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Abstract

Background: Clustering methods are becoming widely utilized in biomedical research where the volume and
complexity of data is rapidly increasing. Unsupervised clustering of patient information can reveal distinct phenotype
groups with different underlying mechanism, risk prognosis and treatment response. However, biological datasets are
usually characterized by a combination of low sample number and very high dimensionality, something that is not
adequately addressed by current algorithms. While the performance of the methods is satisfactory for low dimensional
data, increasing number of features results in either deterioration of accuracy or inability to cluster. To tackle these
challenges, new methodologies designed specifically for such data are needed.

Results: We present 2D–EM, a clustering algorithm approach designed for small sample size and high-dimensional
datasets. To employ information corresponding to data distribution and facilitate visualization, the sample is folded
into its two-dimension (2D) matrix form (or feature matrix). The maximum likelihood estimate is then estimated using
a modified expectation-maximization (EM) algorithm. The 2D–EM methodology was benchmarked against several
existing clustering methods using 6 medically-relevant transcriptome datasets. The percentage improvement of Rand
score and adjusted Rand index compared to the best performing alternative method is up to 21.9% and 155.6%,
respectively. To present the general utility of the 2D–EM method we also employed 2 methylome datasets, again
showing superior performance relative to established methods.

Conclusions: The 2D–EM algorithm was able to reproduce the groups in transcriptome and methylome data with
high accuracy. This build confidence in the methods ability to uncover novel disease subtypes in new datasets.
The design of 2D–EM algorithm enables it to handle a diverse set of challenging biomedical dataset and cluster
with higher accuracy than established methods. MATLAB implementation of the tool can be freely accessed
online (http://www.riken.jp/en/research/labs/ims/med_sci_math or http://www.alok-ai-lab.com/).
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Background
The cost of molecular profiling and recruiting large
cohort of patients is often a prohibitive factor which
results in many biomedical datasets having much higher
number of features (or dimensions) d larger than sample
number n (i.e., d >> n). This leads to a problem usually
referred to as the small sample size (SSS) problem, and
make it challenging to employ many state-of-the-art
clustering algorithms to group the samples appropri-
ately. Many clustering methods are based on maximum-
likelihood approach or employ covariance information
[1, 2]. However, when SSS problem exists, the covariance
of samples becomes singular (or ill posed) and it is
difficult to effectively utilize it in the application of clus-
tering algorithms. This restricts us to the approaches
which mainly employ norm distance (e.g. Euclidean
norm) or centroid of samples to categorize samples into
various clusters. Examples for such kind of algorithms
are k-means or hierarchical clustering (which employs
norm distance to build a dendrogram) [2].
In the literature, k-means clustering algorithm re-

ceived widespread attention and has been used in a
range of biological applications. The underlying func-
tionality of many of the recent tools used in multiomics
data analysis (iCluster, and iClusterPlus [3]) or cancer
analysis (ConsensusCluster (CC) and CCPlus [4, 5]) was
built using k-means. Though this type of method has
been widely applied in the literature due to its easiness
and appropriate level of clustering accuracy, it does not
cluster based on data distribution as covariance informa-
tion has not been employed. If we can gather more infor-
mation from a limited amount of data then the clustering
performance can be improved. This would have conse-
quences in findings of biological sciences, especially in dis-
ease diagnosis or cancer subtypes analysis, multiomics
data studies and population stratification [6].
A number of clustering algorithms other have been

emerged in the literature. Here we briefly summarize
exemplary methods. 1) Algorithms are developed using
criteria functions, such as a) sum-of-squared error; b)
scattering; c) related minimum variance; d) trace; e)
determinant; and, f ) invariant criterion [1, 7]; 2) cluster-
ing following iterative optimization [8–10]; 3) hierarch-
ical clustering algorithms [11–14]; some conventional
hierarchical-based algorithms are, single-linkage [15],
complete-linkage [16], median-linkage [17], weighted
average linkage [18] and ward linkage [19]. Single link-
age (SLink) agglomerative hierarchical approach [15]
combines clusters which are nearest to each other and
applies Euclidean distance to quantity the nearness
between the two neighboring groups. This method is
sensitive to the positioning of samples, which sometimes
causes an issue of a long chain (called the chaining
effect). The hierarchical approach with complete linkage

(CLink) [16] tries to reduce the chain effect by con-
structing groups using farthest-neighbor. However, it is
susceptible to outliers. This problem can be overcome
by applying average or median distance which was
achieved in median linkage (MLink) hierarchical approach
[17]. In the hierarchical weighted-average distance linkage
(WLink) approach, group sizes are ignored while com-
puting average distances. Consequently, smaller groups
get larger weights during clustering [18]. In Ward’s
linkage (Wa-Link), the clusters are joined based on an
optimal value of an objective function. Similarly, in
model-based hierarchical clustering [20, 21] an objective
function is used. The method presented in [20] is based
on the Bayesian analysis and uses multinomial likelihood
function and Dirichlet priors. The approach in [21] opti-
mizes the distance between two Gaussian mixture models.
4) Clustering is carried by Bayes classifier [22–26]; 5) by
maximum likelihood in an iterative fashion [27–30]. In
general, maximum likelihood can be computed via
analytical procedure, grid search, hill-climbing procedure
or EM algorithm [27, 31–35]; 6) spectral clustering use
spectrum of similarity matrix to perform dimensionality
reduction before conducting clustering [36], 7) non-
negative matrix factorization (NNMF) [37] has also
been used for clustering [38–40] and has been useful in
handling high-dimensional data; and, 8) support vector
clustering (SVC) became popular in recent literature
[41–47]. However, its computational complexity is
quite high and occasionally it fails to discover meaning-
ful groups [14]. In general, for many applications cluster-
ing techniques constructed on maximum likelihood and
Bayes approach are still the favored over support vector
clustering. Maximum likelihood methods require differen-
tial calculus techniques or gradient search to estimate pa-
rameters. However, Bayes methods usually require solving
complex multi-dimensional integration to reach to the so-
lution. Since Bayes estimation methods has very high
computational requirements [1], we prefer maximum like-
lihood in this paper.
Though many clustering methods have been developed

in the literature for various applications [48–54], the
problem of achieving a reasonable level of accuracy for
high dimensional data still persists. Many of these al-
gorithms fail to perform when the number of features
is gradually increased and becomes huge in compari-
son with the number of samples [55–62]. Many
methods that rely on data distribution, suffers from
high dimensionality as such case create the problem of
singularity of covariance matrix. Therefore, methods
based on norm distance (e.g. Euclidean) or centroid
based distance prevail in these situations. This is the
usual case for many biological applications where
generating additional samples is cost prohibitive. In
order to deal with the dimensionality issue, in general
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either feature transformation or feature selection is ap-
plied to reduce (or transform) the data into a parsimo-
nious space before executing clustering operation. This
has its own advantages and disadvantages. Inspired by
this drawback, we focus on developing a method that
can easily and efficiently perform clustering on high
dimensional data.
We propose a novel way of handing the data that pre-

cedes clustering. A sample (in a vector form) is reformed
into a matrix form through a filtering process that sim-
ultaneously facilitates more straightforward visualization.
This is a critical stage of this concept, as this reforma-
tion process can retain a significant amount of useful
information for clustering that could otherwise be diffi-
cult to capture. Furthermore, we extended EM algorithm
to estimate maximum likelihood for samples which
appears in the matrix form (i.e. feature matrix) in
contrast to the conventional methods which take input
samples as feature vectors.
The novel method, which we named 2D–EM, has two

steps. The first, filtering part produces a feature matrix
for a sample while the subsequent clustering part is
based on a modified EM algorithm that is capable of
accepting these feature matrices as input. The maximum
likelihood estimate via EM algorithm has been modified
such that it can consider input as feature matrix instead
of feature vector. The details of the method are given in
the later section. We observed a significant improve-
ment over many clustering algorithms over a number of
transcriptome and methylome datasets evaluated in this
study. We first present an overview of the maximum
likelihood estimate via EM algorithm and then present
our proposed 2D–EM clustering algorithm.

Methods
Overview of maximum likelihood estimate via EM
algorithm
Here we briefly present the summary of the maximum
likelihood via EM algorithm for clustering [1, 27, 63].
Suppose a d-dimensional sample set is described as
χ = {x1, x2,…, xn} with n unlabelled samples. Let num-
ber of clusters be defined as c. Let the state of the
nature or class label for jth cluster χj (for j = 1, …, c)
be depicted as ωj. Let θ = {μ,Σ} be any unknown parameter
(representing mean μ and covariance Σ). Then the mixture
density would be

p xk jθð Þ ¼
Xc

j¼1
pðxk jωj; θjÞP ωj

� � ð1Þ

where p(xk| ωj, θj) is the conditional density, θ = {θj} (for
j = 1…c), xk ∈ χ and P(ωj) is the a priori probability. The
log likelihood can be given by joint density

L ¼ logp χjθð Þ ¼ log
Yn

k¼1
p xk jθð Þ

¼
Xn

k¼1
logp xk jθð Þ ð2Þ

If the joint density p(χ| θ) is differentiable w.r.t. to θ
then from Eqs. 1 and 2

∇ θi L ¼
Xn

k¼1

1
p xk jθð Þ∇ θi

�Xc

j¼1
pðxk jωj; θjÞP ωj

� ��

ð3Þ
where ∇ θiL is defined as the gradient of L w.r.t. to θi. If θi
and θj are independent parameters and assume a posteriori
probability is

P ωi; jxk ; θð Þ ¼ pðxk jωiθiÞP ωið Þ
p xk jθð Þ ð4Þ

then from Eq. 4, we can observe that 1
p xk jθð Þ ¼

P ωi;jxk ;θð Þ
pðxk jωi;θiÞP ωið Þ. Substituting this value in Eq. 3 and since for

any function f(x) its derivative ∂ log f(x)/∂x can be given
as 1/f(x). f'(x). We have

∇ θi L ¼
Xn

k¼1
Pðωijxk ; θÞ∇ θi logpðxk jωi; θiÞ ð5Þ

If distribution of the data is normal Gaussian and
θi = {μi, Σi} then we can employ Eq. 5 to find E-step
and M-step of EM algorithm to find maximum likeli-
hood estimate θi. The solution be achieved by.
E-step

ϕik ¼ PðωijxkμΣÞ
M-step

πi ¼ 1
n

Xn

k¼1
Pðωijxk ; μ;ΣÞ ð6Þ

μi ¼
Pn

k¼1ϕikxkPn
k¼1ϕik

ð7Þ

Σi ¼
Pn

k¼1ϕik xk−μið Þ xk−μið ÞTPn
k¼1ϕik

ð8Þ

where πi is the a priori probability, μi ∈ℝ
d and Σi ∈ℝ

d × d.
For a normal distribution case, ϕik can be expressed as

ϕik ¼
pðxk jωi; μi;ΣiÞπiPc
j¼1pðxk jωj; μj;ΣjÞπj

¼
Σij j−1=2 exp − 1

2 xk−μið ÞTΣ−1
i xk−μið Þ

h i
πi

Pc
j¼1 Σj

�� ��−1=2 exp − 1
2 xk−μj
� �T

Σ−1
j xk−μj
� �� �

πj

ð9Þ
For every iteration check whether L ¼ Pn

k¼1 log
Pc

j¼1

πjpðxk jωj; μj;ΣjÞ is converging. At the convergence of L
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this procedure yields maximum likelihood estimate

θ̂i ¼ fμ̂i; Σ̂ig (for i = 1, 2, …, c).
As it can be observed from the above procedure, the

maximum likelihood estimate is possible if the inverse of
covariance matrix exists. For high dimensional data (where
samples are relatively lower), the computation of maximum
likelihood estimate becomes difficult as covariance matrix
becomes singular.

2D–EM clustering methodology
In this section, we describe our proposed 2D–EM clustering
algorithm. In order to overcome the dimensionality prob-
lem, we propose to fold a feature vector x ∈ℝd into a matrix
form X ∈ℝm× q (where mq ≤ d, number of rows of a feature
matrix X is denoted as m whereas number of columns is
denoted as q). Thereafter, we find maximum likelihood
estimate using EM algorithm for matrices. The 2D–EM
algorithm has two main components: 1) filtering step and 2)
clustering step. In the filtering part, a feature vector x is
reformed into its matrix form or feature matrix X. In the
clustering step, feature matrices (or samples in the
form of X) are clustered. Figure 1 illustrates the over-
all procedure of 2D–EM clustering algorithm.
Input samples are first processed through a filter

where each sample is formed as a matrix. Thereafter,
these feature matrices are sent to the clustering process.
Here we first describe the clustering part of 2D–EM algo-

rithm for feature matrices to obtain maximum likelihood
estimate. Let a sample Xk ∈ℝ

m× q (where m ≤ q) be formed
from xk ∈ℝ

d by a filtering process (to be discussed later).
We define the mean M ∈ℝm× q and covariance C ∈ℝm×m

for feature matrices.
The class-conditional density for a feature matrix Xk

can be described as,

pðXk jωi; θiÞ ¼ 1

2πð Þm�q Cij j1=2

exp −
1
2
trace Xk−Mið ÞTC−1

i Xk−Mið Þ
� �	 


ð10Þ

The derivative of likelihood function can be obtained
in a similar way as that of maximum likelihood estimate
and it comes similar to Eq. 5 as

∇ θi L ¼
Xn

k¼1
PðωijXk;θÞ∇ θi logpðXk jωi; θiÞ ð11Þ

This fortunately simplifies the derivations of maximum
likelihood estimate for feature matrices and the 2D–EM
procedure can be described as.
2D E-step

ϕik ¼ PðωijXk ;M;CÞ
2D M-step

πi ¼ 1
n

Xn

k¼1
PðωijXk ;M;CÞ ð12Þ

Mi ¼
Pn

k¼1ϕikXkPn
k¼1ϕik

ð13Þ

Ci ¼
Pn

k¼1ϕik Xk−Mið Þ Xk−Mið ÞTPn
k¼1ϕik

ð14Þ

In a similar way, for a normal distribution case, ϕik

can be expressed as

ϕik ¼
pðXk jωi;Mi;CiÞπiPc
j¼1pðXk jωj;Mj;CjÞπj

¼
Cij j−1=2 exp − 1

2 trace½ Xk−Mið ÞTC−1
i Xk−MiÞð �

h i
πiPc

j¼1 Cj

�� ��−1=2 exp − 1
2 trace½ Xk−Mj

� �T
C−1

j Xk−MjÞ
� �h i

πj

ð15Þ
Again, for every iteration it can be observed if likeli-

hood L is converging.
It can be seen from Eq. 14 that covariance matrix is no

longer of d × d size, however, it is reduced to size m ×m.
Since m2 ≤ d, theoretically we can say that the size of
covariance matrix is reduced to the square root (or less) of
the data dimensionality. This reduction is achieved without
performing linear or non-linear transformation (of data).
Furthermore, this enables us to use Eq. 15 effectively as

Fig. 1 An illustration of 2D–EM clustering algorithm
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singularity problem of Ci matrix is reduced at least by the
square root of the data dimensionality.
Next, we discuss the filtering process. The objective of

this process is to form a sample x ∈ℝd into a matrix X ∈
ℝm × q form. For convenience, here we use q =m; i.e., size
of X would be m ×m. This filtering process has two
parts: 1) feature selection, and 2) matrix arrangement.
In the feature selection part, we perform ANOVA to

find p-values for each of the features and then retain the
top m2 features. Here we have used p-values as a proto-
type to filter genes or features. However, one can use
any other scheme, e.g. regression methods (logistic re-
gression, linear regression, Poisson regression, Lasso
etc.) depending upon the application or specific type of
data used. Since we do not know the class labels of data,
we need to find temporary class labels to compute p-
values for features. Therefore, to obtain p-values, we
perform hierarchical clustering to find c clusters. There-
after, from the known labels we can compute p-values
which will help us to remove some features. This process

will give us a feature vector y∈ℝm2
where m2 ≤ d and fea-

tures in y is arranged corresponding to the low to high
p-values.
In the matrix arrangement part, we arrange y to get a

feature matrix X ∈ ℝm ×m. To arrange features in X sys-
tematically so that any two samples can be compared
without having a conflict, we applied a simple rule. We
computed the mean μy from all y samples and then ar-
ranged features of μy in ascending order. Thereafter, we
arranged features of y corresponding to the order of fea-
tures of μy. This allows us to put features in a common

format for all the samples. Next, we reshape y∈ℝm2
so

that it becomes X ∈ ℝm ×m.
The value of m can be computed as follows. First, the

cut-off for p-values will reduce dimensions from d to h

(where h ≤ d). Then m can obtained as m ¼ ffiffiffi
h

p
 �
, whereffiffiffi

h
p
 �

≤
ffiffiffi
h

p
and [̇] is an integer; i.e., m is an integer

smaller or equal to
ffiffiffi
h

p
. The arrangement of feature

matrix process is summarized in Table 1. The filtering
process is summarized in Table 1.
It is also possible to visualize feature matrix X and can be

compared with other samples to see the difference or simi-
larity. Figure 2 provides an illustration of visualization of
high dimensional data. A feature vector x ∈ℝd is con-
structed as a feature matrix X ∈ℝm × q through the filtering
process (as described in Table 1). For this illustration, two
different groups of samples (Type-A and Type-B) which
were difficult to visualize in ℝd space, are shown on ℝm × q

space. The visualization of feature matrix is more meaning-
ful in the matrix space.
To further demonstrate this with transcriptome data,

we consider six samples from ALL dataset (data used in
this paper are described later in Section 3.1). These

samples are randomly picked for this illustration. Three
samples belong to cluster acute lymphoblastic leukemia
(ALL) and the other three samples belong to cluster
acute myeloid leukemia (AML). The number of features
(or dimensions) of these samples is 7129 and it is impos-
sible to visualize data in 7129-dimensional space. How-
ever, using filtering (from Table 1) we can visualize each
sample as a matrix (see Fig. 3). Just by looking at the
patterns of these feature matrices, it can be observed
that samples from ALL are different from that of AML.
The patterns of AML feature matrices have high inten-
sity (or shades) at specific locations compared to the
patterns of ALL feature matrices. This reformation of
sample from vector to matrix form assist in data
visualization and pattern recognition. Similarly, it would
also improve the power of detection for a clustering
method provided if the method was designed well to
utilize this information.

Results and discussion
In order to verify the performance of 2D–EM clus-
tering algorithm, we employed 6 transcriptome and 2
methylome datasets described below. We used several
clustering algorithms and employed Rand score [64]
and adjusted Rand index [65] as a performance
measure to compare the clustering algorithms in this
study. The Rand scoring reflects how well the group
labels were reproduced using unlabeled data, and a
high score build confidence in the methods ability to
detect novel groups in novel data for which no
phenotype labels are available. These are well known
measures to gauge the performance of clustering al-
gorithm [66]. The results are described in the ‘Clus-
tering on transcriptome data’ and ‘Clustering on
methylome data’ sections.

Table 1 Arrangement of features into m ×m matrix

Feature Selection

1. Given x ∈ χ in a d-dimensional space.

2. Perform hierarchical clustering on all samples x to find temporary
class labels.

3. Using these class labels find p-values for all the d features.

4. Find m by placing a threshold or cut-off on p-values (e.g. cut-off
for p-values could be 0.01).

5. Retaining the top m2 features will give us a sample y∈ℝm2
, where

all y samples form a sample set Y∈ℝm2�n .

Matrix arrangement

6. Compute mean μy ¼ 1
n

P
y∈Y

y.

7. Arrange features of μy in ascending order and note the indices.

8. Arrange features of y by following the indices from step 7.

9. Reshape a sample y to a matrix X ∈ ℝm ×m.
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Biomedical datasets
Acute leukemia dataset [67]: contains DNA microarray
gene expressions of acute leukemia samples. Two
kinds of leukemia are provided, namely acute myeloid
leukemia (AML) and acute lymphoblastic leukemia

(ALL). It consists of 25 AML and 47 ALL bone mar-
row samples over 7129 probes. The features are all nu-
meric having 7129 dimensions.
Small round blue-cell tumor (SRBCT) dataset [68]: has

83 samples of the RNA expression profiles of 2308

Fig. 2 Visualization of high dimensional data

Fig. 3 Visualization of feature matrix: acute lymphoblastic leukemia (ALL) vs. myeloid leukemia (AML). An ALL sample or feature vector x ∈ℝd is
transformed to feature matrix X ∈ℝm ×m using the procedure outlined in Table 1. These feature matrices are shown at top right side of the figure.
Similarly, a sample of AML is also transformed to feature matrix and shown at bottom right side of the figure
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genes. The tumors are the Ewing family of tumors
(EWS), Burkitt lymphoma (BL), neuroblastoma (NB),
and rhabdomyosarcoma (RMS). The dataset consists of
29, 11, 25 and 18 samples of EWS, BL, RMS and NB,
respectively.
MLL Leukemia [69]: has three groups ALL, AML

leukemia and mixed lineage leukemia (MLL). The data-
set contains 20 MLL, 24 ALL and 28 AML. The dimen-
sionality is 12,582.
ALL subtype dataset [70]: contains 12,558 gene ex-

pressions of acute lymphoblastic leukemia subtypes. It
has 7 groups namely E2A-PBX1, BCR-ABL, MLL, hyper-
diploid >50 chromosomes ALL, TEL-AML1, T-ALL and
other (contains diagnostic samples that did not fit into
any of the former six classes). Samples per group are 27,
15, 20, 64, 79, 43 and 79, respectively.
Global cancer map (GCM) [71]: has 190 samples over

14 classes with 16,063 gene expressions.
Lung Cancer [72]: contains gene expression levels of

adenocarcinoma (ADCA) and malignant mesothelioma
(MPM) of the lung. In total, 181 tissue samples with
12,533 genes are given where 150 belongs to ADCA and
31 belongs to MPM.

Gastric Cancer [73]: 32 pairs of gastric cancer and
normal (adjacent) tissue were profiled using Illumina
Infinium HumanMethylation27 BeadChip. 27,579 CpG
sites were interrogated at a single-nucleotide reso-
lution. Both Beta- and M-values statistics were calcu-
lated from the methylated and unmethylated signals
as described in [74].
Hepatocellular Carcinoma [75]: 20 pairs of hepatocel-

lular tumor and their non-tumor tissue counterparts
were evaluated using the same platform (27,579 CpG
sites) and processed in the same manner as in Gastric
cancer dataset.
A summary of the transcriptome and methylome data-

sets is depicted in Table 2. It is evident from the table
that the number of features (genes or CpG site methyla-
tion state) is much larger than the number of samples
for all the datasets. This creates SSS problem in all the
cases.

Clustering on transcriptome data
In this subsection, we show the performance of various
clustering methods in terms of Rand score [64] over 6
transcriptome datasets. Rand score shown here repre-
sents an average taken from over 10 repetitions. Rand
score is similar to clustering accuracy and it value lies
between 0 and 1. We also used adjusted Rand index
[65], which assumes the generalized hypergeometric
model. Adjusted Rand index can attain wider range of
values than Rand score.

Table 2 Transcriptome and methylome datasets

Datasets Features Samples Classes

ALL Leukemia 7129 72 2

SRBCT 2308 83 4

MLL 12,582 72 3

ALL Subtype 12,558 327 7

GCM 16,063 198 14

Lung Cancer 12,553 181 2

Gastric Cancer 27,579 64 2

Hepatocellular Carcinoma 27,579 40 2

Table 3 Rand score (highest values are highlighted as bold
faces)

Method SRBCT ALL MLL ALL
subtype

GCM Lung
cancer

K-means 0.58 0.53 0.78 0.64 0.84 0.72

CLink 0.30 0.49 0.54 0.52 0.71 0.70

ALInk 0.30 0.56 0.35 0.51 0.38 0.71

Ward-Link 0.44 0.56 0.78 0.53 0.84 0.80

Weighted-Link 0.30 0.52 0.51 0.52 0.61 0.71

Mlink 0.30 0.55 0.35 0.48 0.54 0.71

Spectral Clustering 0.39 0.51 0.56 0.63 0.55 0.71

NNMF Clustering 0.66 0.50 0.74 0.64 0.83 0.63

Mclust 0.51 0.50 0.61 0.30 0.83 0.57

2D–EM 0.65 0.62 0.80 0.78 0.87 0.84

Table 4 Adjusted Rand index (highest values are highlighted as
bold faces)

Method SRBCT ALL MLL ALL
subtype

GCM Lung
cancer

Kmeans 0.13 0.03 0.47 0.15 0.19 0.22

CLink 0.00 −0.03 0.13 0.00 0.09 −0.02

ALInk 0.00 0.05 0.00 −0.01 0.01 −0.01

Wa-Link 0.00 0.09 0.51 0.00 0.17 0.41

Wt-Link 0.00 −0.03 0.08 0.00 0.07 −0.01

Mlink 0.00 0.02 0.00 −0.01 0.08 −0.01

Spectral Clustering −0.02 0.02 0.02 0.00 0.07 −0.01

NNMF Clustering 0.18 0.00 0.42 0.11 0.17 0.26

Mclust −0.02 −0.01 0.21 −0.01 0.09 0.05

2D–EM 0.19 0.23 0.57 0.26 0.22 0.62

Table 5 Percentage improvement of 2D–EM clustering method
over other existing clustering methods

Parameter SRBCT ALL MLL ALL
subtype

GCM Lung
cancer

Rand Score −1.5 10.7 2.6 21.9 3.6 5.0

Adjusted Rand
Index

5.6 155.6 11.8 73.3 21.1 51.2
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Rand and adjusted Rand scores
For 2D–EM clustering algorithm we use 0.01 as a cut-
off during the filtering process (the reasoning behind
selecting this particular cut-off is described in section
‘Effect of using filter’). Table 3 depicts the Rand score
analysis and Table 4 shows adjusted Rand index. We
have employed several clustering methods for compari-
son. These methods are k-means, hierarchical clustering
methods (SLink, CLink, ALink, MLink, Ward-Link and
Weighted-Link), spectral clustering, mclust [76] and
NNMF clustering. For k-means and hierarchical cluster-
ing methods, packages from MATLAB software were
used. For NNMF clustering method, package provided
by ref. [38] was used. For spectral clustering, package
provided by ref. [77] was used. In all the cases, only data
was provided with the number of cluster information.
It can be observed from Table 3 that for SRBCT data-

set, NNMF clustering is showing 0.66 Rand score
followed by 0.65 of 2D–EM. However, adjusted Rand
index (Table 4) for SRBCT is better for 2D–EM. For all
other datasets 2D–EM is performing the best in terms
of Rand score and adjusted Rand index (Table 3 and
Table 4).
For an instance, we can observe that from Table 3,

2D-EM scored highest Rand score of 0.62 followed by
ALink (0.56) and Ward-link (0.56) on ALL dataset. For
MLL k-means and Ward-link scored 0.78 and 2D–EM
was able to score 0.80. In the case of ALL subtype, 2D–
EM scored 0.78 followed by k-means (0.64) and NNMF
(0.64). For GCM, 2D–EM got 0.87 followed by k-means
(0.84) and Ward-link (0.84). For Lung Cancer, Ward-
link scored 0.80 and 2D–EM reached 0.84. We can also
observe that spectral clustering underperforming when
the dimensionality is large. Similarly, many clustering
methods (not reported here) did not provide results due
to high number of features.

Similarly, we can see from Table 4 that 2D–EM is
way ahead on ALL dataset by attaining 0.23 adjusted
Rand index followed by second best of 0.09 by Ward-
link. For MLL dataset, 2D–EM scored 0.57 followed by
Ward-link (0.51) and mclust (0.51). In case of ALL sub-
type and GCM datasets, 2D–EM (0.26, 0.22) is followed
by k-means (0.15, 0.19). For Lung dataset, 2D–EM
scored 0.62 followed by mclust (0.36).
The improvement (in terms of Rand score and ad-

justed Rand index) of 2D–EM over the best perform-
ing existing method has been depicted in Table 5. It
can be noticed that the best percentage improvement
for Rand score compared to the best performing clus-
tering method is 21.9%. Similarly, the best percent
improvement in terms of adjusted Rand index is
155.6%.

Fig. 4 Comparison of average performance (in terms of Rand score and Adjusted Rand index)

Fig. 5 Box plot showing the effect of changing cut-off value for
2D–EM clustering algorithm
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Average performance
We have also compared the average of Rand score and
adjusted Rand index over all the datasets used. The
comparison is depicted in Fig. 4. The comparison of
average performance is interesting. It can be seen that k-
means clustering algorithm performs quite reasonably
for high dimensional data. Several clustering algorithms
have been proposed after k-means algorithm, yet for
high dimensional data the average performance has not
been improved. Apart from k-means algorithm, Ward-
Link hierarchical clustering, NNMF clustering, mclust
and spectral clustering were able to attain reasonable
level of performance. The 2D–EM clustering algorithm
was able to attain 11.4% improvement on Rand score,

and 75.0% improvement on adjusted Rand index over
the best performing method. Therefore, it can be con-
cluded that in all the cases 2D–EM was able to achieve
very promising results.

Effect of using filter
The 2D–EM clustering algorithm uses a filtering step to
arrange a feature vector into a feature matrix. We want
to analyze the effect of applying this filter to other clus-
tering algorithms. In order to perform this analysis, we
preprocess data to retain top m2 features by filtering
before executing other clustering algorithms (note sam-
ples are not reshaped in matrix form for other methods
as this would require changing the mathematics of

Fig. 6 Rand score of five best performing methods over 100 runs
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algorithms). The detailed results are given in Addi-
tional file 1: it can be observed from Tables S1, S2, S3
and S4 that after applying filter for other clustering
methods, the performance doesn’t improve significantly.
Therefore, the evidence of bias due to filtering process is
weak.

Effect of variable cut-off
In order to illustrate the effect of changing the cut-off
value for the 2D–EM clustering algorithm, we varied
cut-off value from 0.05 to 0.005 and noted the Rand
score over 10 repetitions. The box-plot with the corre-
sponding results is shown in Fig. 5. It can be noticed
from Fig. 5, that varying cut-off value over a range

(0.05~0.005) does not significantly change the Rand
score of the algorithm. Therefore, the selection of 0.01
cut-off value in the previous experiment is not a sensi-
tive choice.

Clock time
The processing (clock) time of 2D–EM clustering algo-
rithm when run on Linux platform (Ubuntu 14.04 LTS,
64 bits) having 6 processors (Intel Xeon R CPU E5–1660
v2 @ 3.70GHz) and 128 GB memory per repetition is as
follows. On SRBCT dataset, 2D–EM clustering algo-
rithm took 11.4 s. Similarly, on ALL, MLL, ALL subtype,
GCM and Lung datasets, processing time were 8.7 s,
47.1 s, 286.5 s, 358.2 s and 82.0 s, respectively.

Fig. 7 Adjusted Rand index over 100 runs
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Therefore, for all the transcriptome datasets used in this
study, the processing time for 2D–EM clustering algo-
rithm was within 6 mins.

Consistency
To verify the consistency or stability of 2D–EM clus-
tering algorithm, we employed top five performing
clustering algorithms and obtain boxplots of Rand
score and adjusted Rand index over all the transcrip-
tome datasets used. The results are derived from over
100 runs. Figure 6 depicts boxplot of Rand score of 5
best methods (spectral clustering, Wa-Link, NNMF, k-
means and 2D–EM). It can be observed that on
SRBCT dataset NNMF is showing superior perform-
ance followed by 2D–EM clustering algorithm. How-
ever, on all the remaining 5 datasets (ALL, MLL, ALL
Subtype, GCM and Lung Cancer), 2D–EM is outper-
forming all the clustering methods. Similarly, adjusted
Rand index was computed on the same datasets and
shown in Fig. 7. Again, 2D–EM clustering methodology

outperformed all the clustering methods in terms of ad-
justed Rand index.

Clustering on methylome data
To show the utility of 2D–EM methodology we evalu-
ated two additional datasets of clinical relevance. While
in previous examples we showed commonly used tran-
scriptome data, the full understanding of biological
phenomena can only be achieved by considering mul-
tiple genomics ‘layers’. To this end, we compared the
Rand score and adjusted Rand index on DNA methyla-
tion data. Epigenetic modifications measured in those
datasets are known to affect a wide range of biological
processes and diseases phenotypes [78]. As we are ap-
proaching the era of personalized medicine, clustering
of different genomic components will continue to rise
in prominence.
For this purpose, we compared the performance of the

best 5 methods (selected based on performance with tran-
scriptome data). These methods are spectral clustering,

Fig. 8 Rand score and adjusted Rand index on Gastric cancer methylation data (Beta-values)

Fig. 9 Rand score and adjusted Rand index on Gastric cancer methylation data (M-values)
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Ward-link hierarchical clustering, NNMF, k-means and
2D–EM. Figure 8 depicts Rand score and adjusted Rand
index on Gastric cancer methylation data using Beta-
values over 100 runs. It can be clearly observed that 2D–
EM is outperforming other methods even when different
type of data is tested. Similarly, Fig. 9 shows the results on
Gastric data using alternative M-values, again for over 100
runs. Again 2D–EM accurately recreated the phenotype
labels.
We have also carried out tests on Hepatocellular car-

cinoma data, with results shown in Figs. 10 and 11 for

Beta- M-values respectively. Similar to the Gastric data-
set, 2D–EM is achieving very promising results for both
Beta- and M-values.

Conclusions
By looking at the nature of data readily found biological
sciences, in this work we proposed 2D–EM clustering
algorithm. This methodology clusters a given data in
two steps. In the first step, it reformats a feature vector
to a matrix form and, in the second part, it conducts the
clustering. The advantage of 2D–EM algorithm is that it

Fig. 10 Rand score and adjusted Rand index on Hepatocellular carcinoma (Beta-values)

Fig. 11 Rand score and adjusted Rand index on Hepatocellular carcinoma (M-values)
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can perform clustering at high dimensional space (com-
pared to the number of samples) by effectively incorpor-
ating data distribution information via its covariance
matrix. The proposed method avoids the singularity
issue by folding a feature vector into a feature matrix.

This reduces the dimensionality from d to less than
ffiffiffi
d

p
.

Thereby, distribution information along with distance
information can be used to cluster a sample. The algo-
rithm was compared to several existing clustering algo-
rithms over a number of transcriptome and methylome
datasets, and managed to accurately reproduce the
phenotype labels that were hidden from the analysis.
MATLAB package of 2D–EM clustering algorithm can
be found by visiting our website (http://www.riken.jp/en/
research/labs/ims/med_sci_math or http://www.alok-ai-
lab.com). In the future, we will investigate ways to extend
the present method to Bayesian estimation and hier-
archical methods.

Additional file

Additional file 1: In this file the bias of using filtering process is analyzed.
Here, we analyzed the effect of applying the filter (which was used for 2D–EM
algorithm) to other clustering algorithms. We preprocess data to retain top m2

features. The m2 values for all datasets at 0.01 cut-off were as follows: 1156
(SRBCT), 529 (ALL), 6084 (MLL), 1444 (ALL subtype), 15,129 (GCM) and 5625
(Lung Cancer). Then clustering algorithms are applied to see the difference in
performance (both in Rand score and adjusted Rand index). Table S1 and
Table S2 show the Rand score and adjusted Rand score when filtering step
is applied. Table S3 and Table S4 show the variations in Rand score
and adjusted Rand score after filtering compared to before filtering
process. (DOCX 25 kb)
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