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Abstract

Background: With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique,
the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational
biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be
used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains
(TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of
the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function.

Results: Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem,
and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent
chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can
accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent
with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin
immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD
have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications.

Conclusions: As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of
clustering methods developed in the machine learning field to the TAD identification problem. The source code, the
results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.
com/BDM-Lab/ClusterTAD.

Keywords: Clustering, Hi-C, Topologically associated domain (TAD), CTCF, Chromosome conformation
capturing, Genome structure, Chromosome organization

Background
A chromosome is known to occupy its own territory, and
fold into a high-order, non-random structure in a nucleus
[1]. The knowledge of the high-order organization of
chromosomes is useful for the understanding of genome
folding, long-range gene interactions and regulations [2],
DNA replication [3], and cellular functions [4, 5]. To gain
better insights into the organization of the chromosomes

in a cell, a technology called the chromosome conform-
ation capture technique such as 3C [6], 4C [7, 8], 5C [9],
and Hi-C [10] has been developed to determine spatial
chromosomal interaction within a chromosome region, a
chromosome or an entire genome. Particularly, the Hi-C
technique [10] is capable of capturing genome-wide
chromosomal interactions (or contacts) by cross linking
interacting DNA fragments, excising them out, sequen-
cing them, and mapping them to a reference genome. The
sequence reads obtained by the Hi-C technique are read
pairs that reveal the chromosomal locations, or regions
within spatial proximity to each other. By taking
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advantage of the high-throughput next generation sequen-
cing techniques, the Hi-C technique can generate
genome-wide, large-scale intra- and inter-chromosome
contact data that can describe the spatial interactions
within a genome. This genome description can be made at
a detailed level, if a sufficiently deep sequencing of inter-
acting DNA fragments is carried out. The recent study of
the Hi-C data revealed that the local regions in a chromo-
some tend to have a lot more contacts within them than
between them. These regions with more within-
interaction are called Topologically Associated Domains
(TAD). TADs are considered to be the structural and
functional unit (or module) of a chromosome. According
to [11], these TADs are unchanged irrespective of cell dif-
ferentiation, and they also contain gene clusters that are
co-regulated. In recent years, the detection of topo-
logical domain has become an important problem in
bioinformatics, and computational biology, and as a
result, several methods for TAD identification have
been developed [11–17].
In this work, we formulate the TAD detection problem

as grouping or clustering spatially interacting chromo-
somal regions into clusters. With this formulation, the
TAD detection problem is tackled by unsupervised ma-
chine learning (clustering) methods. The rationale is that
the chromosomal fragments within the same topological
domain have many more interactions between them
than those between different topological domains.
Therefore, the fragments within the same topological
domain tend to have similar interaction profiles than
those from different topological domains. Based on this
insight, we developed an algorithm to group chromo-
somal fragments (or regions) that have similar inter-
action profiles into clusters, which are used for detecting
TADs. To prepare a Hi-C contact matrix data as input
to a clustering algorithm, we introduce a new feature
representation describing the interaction profiles of a
chromosomal region, which is suitable for clustering.
Our method - ClusterTAD can produce fine-scale TADs
that are complementary and consistent with existing
methods. Moreover, this approach opens a new avenue
to apply many other well-studied clustering methods de-
veloped in the machine learning, and data mining com-
munity to the relatively new TAD detection problem.

Methods
The input to our clustering-based TAD detection
method (ClusterTAD) is a N by N intra-chromosomal
contact matrix, M [10, 11], derived from Hi-C data,
where N is the number of equal-sized regions of a
chromosome. A chromosomal region is also referred to
as a chromosomal bin or unit in some previous works
[11, 12]. The contact matrix, M, is a square matrix that

represents all the observed interactions between the re-
gions (or bins) in a chromosome. Therefore, the value
of an element in the contact matrix, represented as
M[i, j], records the interaction frequency between two
regions (i and j) of a chromosome. As an example,
Fig. 1a shows the contact matrix of Chromosome 20
derived from the Hi-C data of the human embryonic
stem cell (hESC) [18].
Generally speaking, ClusterTAD takes a Hi-C data

contact matrix as input, reformats the input data, and
groups the contact pairs that are spatially close to
each other into the same cluster. These groups are
thereafter used to identify TADs. To provide a de-
tailed clarification of the TAD detection problem, a
visual representation of the TADs in a contact matrix
is shown in Fig. 1b. The squares along the main diag-
onal of the contact matrix are the TAD identified for
this contact matrix. Figure 1c shows the workflow for
ClusterTAD step by step. The specific steps of this
workflow are described in detail below.

Step 1: Prepare normalized contact matrices for
chromosomes
Given a Hi-C data and a specific resolution, we generate
a contact matrix for each chromosome. To reduce noise
and biases, a normalization method can be used to
normalize the original contact counts to create a nor-
malized contact matrix. In this work, we used the Hi-C
datasets from Dixon et al. [11], which had been binned
at 40 kb resolution, and normalized for sequencing bias
using the method from Yaffe and Tanay [19].

Step 2: Create features for contacts in contact matrix
A key issue regarding clustering contacts into groups is
determining the best way to define the informative fea-
tures to represent each contact (i, j) involving two re-
gions i, and j. In this work, we consider two pieces of
information relevant to each contact (i,j) as its features.
Firstly, all the contact data on the ith row in the contact
matrix, M, to represent the contact profile of region i.
Secondly, all the contact data on the jth column of the
contact matrix, M, to represent the contact profile of re-
gion j. Therefore, the feature vector for contact M [i, j]
consists of 2 N numbers, where N is the number of rows
(or column) of the contact matrix. We used this feature
representation because it includes all the contact profiles
of the regions in contact; hence, making our feature in-
formative and discriminative. Because a contact matrix
is symmetric, only the contacts in the upper triangle of
the contact matrix need to be considered. Since we only
needed to group the regions along the main diagonal
into clusters for TAD detection, we generated the
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features for only the contacts on the main diagonal to
speed up clustering.

Step 3: Clustering
Once the feature generation for the contacts along the di-
agonal of the contact matrix is completed, a clustering
method [20–22] is needed to cluster them into groups.
Different types of clustering algorithms have been devel-
oped, which can be classified into the following categories:

partitioning methods, hierarchical methods, model based
methods, density-based methods, and grid-based methods
[23]. In this work, we applied the hierarchical clustering
method, Expectation-Maximization, and K-means cluster-
ing method combined with various distance metrics on a
simulated Hi-C dataset. Our results in the Result Section
shows that all the methods generate comparable results.
To use ClusterTAD, the number of clusters, K, is the only
parameter that needs to be defined. And the presumably
best K value for a dataset can be estimated automatically

Fig. 1 Chromosome contact matrix, TADs, and the workflow of ClusterTAD. a The contact matrix of Chromosome 20 of the human embryonic
stem cell (hESC). The x and y-axes represent the regions of the chromosome. b Representation of TADs along the main diagonal of a heat map
visualizing a 100 × 100 chromosomal contact matrix at 40 KB resolution. The intensity of colors represents the value of interaction frequency in
the matrix. The blue squares along the main diagonal denote the identified TADs in the contact matrix. c The workflow of ClusterTAD
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by ClusterTAD for user’s convenience (see the Results
Section).

Step 4: Extract TAD from contact clusters
As shown in Fig. 1b, each square (TAD) highlighted on the
contact matrix contains dense contacts within them, and
sparse contacts between them. Therefore, a square can be
considered as the cluster of contacts that have similar con-
tact profiles. Hence, the contact clusters identified by
ClusterTAD in Step 3 can be used to identify TADs.
Once the contacts on the main diagonal are assigned

into clusters, we join the consecutive contacts on the main
diagonal belonging to the same cluster into segments.
Based on previously reported works and experimental
findings [11–14], the minimum TD size is about 180 kb.
We categorized the joined segments into three groups.
The segments on the main diagonal that have zero con-
tacts are labeled as “Gap regions”. The segments greater
than the minimum length are labeled as “TAD regions”.
The segments that have fewer than the minimum length
of a TAD are filtered out, and labelled as “Boundary re-
gions”. Figure 2a visually explains the different types of
segments defined for a dataset by ClusterTAD.

Step 5: Evaluation of predicted TADs
An important characteristic of TADs is that, bins (regions)
within a given TAD have similar contact frequency pro-
files, which are different from those of bins outside the
TAD. Intuitively, maximizing the within-TAD similarity
and minimizing the between-TAD similarity is important
for evaluating the quality of TADs. Based on this property,
we used the difference between the average of contact fre-
quency of the bins in a TAD i, denoted as intra(i), and the
average of contact frequency of the bins between TAD i
and adjacent TAD j, denoted as inter (i, j) where |i-j| = 1
[14], to assess the quality of TAD assignments. This TAD
quality score is represented in Eq. 1 and visually
represented in Fig. 2b.

TADiQuality ¼ intra ið Þ−inter i; jð Þ ð1Þ

Equation 1 is used to compute the quality of each
TAD defined for a dataset. The overall quality score for
a set of TADs defined for a contact matrix is their aver-
age quality score. Consequently, the set of TADs with
the highest quality score is chosen as the representative
domain set for a chromosome.

Fig. 2 Illustration of the topologically associated domains. a Illustration of the basic elements related to TAD: domain, border, boundary, and gap.
A domain is a TAD. A boundary is the chromosomal region between two consecutive TADs. The border marks the start/end of a domain. A gap
is a point with no interaction in the contact matrix. b The calculation of TAD quality score. Two adjacent TADs are denoted as i and j. The area
between TADs i and j that has few interactions is labeled as E. The intra(i) is the average contact frequency within a TAD (e.g. the area marked i).
The inter(i, j) is the average contact frequency of the area marked as E. The difference of the two is the quality of TAD i
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Datasets
The simulated dataset from Wang et al., 2015 [13] is a
30-bin Hi-C contact matrix, in which the contacts were
simulated from a chromosome structure with predefined
topological domains. The contact matrix and the prede-
fined domains of the simulated dataset were downloaded
from [13].
The real Hi-C dataset used in this study is the Hi-

C data of two mouse cells: the mouse embryonic
stem cell and the cortex cell at a bin resolution of
40 kb. The normalized contact matrices for these cells
are available at [18].
The ChipSeq data used to analyze the enrichment of

CTCF and other histone modifications is from Shen et
al. (32). The raw data is available in the Gene Expression
Omnibus (GEO) database with the GEO accession ID
GSE29184. The extracted peaks for this ChipSeq data
can be downloaded from [24].

Results and discussion
Determination of the parameter of ClusterTAD
ClusterTAD needs a single parameter, K (the number of
clusters), to compute the set of TADs for a chromosome
contact matrix. For most clustering algorithms, it is al-
ways important to find the “best” K parameter for a par-
ticular dataset, because this parameter influences the
quality of the cluster analysis. However, it is worth men-
tioning that the definition of the “best” K parameter is
usually subjective because the “right” number is often
ambiguous [23]. Here, we use two well-known ap-
proaches to estimate the “best” possible value of K par-
ameter as follows.

1) A method proposed by Han et al. [23] assumes that
each cluster for a dataset has about

ffiffiffiffiffi

2n
p

points for a
dataset of n points, and the number of clusters can
be estimated using Eq. (2).

K ¼
ffiffiffi

n
2

r

ð2Þ

To allow some flexibility, we created a window around
this estimated K value. We set the lower limit of the
estimated number of clusters equal to K – 10, and upper
limit equal to K + 10. We used this method as the
default one for ClusterTAD for the real Hi-C data.

2) The elbow method [25, 26] is one of the oldest
methods to determine the number of clusters. It
chooses the number of clusters, K, such that
increasing the number of clusters (K + 1, K + 2, …)
results in no significant change in the within-cluster

variance. Usually, it starts at K = 2 and increases K
with an increment of 1 to an upper limit, which is
usually the number of instances in the dataset. The
elbow is regarded as the point where adding another
cluster does not improve the quality of clustering
much. The elbow method can be computationally
costly for large datasets, but extremely useful and
efficient for small datasets.

Evaluation of the clustering quality
We used two different statistical evaluation measures to
assess the quality of the clusters of chromosomal
contacts.

(1).The Davies-Bouldin index [27] (DBI). DBI is
defined as.

DBI ¼ 1
N

XN

i¼1
Di

where Di ¼ maxj≠iRi;j;Ri;j ¼ diþdj

di;j

Where di is the distance of elements in cluster i to its
centroid. di,j is the measure of the separation of clusters
i, and j, equal to the distance between the centers of
clusters i and j. A lower DBI score is preferred.

(2).The Silhouette Index [28] (SI). SI is defined as.

SI ¼ 1
N

XN

i¼1

1
cij j

X

j∈ci
sj

Sj ¼
bj−aj

max aj; ; bj
� � ðwhereÞ

Where aj is the average distance of data point j to all
other data points within the same cluster (Ci). A smaller
aj value implies a better cluster assignment. bj is the
average distance of data point j to the data in the next
best fit cluster for it or to another cluster with lowest
average distance to j. The Silhouette coefficient value
ranges between −1 and 1. A higher SI score is
considered better.

Assessment on the simulated dataset
We first evaluated our method on a simulated Hi-C con-
tact matrix dataset [13]. We applied ClusterTAD on this
dataset and compare its results with the known true re-
sults. We used three clustering algorithms with Cluster-
TAD to the dataset, including the k-means (KM)
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method, the hierarchical clustering (HC), and the Ex-
pectation Maximization (EM) algorithm. For the KM,
and HC algorithms, we applied three distance metrics:
the Euclidean-distance, the Pearson correlation dis-
tance, and the city-block distance. These algorithms
require the number of cluster to be specified for

them to be used. Firstly, using the Han et al. method,
the number of clusters, K, can be estimated from the
number of data points (n) in the dataset. Using Eq.
(2), we estimated the initial number of Cluster (K) to
be 4. A window around the estimated K value speci-
fies the range of the potential numbers of clusters to

Fig. 3 The results on the simulated dataset. a An elbow plot for the clustering results of ClusterTAD on the simulated dataset. The percentage of
within-cluster variance is plotted against the number of clusters. The elbow point is at K = 5. b The Davies-Bouldin index (DBI) for the different
clustering algorithms. c The Silhouette Index (SI) for the different clustering algorithms. d The average Intra-Inter difference scores for the TADs
extracted by ClusterTAD with different combinations of clustering algorithms and distance metrics: HC-eulcidean, KM-eulidean, HC-pearson, KM-pearson,
HC-cityblock, KM-cityblock, and the EM. HC denotes the hierarchical clustering algorithm, KM the K-means algorithm, and EM the expectation maximization
algorithm. HC-euclidean represents the combination of the hierarchical clustering algorithm with Euclidean distance metric
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be tested in our clustering analysis. Secondly, using
the elbow method, we plot the percentage of variance
against the number of clusters for the dataset (Fig. 3a).
From the plot, we can infer that the elbow point is at 5.
Once the number of cluster is defined, we performed

the clustering on the simulated dataset using the three
clustering algorithms above. We evaluated the quality of
the clustering results using the Davies-Bouldin index
(DBI) and Silhouette Index (SI). The results are shown in
Fig. 3b, c. The best clustering quality is achieved at K = 5
for both DBI (Fig. 3b and SI (Fig. 3c) measures for most
combinations of the algorithms and distance metrics.
Once the clustering was done, we applied ClusterTAD

to extract the TADs from the clustering results of all the
algorithms, respectively. As described earlier, once the
TAD is extracted, Eq. (1) is used to evaluate the quality
of the TADs. Figure 3d, shows the Intra-Inter difference
quality scores of TADs. The highest intra-inter differ-
ence was achieved with the different clustering
algorithms at K = 5 regardless distance metrics used,
showing the quality of TADs is consistent with that of
the clustering results.
Figure 4a-g visualizes the TADs identified at K = 4 (left),

K = 5 (middle) and K = 6 (right) by HC-euclidean, KM-
eulidean, HC-pearson, KM-pearson, the HC-cityblock,
KM-cityblock, and EM algorithm, respectively. The TADs
are represented as blue squares on the contact heat maps.
A TAD identified on each of the contact matrix is the blue
region within the blue dots along the diagonal of the con-
tact matrix heat map. These dots represent the boundary
of the TAD, which forms squares on each of the contact
matrix. Within this boundary are regions with more inter-
actions to each other than to other areas on a contact
matrix. Table 1 lists the TADs identified by each of the
seven different algorithms visualized in the Fig. 4. With
this visualization, we were able to observe the consistency
between the quality scores of TADs in Fig. 3, and the true
accuracy of TADs shown in Fig. 4. The quality score is

Fig. 4 – The visualization of the TADs extracted for one
chromosome contact map in the simulated dataset. Rows a to g
represents the TADs extracted for K = 4, K = 5 and K = 6 (from left,
middle to right) for the following combinations of clustering
algorithms and distance metrics: (a) HC-eulcidean, (b) KM- eulidean,
(c) HC-pearson, (d) KM-pearson, (e) HC-cityblock, (f) KM-cityblock,
and (g) EM. HC denotes the hierarchical clustering algorithm, KM the
K-means algorithm, and EM the expectation maximization algorithm.
HC-euclidean denotes the combination of the hierarchical clustering
algorithm with the Euclidean distance metric. The left column
visualizes the TADs extracted by the seven algorithms when K = 4,
the middle columns the TADs extracted when K = 5, and the right
column the TADs extracted when K = 6. A TAD region identified on
each contact heatmap is denoted by a blue square within the blue
dots along its diagonal. The blue dots represent the boundary of a
TAD region. The white squares along the diagonals are
unrecognized TADs
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higher when the TAD result is more accurate. For in-
stance, HC-euclidean at K = 4 and 5 in Fig. 3d have the
highest quality score, and their corresponding TADs are
the same as the true TADs (Fig. 4a left and middle). It is
observed from Fig. 4 that the seven different algorithms
identify the same set of TADs when the number of clus-
ters (K) equals to 5, which is consistent with the results in
Fig. 3 where the TADs produced by the seven algorithms
have similar quality scores when K equals to 5.

Assessment of ClusterTAD on real hi-C datasets
We tested ClusterTAD on the Hi-C data of two mouse
cells: the mouse embryonic stem cell and the mouse cor-
tex cell at a bin resolution of 40 kb. We used the K-
means algorithm with Euclidean distance metric for the
clustering performed on the real Hi-C datasets. The first
round of the application of ClusterTAD resulted in large,
coarse clusters, and consequently large TADs. As illus-
trated in [11–14] that large TADs often have lower
average interactions within TADs, in order to improve
cohesiveness of TADs, we applied another round of
clustering to large clusters generated in the first
round. Figure 5a shows the workflow of multiple
steps of clustering with ClusterTAD. Re-clustering of
the existing clusters generates sub-clusters. To iden-
tify the set of clusters to be re-clustered from the
results of the first round of clustering (Cluster-
TAD_1), we ranked the clusters generated from Clus-
terTAD_1 based on the number of points (regions) in
each cluster. Then we selected the top 30% or 50%
largest clusters for re-clustering with the same algo-
rithm of ClusterTAD, such that at least 50% of clus-
ters in the current round will be kept. The second
round of clustering is denoted as ClusterTAD_2. The
third and also last round of clustering operation is
called ClusterTAD_3.
Figure 5b, c shows the average size of TADs generated

in the three rounds of clustering. The average size of

TADs decreases from one round to next round as ex-
pected. Figure 5d, e reports the inter-intra interaction
frequency scores of TADs of the three rounds. Cluster-
TAD_2 consistently achieved the highest average score.
Though ClusterTAD_3 has smaller TADs than Cluster-
TAD_2, its quality score is lower than ClusterTAD_2.
We compared ClusterTAD with the two other

widely used methods: the directionality index (DI)
method [11] and the TopDom [14] methods on the
mouse Hi-C datasets. The results of DI and TopDom
were obtained from their published data. Figure 6
shows the quality scores of TADs, the number of
TADs, and the average size of TADs of the three
methods. Generally speaking, DI detects TADs of lar-
ger sizes, TopDom identifies TADs of smaller size,
and ClusterTAD produces the results in the middle.
Figure 6e, f shows the average size of TADs identified
by TopDom, DI, and ClusterTAD for the mESC, and
mCortex cells respectively. The average size of the
TADs produced by ClusterTAD is significantly smaller
than DI, but somewhat larger than TopDom (Fig. 6e)
or comparable to it (Fig. 6f ). This is consistent with
the observation that DI tends to detect TAD with
large sizes, while TopDom tends to identify smaller
TADs called sub-TADs. Since ClusterTAD tends to
break larger TADs into smaller TADs to improve
their cohesiveness, the average size of TADs identified
by ClusterTAD is between DI and TopDom, while
leaning more toward TopDom. Since the TADs iden-
tified by ClusterTAD and TopDom have a smaller
size, they tend to have higher inter-intra interaction
frequency scores.
We assessed how consistent the TADs detected by Clus-

terTAD are with those by DI and TopDom. The
consistency check was carried out according to the method
described in Fig. 7a. A TAD detected by method A is con-
sidered also detected by method B if the similarity between
the TADs by method A and the TADs by method B falls in
Case A or Case B in Fig. 7a, b, c shows the percentage of

Table 1 The lists of TADs identified by the seven different algorithms in Fig. 4

Algorithm K = 4 K = 5 K = 6

a {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (27,30)}.

b {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (27,30)}.

c {(1,8), (9,14), (15,20), and (21,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (15,20), (21,25), and (26,30)}.

d {(1,8), (9,14), (15,20), and (21,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (15,20), (21,25), and (26,30)}.

e {{(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (15,20), (21,25), and (26,30)}.

f {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (15,20), (21,25), and (26,30)}.

g {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (26,30)}. {(1,8), (9,14), (15,20), (21,25), and (27,30)}.

The table contains the lists of TADs extracted for K = 4, K = 5 and K = 6 (from left, middle to right) by the seven algorithms: (a) HC-eulcidean, (b) KM-eulidean, (c)
HC-pearson, (d) KM-pearson, (e) HC-cityblock, (f) KM-cityblock, and (g) EM. HC denotes the hierarchical clustering algorithm, KM the K-means algorithm, and EM
the expectation maximization algorithm. HC-euclidean denotes the combination of the hierarchical clustering algorithm and the Euclidean distance metric. A TAD
is represented as {start, end}, where “start” is the TAD start region, and “end” is the TAD end region. The best TAD set for the synthetic data is {(1, 8), (9, 14), (15,
20), (21, 25), and (26, 30)}
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TADs detected by ClusterTAD that were also detected by
the other methods. A higher percentage of TADs identified
by ClusterTAD was found by DI than by TopDom probably
because the TADs predicted by TopDom were generally
smaller. Overall, the three methods appear to produce the
complementary results on the dataset.

Validation of ClusterTAD by the enrichment analysis of
CTCF binding sites and histone modification marks in
domain boundaries
Topologically Associated Domains (TADs) are known to
have a high level of interactions within them, compared to
those between them. Each domain is separated from each

Fig. 5 Evaluation on a real Hi-C dataset. a The workflow of the iterative application of ClusterTAD. b The average size of TADs identified for the
mouse embryonic stem cell by three rounds of clustering of ClusterTAD (ClusterTAD_1, ClusterTAD_2, and ClusterTAD_3). c The average size of
TADs identified for the mouse cortex cell by three rounds of clustering of ClusterTAD. d The box plot of the quality scores of TADs extracted for
the mouse embryonic stem cell by the three rounds of clustering of ClusterTAD. e The box plot of the quality scores of TADs extracted for the
mouse Cortex cell for the different clustering operations performed by ClusterTAD
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other by domain boundaries. Therefore, TAD boundaries
can be regarded as an insulator that restricts interaction be-
tween a TAD and its adjacent TADs [11, 29]. And TAD
boundaries are also known to have an enrichment of bind-
ing sites of CTCF – a genome architectural protein [15–17,
29–33]. The binding sites of CTCF can be determined by a

chromatin immunoprecipitation (ChIP) sequencing (ChIP-
Seq) technique. We validated the result obtained from
ClusterTAD by checking the enrichment of CTCF at the
boundary between TADs for each of the mouse cells.
We used the dataset of the predicted cis-regulatory el-

ements extracted from Chip-Seq data by Shen et al. [34]

Fig. 6 Comparison of the quality scores, numbers and average sizes of TADs identified by TopDom, DI, and ClusterTAD on two mouse cell lines.
a, b The comparison of the intra-inter difference scores; (c, d): the number of TADs, and (e, f) the average size of TADs for the mESC and mCortex
cells respectively
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to assess the abundance of CTCF binding sites at the do-
main boundaries of TADs. Though CTCF binding sites
are largely found at domain boundaries, CTCF are also
associated with some active histone modification to form

the insulation in the domain boundaries. Hence, in
addition to studying the CTCF enrichment in the
boundaries, we also investigated the enrichment of pro-
moter marks: RNA Polymerase II and H3K4me3, and

Fig. 7 The analysis of the consistency between TADs identified by ClusterTAD and other methods on the two mouse cell lines. a Four different
cases in which TADs detected by two different methods are compared with each other. Case A: This refers to the case in which the TAD
identified in method B exactly matches those from another method A. The TADs detected by the two methods have the same boundaries. Case
B: This refers to the case in which a TAD detected by method A contains two or more domains detected by method B. The smaller TADs
detected by method B are called sub-TAD of the TAD detected by method A. Case C: This represents the conflicting case in which the domain
detected by method A does not match or contain the domains detected by method B even though there is some overlap between them. Case
D: This refers to the rare case in which the region is not assigned to a TAD by method A, but is assigned by a TAD by method B. b The percentage of
TADs detected by ClusterTAD for the mESC cell line that were also detected by TopDom and DI. (c) The percentage of TADs detected by ClusterTAD
for the mCortex cell line that were also detected by TopDom and DI
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Fig. 8 – The enrichment analysis of active histone modification marks and CTCF binding sites at the domain boundary. The average peak
number of active histone modification marks (promoter marks (Polymerase II and H3K4me3) and enhancer marks (H3K4me1 and H3K27ac) and
CTCF binding sites at the boundary regions identified by TopDom, DI and ClusterTAD for mouse Embryonic Stem Cell line (mESC) (a-e) and the
mouse cortex cell line (mCortex) (f-j)

Oluwadare and Cheng BMC Bioinformatics  (2017) 18:480 Page 12 of 14



enhancer-marks (H3K4me1 and H3K27ac). Using the
Chip-Seq data, the peaks for the CTCF and histone
modification marks were identified using MACS [35]
with the default parameters and filtered by a p-value of
0.00001. Figure 8 shows the occurrence of high number
of peaks (enrichment) for CTCF binding sites, and the
histone modification marks at the boundaries of TADs
identified for the two mouse cells by ClusterTAD, DI
and TopDom, validating that the domain boundaries
recognized by ClusterTAD are biologically relevant. Ac-
cording to the enrichment analysis in Fig. 8, there was a
reduction in the average number of peaks for the enhan-
cer mark H3K27ac in the mouse cortex cells than in the
mESC cells, which is consistent with the previous dis-
covery in [14]. In addition, the H3K4me1 peak enrich-
ment in the mCortex cells was slightly higher than in
the mESC cells. The enrichment of CTCF, H3K27ac,
and H3K4me1 in the predicted TAD boundaries sug-
gests that they may act as an insulator to separate TADs
[11, 29]. The previous studies show that enhancers could
activate transcription by bringing accessory transcription-
related factors to gene promoters within their spatial
proximity [36], even though the promoters may be se-
quentially far away from the enhancers in the linear gen-
ome sequence [37]. Hence, the high enrichment of the
enhancer and promoter marks in the boundary regions
suggests that some TAD boundary regions can be tran-
scription activation sites.

Conclusions
We introduce ClusterTAD, a new clustering based
method, to detect TADs from Hi-C data. ClusterTAD
employs standard clustering algorithms to extract topo-
logical domains from Hi-C contact data. We show that
ClusterTAD is consistent and complementary with exist-
ing methods. The TAD boundaries identified by Cluster-
TAD are validated by the enrichment analysis of CTCF
binding sites and histone modification marks. It is easy
to use ClusterTAD since it only requires one parameter
– the number of cluster, and the parameter can be esti-
mated automatically from the data. Moreover, Cluster-
TAD can be iteratively applied to divide larger clusters
into small ones, which can be used to identify both large
TADs and smaller sub-TADs. Finally, by formulating the
TAD detection problem as a classic clustering problem
through a novel representation of chromosomal con-
tacts, an array of clustering methods in the field of ma-
chine learning can be applied to address the problem.
We expect more sophisticated clustering algorithms will
be used to improve TAD detection in the future.
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