrieved. This measure of qual-
ity across recall levels has been suggested to have good
discrimination and stability [47]. MAP is defined as:

1 N 1 i ..
MAP = N Zi:l n—L Z::lPreczszon (Rij)

where, N is total number of proteins in the dataset; for
protein i, »; is the number of true positives and Precision
(Rj) is precision calculated at the rank R;; at which true
positive j for protein i is retrieved in the ranked list.

The measures mentioned above are used to compare
prediction performances of CSmetaPred, CSmetaPred_-
poc, CRpred, EXIA2, DISCERN and WCN. The proced-
ure adopted to rank residues from CRpred, EXIA2,
DISCERN and WCN is given in supporting information
(Additional file 2: S1 Text).
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Results and discussions

As mentioned before, we have evaluated meta-predictors
and compared them with their constituent methods on
five benchmark datasets using average ROC and PR
curves. In the present work, we have not included CAT-
SID for comparison because using our approach of
assigning score to residues from the template match
score obtained from CATSID could provide score/rank
only for subset of residues, whereas other methods rank
all residues.

CSmetaPred prediction performance

First, we have used average ROC curves to evaluate and
compare prediction performance of CSmetaPred with
other methods used in meta-score calculation. A visual
comparison of average ROC curves for CSmetaPred and
its constituent methods (DISCERN, EXIA2 and WCN;
CRpred SVM performance) on CSAMAC dataset
(Fig. 2a) clearly shows that CSmetaPred outperforms
other methods. Importantly, at any given FPR, CSme-
taPred has higher recall in comparison to other methods.
Furthermore, comparison of ROC curves using MAS
(Table 1) and AUCROC (Additional file 2: Table S2)
shows that CSmetaPred is the best among evaluated
methods. For instance, on CSAMAC dataset MAS
values for CSmetaPred, EXIA2, DISCERN, and WCN
score are 0.961, 0.910, 0.901, and 0.786 respectively
(Table 1). Since MAS enables comparison of average
performance among methods, it is important to find
whether improvement of CSmetaPred over its con-
stituent methods is statistically significant. So, we esti-
mated the statistical significance of performance
difference between CSmetaPred and other methods by
considering pairwise comparison of AveS (see
Methods section), calculated for each pdb entry in a
given dataset, from two methods. Using Wilcoxon
signed-rank test, the performance difference between
CSmetaPred and other methods is found to be statistically
significant (p-value <0.0001; see Additional file 2: Table S3).
Moreover, this statistical test on AveS also indicates consist-
ent performance of a method on per protein basis. We ob-
served similar CSmetaPred performance on EF_POOL_PW
and individual datasets (Additional file 2: Figure S2; Tables
S2 and S3). To decipher contribution of each method in
improving prediction of CSmetaPred, we re-calculated
meta-score by taking only four scores at a time. As evalu-
ated by average ROC curves (Additional file 2: Figure S3),
all methods seem to contribute in improving CSmetaPred
prediction.

Next, we have used PR curve to compare CSmetaPred
performance with a motive to evaluate how well it
classifies positives unlike ROC, which also consider mis-
classification of negatives. As is evident from the visual
inspection of average PR curves (Fig. 2b) that
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CSmetaPred has better performance than EXIA2, WCN,
DISCERN and CRpred SVM performance. This is also
apparent from MAP (Table 1) and AUCPR (Additional
file 2: Table S2) measures, which are used as a scalar
value for comparison of PR curves. On CSAMAC data-
set, MAP for CSmetaPred is highest (0.489) among its
constituent methods (Table 1). Similarly, AUCPR of
CSmetaPred is highest with a value of 0.324 followed by
EXIA2, DISCERN and WCN having values of 0.167,
0.103 and 0.034 respectively (Additional file 2: Table S2).
Importantly, evaluation of differences in prediction per-
formances are found to be statistically significant (Wil-
coxon signed-rank test with p-value <0.0001, see
Additional file 2: Table S3) when we compared AP (de-
scribed in Methods) calculated for each protein between
CSmetaPred and other methods in a pairwise compari-
son (per protein basis). Both visual and quantitative ana-
lysis of PR curves show that CSmetaPred prediction is
better than its constituent methods on EF_POOL_PW
and five individual datasets (Additional file 2: Figure S4
for PR curves; MAP and AUCPR are summarized in
Table S2). As CSmetaPred has comparatively lower me-
dian and average rank for catalytic residues (Table 1),
this also suggests that CSmetaPred is able to improve
catalytic residues ranks in comparison to other methods.

Further, we compared CSmetaPred predicted ranks of
catalytic residues to their best possible ranks derived

Table 1 Summary of MAS, MAP and catalytic residues median rank

Method MAS MAP Median rank
CSAMAC dataset (884 protein)
CSmetaPred_poc 0.968 0514 6.0
CSmetaPred 0.961 0489 7.0
EXIA2 0.910 0317 14.5
CRpred - - 14.0
DISCERN 0.901 0.226 230
WCN 0.786 0.081 534

from CRpred, DISCERN and EXIA2. Here, the best pos-
sible rank of a residue is the minimum rank assigned by
scores from above mentioned methods. It is important
to note that in this analysis we have excluded CATSID
because we could rank only subset of residues for which
template was identified by CATSID (see Methods
section). This inability to rank all residues will lead to
lower ranks and which may not imply a necessarily bet-
ter performance. The ‘best possible rank’ is a theoretical
best scenario for selecting ranks for catalytic residue and
this provides an upper bound of meta-approach per-
formance. The comparison of ranks is performed on
CSAMAC dataset having 2912 catalytic residues. Since
lower ranked catalytic residues will largely affect CSme-
taPred performance, we analyzed -catalytic residues
having the best possible rank less than 20. Most (86.9%)
of catalytic residues have the best possible rank <20. Of
these, for ~51% of catalytic residues CSmetaPred pre-
dicted ranks are either unchanged or improved margin-
ally having median and mean decrease in rank of 2 and
3.4 respectively. Further, CSmetaPred predicted ranks
are higher (poorer) for ~49% of catalytic residues com-
pared to the best possible rank. Importantly, the increase
in CSmetaPred predicted rank is not large as evident
from median and mean rank increases of 3 and 7.6 re-
spectively. The detailed analysis of catalytic residues with
increase in CSmetaPred ranks showed that in most in-
stances these residues are predicted only by one or two
methods, which is exhibited in their higher normalized
scores, whereas other methods assign lower residue
scores as predictions from other methods are not good.
This indicates that even though meta-predictor is not
able to achieve the best possible scenario in meta-
approach, it does not decrease ranks of catalytic residues
drastically from the best possible scenario.

Since catalytic residues are mostly polar or charged
amino acids (>90%) [48], we have evaluated and com-
pared CSmetaPred to its constituent methods when
polar/charged and non-polar residues are ranked
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separately. Here, we consider any amino acid having
functional side chain with a role in catalytic activity as
polar/charged set, which consists of 12 amino acids as
defined previously in EXIA [25] (see Methods). Rest 8
amino acids (B, F, A, V, I, L, M and G) are considered as
non-polar set. Average ROC and PR curves for polar/
charged amino acids on CSAMAC dataset are shown in
Fig. 3a and b respectively. It is apparent from the curves
that CSmetaPred prediction performance is consistently
better than other methods. Moreover, this is supported
by quantitative comparison of average ROC curves using
MAS and PR curves using MAP (Table 2). Importantly,
similar performances are observed on other datasets
(Additional file 2: Figure S5; Table A in Table S4). The
evaluation of performance differences between CSme-
taPred and its constituent methods by pairwise compari-
son of AveS/AP on per protein basis is found to be
statistically significant (p-value <0.0001 using Wilcoxon
signed-rank sum test). In case of non-polar amino acids,
visual and quantitative analysis of ROC and PR
curves show that CSmetaPred is the best performing
method (Additional file 2: Figure S6 and Table B in
Table S4). These analyses suggest CSmetaPred has
ability to improve ranks for both polar/charged as
well non-polar residues.

Comparison of CSmetaPred_poc with CSmetaPred

As catalytic residues are known to be spatially proximal
to substrate/cofactor binding sites, we evaluated whether
including pocket information can increase the accuracy
of catalytic residue prediction. For this, we have devel-
oped CSmetaPred_poc, which combines meta-score with
a score (poc-Rsc) harboring information of combined pre-
dicted binding pockets from Fpocket and LIGSITE (see
Methods). The visual inspection and quantitative analysis
(MAS and MAP shown in Table 1) of both average ROC
and PR curves (Additional file 2: Figure S7 and S8) show
that CSmetaPred_poc has better prediction performance
than CSmetaPred. For instance, on CSAMAC dataset
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MAP of CSmetaPred_poc and CSmetaPred is 0.514 and
0.489 respectively (Table 1). Moreover, performance of
CSmetaPred_poc is found to be statistically significantly
(p-values <0.0001 using paired Wilcoxon signed-rank test)
better than CSmetaPred, when we considered the statis-
tical significance of pairwise differences in AveS/AP calcu-
lated for each protein between these two meta-predictors.
This suggests that CSmetaPred_poc is able to exploit pre-
dicted pocket information to improve catalytic residue
prediction. For instance, CSmetaPred predicted catalytic
residues viz. H334, Y95, S550, and P108 of rat choline ace-
tyltransferase (pdb id: 1q6x chain B) at ranked positions of
1, 6, 8, and 27 respectively. These four residues are present
in the top ranked predicted pocket (Fig. 4) of CSmeta-
Pred_poc and adding the pocket residue score to residue
meta-score leads to improved ranking of catalytic residues.
Thus, CSmetaPred_poc results in improved ranking of
H334, Y95, S550, and P108 at positions 1, 2, 3, and 11
respectively.

Performance of CSmetaPred_poc on ligand unbound
structures

Since CSmetaPred_poc prediction relies on predicted
pockets information to improve its prediction, we
assessed any bias in pocket prediction due to ligand/s
(substrate/product/cofactor) bound to proteins in pdb
structures. For this assessment, we performed prediction
using non-redundant pdb entries without any ligand
bound pdb dataset (UB-137). The detailed analysis of
average ROC and PR curves show that CSmetaPred_poc
is still the best performing method (Additional file 2:
Figure S9). CSmetaPred_poc achieves MAS and MAP
values on UB-137 dataset of 0.976 and 0.620 respectively
(Additional file 2: Table S2).

Catalytic residues rank analysis

Having shown that meta-predictors are the best among
evaluated methods, next we have analyzed ranked pos-
ition of known catalytic residues from all methods. As a

Qe = b
E © © —CSmetaPred
& S, o] —EXIA2
~ —DISCERN
Lo c © | —WCN
© o S c A CRpred
o z
2w Q<]
8° —CSmetaPred)| & ©
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= —WCN A
o A CRpred =)
ot+———T——T——7 7 =} T T T T
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR) Recall
Fig. 3 Comparison of prediction performances on polar/charged residues. Figure showing average ROC (a) and average PR curves (b) on
CSAMAC dataset, when only polar or charged residues are ranked. CRpred SVM performance is shown as filled triangle




Choudhary et al. BMIC Bioinformatics (2017) 18:583

Table 2 Summary of MAS, MAP, and median ranks of known
catalytic residues when only polar/charged residues are ranked

Method MAS MAP Median rank
CSAMAC Polar dataset (873 protein)
CSmetaPred_poc 0.961 0.545 5.0
CSmetaPred 0.953 0519 55
EXIA2 0911 0.343 105
CRpred - - 11.0
DISCERN 0.883 0.265 150
WCN 0.832 0.186 20.3

metric to compare methods, we have used median rank
of catalytic residues. Both meta-predictors achieve lower
(better) median rank in comparison to other methods
across all datasets (Table 1 and see Additional file 2:
Table S2). In fact, CSmetaPred_poc achieves the lowest
catalytic residue median rank of 6. The same is observed
when either polar/charged or non-polar residues (Table
2 and Additional file 2: Table S4) are ranked separately.
CSmetaPred/CSmetaPred_poc provides rank for all
residues. However, there is no particular rank or score
cut-off to select active site residues. To choose most
likely catalytic residues, we have analyzed 2 criteria: a)
select top k percent of residues from ranked list; and b)
select top p ranked residues. In the first criterion, at
various top k percent of residues predicted as positives,
referred to as filtration ratio, we calculated mean recall
and represent this graphically as Recall Filtration Ratio
(RFR) curve. The average RFR curves show that CSmeta-
Pred_poc, mostly, achieve higher recall than CSme-
taPred at any given filtration ratio on CSAMAC dataset
(Fig. 5a). For instance, taking 5% of residues from the
ranked list give an average recall of 0.83 and 0.80 for
CSmetaPred_poc and CSmetaPred respectively. The
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same is also observed for other dataset (Additional file 2:
Figure S10). In the second criterion, we calculate per-
centage of proteins having at least 0.5, 0.8 and 1.0 cata-
lytic residue coverage (fraction of known catalytic
residues predicted by CSmetaPred_poc) at all ranks. The
plot for fraction of proteins (shown in percentage) hav-
ing specified catalytic residues coverage at various ranks
(Fig. 5b) on CSAMAC dataset shows that there is rapid
increase in number of enzymes at lower ranks that reach
a plateau at higher ranks, typically around 30. Interest-
ingly, at rank ~30 all catalytic residues are identified in
~82% of enzymes. Moreover, at lower ranks, such as
within rank 20 CSmetaPred_poc correctly predicts >50%
of catalytic residues for ~93% of proteins and all cata-
lytic residues for ~73% of proteins. Importantly, this is
consistently observed with other datasets (Additional file
2: Figure S11). These analyses suggest that meta-
predictors are able to rank putative catalytic residues at
lower (better) ranked positions, which is also observed
in median ranks. Moreover, in most enzymes greater
than half of their catalytic residues are within top 20
ranks in CSmetaPred_poc. This is important because it
can help experimentalist to prioritize residues for muta-
tional studies in their efforts to identify and characterize
catalytic residues.

We are not committed to any specific cut-off to select
active site residues. However, to prioritize residues for
experimental studies we analyzed our results to find a
rank or filtration ratio cut-off to select active site resi-
dues. Based on average precision, average recall, and
average accuracy from all datasets, we suggest residues
with ranks <20 or ranks <4% filtration ratio cut-off as
catalytic residues. On CSAMAC dataset, with 4% filtra-
tion ratio cut-off CSmetaPred_poc achieves the average
precision, recall, and accuracy of 0.2, 0.79, and 0.96 re-
spectively. Using same dataset and method the average

gray transparent surface representation

Fig. 4 An example of catalytic residue predictions from CSmetaPred and CSmetaPred_poc. Comparison of prediction results for enzyme rat
choline acetyltransferase (PDB: 1g6xB) from CSmetaPred (a) and CSmetaPred_poc (b) after including pocket information. Tertiary structure and known
catalytic residues are shown in cartoon and licorice representations respectively. Catalytic residues are colored based on their meta-predictor predicted
ranks: magenta for residues with rank <5, yellow for rank >5 and <10 and salmon color for rank >20. Top pocket ranked by pocket score is shown in
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Fig. 5 Catalytic residues rank analysis. Figure summarizing a) Average recall as a function of filtration ratio. b) Cumulative fraction of proteins
(shown in percentage) having catalytic residue coverage of at least 0.5, 0.8 and 1.0 calculated at ranks <100
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precision, recall and accuracy with rank 20 are 0.14,
0.87, and 0.94 respectively. Similar average values are
observed in other datasets. These cut-off values are to
be used as an indicator rather than a rule to predict
catalytic residues. Using these criteria, CSmetaPred_poc
is able to rank ~87% and ~76% of known catalytic resi-
dues within top 20 ranks and 4% filtration ratio
respectively.

As mentioned before (see Methods section) the binary
classified residues generated by varying ranks in CSme-
taPred_poc ranked list of residues is used for compari-
son of CSmetaPred_poc with other classifiers. On
PW-79 dataset, Cilia and Passerini method achieves
average recall and precision of 0.46 and 0.28 respectively
[24]. With the same dataset, at a recall of 0.46 CSmeta-
Pred_poc has precision of 0.54 and at a precision 0.28 it
has recall of 0.87. CRpred achieves average recall of 0.54
and precision of 0.175 on PW-79 dataset [11]. CSmeta-
Pred_poc achieves a precision of 0.50 at same recall of
0.54 and a recall of 0.94 at same precision of 0.175. A
similar comparison with other datasets (POOL-148 and
EF-Fold-164) is difficult, as we have excluded some pdb
entries from these datasets (see Methods).

Catalytic residue prediction using protein models
Since experimental tertiary structures of many enzymes
are not yet known, we evaluated whether modelled
structures could be used for reliable prediction using
CSmetaPred_poc. Moreover, this also provides compari-
son of prediction performance between modelled
structures and prediction based only on sequence infor-
mation. In this analysis, we build full-length homology
models for sequences, with known tertiary structure,
using single template having sequence identity ranging
between 40 to 90% between query and template
sequences (see Methods section).

First, we assessed model quality using Root Mean
Square Deviation (RMSD) between the model and native
structure. The average RMSD is 3.0 A between models

and native structures. The analysis of models with high
RMSD showed that it is mostly due to either a long N/C
terminal region or part of query sequences without any
template aligned regions. Moreover, in some cases there
was large conformational change between template and
native structure that lead to large RMSD between model
and native structure. Most high RMSD between model
and native structure was from lowest sequence identity
bin of 40-50%. Next, we used average ROC and PR
curves to compare CSmetaPred_poc performance on
models and native structures. Based on qualitative (vis-
ual inspection) and quantitative comparisons of ROC/PR
curves, prediction based on models does not show
comparable performance with their respective native
structures (Additional file 2: Figure S12 and Table S5).
However, considering median rank of catalytic residues,
models result in slightly higher (poor) rank of 8.4 than
native structures (rank 6.3). The detail analysis showed
that most of poor performance is from models in 40—
50% sequence identity category. In comparison to
CRpred, which used only sequence information for pre-
diction, models perform better as assessed by visual
inspection of ROC/PR curves (Additional file 2:
Figure S12) and comparison of median/average rank.
CRpred results in median and average rank of catalytic
residues of 11 and 23.2 respectively. This shows that
CSmetaPred_poc will result in better prediction than
using only sequence information as in CRpred. A study
performed on usefulness of modelled structures has also
suggested that low quality predicted structures could be
used for catalytic residues prediction [49].

Case studies

We compared residue level prediction results from
CSmetaPred_poc with other methods on a list of pdb
entries obtained from previous work or generated in the
present work, which were mostly part of benchmark
datasets. CSmetaPred_poc is able to get similar or better
rank in most of the cases (Additional file 2: Table S6).
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Further, we analyzed prediction results for structures,
with known catalytic residues, deposited in RCSB PDB
database [50] subsequent to development of our method.
For this analysis, we manually searched PDB database
for recently determined tertiary structures of enzymes
having curated list of catalytic residues. Interestingly,
CSmetaPred_poc is able to predict most catalytic
residues within top 20 ranks (Additional file 2: Table S7)
as we observed in benchmark datasets. Below, we dis-
cuss some examples having the best results from
CSmetaPred_poc.

The experimental site-directed mutagenesis in thioes-
terase enzyme YbdB from Escherichia coli has identified
H89, E63, S67, H54, and Q48 as putative catalytic resi-
dues [51]. Using YbdB structure (pdb id: 4k4c), CSmeta-
Pred_poc is able to predict residues H89, E63, S67, H54,
and Q48 residues at ranks 1, 2, 4, 5, and 19 respectively.
A recent study on P-keto-acid cleavage enzyme family
KCE (DUF849) has identified H46, H48, E143, R226,
D231 as crucial catalytic residues and S82, T106, and
E230 as important residues [52]. Interestingly, CSmeta-
Pred_poc ranks H46, H48, E143, R226, D231, S82, T106,
and E230 residues (pdb id: 2y7f), at 2, 4, 6, 1, 5, 14, 17,
and 3 ranked positions respectively.

The catalytic residues of Escherichia coli y-
glutamylcysteine synthetase (GshA) are not yet charac-
terized. Using Escherichia coli GshA tertiary structure
(pdb id: 1v4gA [53]) we predicted catalytic residues for
this enzyme. From the subset of top 20 predicted resi-
dues (Additional file 2: Table S8), we mutated R330
(rank 1), R235 (rank 11), Y131, (rank 16) and R132 (rank
20) to investigate their role in catalysis using previously
described in vivo and in vitro assays [54]. Preliminary
studies show no enzymatic activity for R330A mutant
and reduced activity for mutants of R235, R132, and
Y131 (Additional file 2: Figure S13 and Table S9) sug-
gesting these could play a role in catalysis. Interestingly,
R330 structural equivalent in GshA homologue from
Saccharomyces cerevisiae (Sc-y-GCS) (pdb id: 3ig5) is
R472, which has also been suggested to be a catalytic
residue [55]. Further detailed study is required to inves-
tigate specific role of R330 in catalysis.

CSmetaPred and CSmetaPred_poc are provided as a
webserver,  which is  accessible at  http://
14.139.227.206/csmetapred/. This server can take se-
quence or structure as an input. In CSmetaPred ser-
ver we use our in-house recoded EXIA2. The
comparison of residue ranks between original EXIA2
server result and our coded program is shown in
Additional file 2: Figure S14.

Conclusions
We have developed meta-approach based catalytic
residue prediction methods viz. CSmetaPred and
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CSmetaPred_poc that combine residue scores from four
well known catalytic residue prediction methods. Based
on visual and quantitative analysis of ROC and PR
curves on benchmark datasets (including 3 legacy data-
sets), CSmetaPred shows improved prediction over its
constituent methods. This approach of combining resi-
dues is simple yet effective in ranking catalytic residues.
CSmetaPred_poc further improves prediction perform-
ance by including predicted pockets from LIGSITE and
Fpocket. The assessment based on both ROC and PR
curves shows that CSmetaPred_poc is the best of evalu-
ated approaches. Importantly, known catalytic residues
are at lower ranked (better) positions in prediction by
both meta-predictors. This is also evident from the low-
est median predicted rank of catalytic residues from
CSmetaPred_poc in all datasets. CSmetaPred_poc
achieves prediction accuracy of 0.94 on CSAMAC data-
set taking residues below rank 20 as true positives.
Moreover, on the same dataset CSmetaPred_poc pre-
dicted all catalytic residues for ~73% of enzymes within
top 20 ranks. The benchmarking of CSmetaPred_poc on
comparative modelled structures showed that predicted
tertiary structures could be used reliably for catalytic
residue predictions in absence of experimentally deter-
mined structures. These analyses suggest that meta-
predictors could assist experimentalists in their efforts
to experimentally identify and characterize catalytic resi-
dues by prioritizing residues for mutational studies.

Additional files

Additional file 1: Table S1. Datasets used in present work. List of pdb
entries along with known catalytic residues from six datasets. (PDF
576 kb)

Additional file 2: Text S1. Extended Methods and Results sections.
Table S2. Table summarizing quantitative measures for ROC and PR
curves. Quantitative comparison of average ROC curves using AUCROC
and MAS as single value measures of ROC and AUCPR and MAP are used
to quantitatively compare average PR curves (see Methods section).
Median and average ranks of catalytic residues are also summarized.
Table S3. Summary of p-values obtained from Wilcoxon signed ranked
statistical test. Summary of p-values from Wilcoxon signed-rank test
computed on AveS (MAS) and AP (MAP) measures to estimate statistical
significance of performance difference between CSmetaPred and its
constituent methods (EXIA2, DISCERN, and WCN). Table S4. Quantitative
comparison of average PR and ROC curves for various methods when ei-
ther polar/charged or non-polar residues are ranked separately. Compari-
son of ROC/PR curves quantitative measures when only (A) polar/charged
amino acids and (B) non-polar amino acids are ranked. Quantitative
measure of ROC is AUCROC and MAS, whereas PR curves are compared
using AUCPR and MAP. Median and average ranks of catalytic residues
are also summarized. Table S5. Comparison of CSmetaPred_poc predic-
tion performance on modelled and their respective native structures.
Summary of quantitative analysis of ROC and PR curves using AUCROC/
MAS and AUCPR/MAP respectively, for CSmetaPred_poc prediction on
model and their respective native structures. Median and average ranks
of catalytic residues are also summarized. Table S6. Comparison of cata-
Iytic residues rank obtained from various methods on set of pdb entries
mostly from benchmark dataset. Summary of known catalytic residues

ranks given by various predictors for pdb entries mostly from previous
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and present works. Table S7. Catalytic residue prediction for protein
structures deposited in PDB after development of CSmetaPred. Meta-
predictor prediction performance on pdb entries, with experimentally
known catalytic residues, submitted in RCSB PDB database subsequent to
development of meta-approach method. Catalytic residue ranks from
CSmetaPred_poc is summarized in the table. Table S8. Predicted cata-
Iytic residues of y-glutamylcysteine synthetase. List of top 20 predicted
catalytic residues of y-glutamylcysteine synthetase from E. coli (pdbid:
1v4gA) by CSmetaPred_poc. Table S9. Summary of relative enzymatic
activity of GshA mutants. Table showing enzyme activity (in vitro) of GshA
mutants calculated with respect to wild type activity of enzyme. Table S$10.
Primers used for cloning. List of primers sets used in site overlap extension
PCR in cloning mutant GshA. Figure S1. Cumulative distribution of catalytic
residues present in predicted pockets. Plot showing cumulative distribution
of catalytic residues within a given pocket rank on macie-254 dataset for: a)
Pockets output from LIGSITE/Fpocket, b) re-ranked pockets using poc_sc
score and, ¢) merged top 5 re-ranked pockets. The vertical line shows that
at pocket rank 5 both LIGSITE and Fpocket have achieved close to the max-
imum catalytic residues identified within predicted pockets. The drastic in-
crease in catalytic residues fraction after re-ranking in LIGSITE could also be
due to merging of pockets within LIGSITE. Figure S2. Average ROC plots for
all datasets. Average ROC plots to show comparison among various
predictors (CSmetaPred, EXIA2, DISCERN and WCN) on POOL-148, PW-79,
EF-Fold-164, csalit-688, macie-254 and EF_POOL_PW datasets. CRpred SVYM
performance is shown as filled triangle. Figure S3. Average ROC plots for
modified CSmetaPred, wherein one score is excluded from meta-score com-
putation. Average ROC curves showing effect of individual method on the
performance of CSmetaPred using CSAMAC (A) and EF_POOL_PW (B) data-
sets. All four methods contribute to different extent towards improving
meta-score based ranking in CSmetaPred. It is apparent from ROC curves
that excluding CRpred or CATSID residue score has maximum effect on pre-
diction performance. This suggests that these 2 methods have major contri-
bution in meta-score. Figure S4. Average PR curves for benchmarking
datasets. The figure showing average PR curves for CSmetaPred and other
predictors (EXIA2, DISCERN and WCN) on EF_POOL_PW and five individual
datasets. CRpred SVM performance is shown as filled triangle. Figure S5.
Average ROC and PR curves for predictors considering ranked list of only
polar/charged residues. Average ROC (A-F) and average PR (G-L) curves on
EF_POOL_PW and 5 datasets, when only polar/charged amino acids are
ranked. CRpred SVM performance is shown as filled triangle. Figure S6.
Average ROC and PR curves for predictors considering ranked list of only
non-polar residues. Figure showing average ROC (A, B) and average PR (C,
D) curves for various predictors (CSmetaPred, EXIA2, DISCERN and WCN)
when only non-polar amino acids are ranked from CSAMAC and
EF_POOL_PW datasets. CRpred SVM performance is shown as filled triangle.
Figure S7. CSmetaPred_poc comparison with CSmetaPred using average
ROC plots. Average ROC plots showing comparison of prediction performance
between CSmetaPred and CSmetaPred_poc on all datasets. Figure S8. CSme-
taPred_poc comparison with CSmetaPred using average PR curves. Average
PR curves showing comparison of prediction performance between CSmeta-
Pred_poc and CSmetaPred on all datasets. Figure S9. Average ROC and PR
curves for various predictors on UB-137 datasets. Average ROC (A) and average
PR (B) curves for meta-predictors and other predictors (EXIA2, DISCERN and
WCN) on UB-137 dataset. CRpred SVM performance is shown as filled triangle.

Figure S10. Filtration ratio plotted as a function of average recall. Average re-
call plotted as a function of filtration ratio for proteins in EF_POOL_PW dataset.
Figure S11. Fraction of proteins with catalytic residue coverage plotted as a
function of ranks. Cumulative fraction of proteins (in percent) having at least
05,08 and 1.0 catalytic residue coverage at various ranks <100. Figure S12.
Comparison of CSmetaPred_poc prediction performance on models and their
respective native structures. Figure showing prediction performances of CSme-
taPred_poc on models and their respective native structures assessed using
average ROC (A) and PR (B) curves. CRpred SVM performance is shown with
filled triangle. Figure S13. In vivo complementation assay of GshA wild type
and mutant enzymes. Figure showing in vivo complementation assay of pre-
dicted catalytic residues mutants of GshA enzyme. Saccharomyces cerevisiae
strain ABC1195 plasmids bearing WT gshA or the different cysteine binding
residues gshA mutant gene cloned under TEF promoter. The transformants
were grown overnight in SD + GSH medium and used to re-inoculate second-
ary culture. Cells were harvested at ODgqo = 0.6 and serially diluted (0.2 to
0.0002 ODggp). 10 pl was spotted on SD medium with or without GSH as sole
source of organic sulphur. The vector pTEF416 and EcGshA were used as
negative and positive control respectively. Figure S14. Residues rank compari-
son between EXIA2 server and in-house recoded EXIA2. Plot showing residues
rank comparison from EXIA2 server output and in-house recoded EXIA2 for (A)
all residues, and (B) catalytic residues. The Pearson correlation coefficient be-
tween ranks for all residues obtained from EXIA2 and in-house program is
086, and the same for catalytic residues is 0.55. (PDF 5965 kb)
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