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Abstract

Background: DNA methylation is an epigenetic modification that is studied at a single-base resolution with bisulfite
treatment followed by high-throughput sequencing. After alignment of the sequence reads to a reference genome,
methylation counts are analyzed to determine genomic regions that are differentially methylated between two or more
biological conditions. Even though a variety of software packages is available for different aspects of the bioinformatics
analysis, they often produce results that are biased or require excessive computational requirements.

Results: DMRfinder is a novel computational pipeline that identifies differentially methylated regions efficiently.
Following alignment, DMRfinder extracts methylation counts and performs a modified single-linkage clustering of
methylation sites into genomic regions. It then compares methylation levels using beta-binomial hierarchical modeling
and Wald tests. Among its innovative attributes are the analyses of novel methylation sites and methylation linkage, as
well as the simultaneous statistical analysis of multiple sample groups. To demonstrate its efficiency, DMRfinder is
benchmarked against other computational approaches using a large published dataset. Contrasting two replicates of the
same sample yielded minimal genomic regions with DMRfinder, whereas two alternative software packages reported a
substantial number of false positives. Further analyses of biological samples revealed fundamental differences between
DMRfinder and another software package, despite the fact that they utilize the same underlying statistical basis. For each
step, DMRfinder completed the analysis in a fraction of the time required by other software.

Conclusions: Among the computational approaches for identifying differentially methylated regions from
high-throughput bisulfite sequencing datasets, DMRfinder is the first that integrates all the post-alignment steps
in a single package. Compared to other software, DMRfinder is extremely efficient and unbiased in this process.
DMRfinder is free and open-source software, available on GitHub (github.com/jsh58/DMRfinder); it is written in
Python and R, and is supported on Linux.
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Background
Methylation at the 5-position of cytosine bases in DNA
is an epigenetic modification that affects development
and gene regulation. In adult mammalian cells, methyla-
tion most commonly occurs at 5′-CG-3′ dinucleotides,
often termed ‘CpG’ sites. Although CpG sites occur less
frequently than expected in mammalian genomes, more
than half of gene promoters contain short, clustered re-
gions with high concentrations of these sites [1]. These

‘CpG islands’ are largely unmethylated in somatic cells,
but those near genes under long-term transcriptional re-
pression are frequently methylated. Aberrant methyla-
tion patterns have been associated with cancer and other
diseases [2].
Examining genomic methylation at single-base reso-

lution is accomplished by treating DNA with bisulfite,
which deaminates only unmethylated cytosines, followed
by high-throughput sequencing (MethylC-seq or BS-seq).
Researchers often use a targeted approach to bisulfite
sequencing, such as reduced representation bisulfite se-
quencing (RRBS) [3] or hybridization enrichment [4, 5], to
gain greater-depth methylation data in genomic areas that
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are likely to be of functional significance. After alignment
of the sequence reads to a reference genome by a software
package such as Bismark [6], methylation counts are
extracted and analyzed for differential methylation. The
single-base resolution of the data allows for testing indi-
vidual CpG sites, but regulated methylation targets are
most commonly clustered into short regions. Therefore, a
more biologically appropriate approach is to determine
differentially methylated regions (DMRs) of multiple
CpG sites.
Although several statistical approaches exist to identify

DMRs between two sample groups, many of these have
substantial limitations. Using Fisher’s exact tests on
methylation counts fails to account for variation be-
tween replicates, since the counts are summed within
each sample group. Simple t-tests of methylation levels
do consider this biological variation, but they ignore the
binomial nature of the methylation data [7]. A third
approach is to first smooth methylation levels prior to
conducting t-tests, as implemented in the R/Bioconduc-
tor package bsseq [8], but this may lead to artifacts in
regions of sparse data, especially with targeted MethylC-
seq datasets.
In this paper, we introduce a software package,

DMRfinder, that identifies DMRs between two (or more)
sample groups in an efficient and unbiased manner. The
software is compared against other computational
approaches to find DMRs using a large published
dataset [9].

Implementation
The DMRfinder pipeline (Fig. 1) consists of three scripts,
two in Python and one in R, and is run on the
command-line. As input, it takes high-throughput
MethylC-seq datasets that have been aligned with a soft-
ware tool such as Bismark [6]. DMRfinder extracts CpG
methylation counts from the alignment files, and then it
clusters the CpG sites into genomic regions. The final
step is to perform pairwise comparisons of the sample
groups to identify DMRs. Complete descriptions of the
usage and parameters of DMRfinder, along with a sam-
ple workflow, are provided in the UserGuide that
accompanies the software on GitHub.

Extracting methylation counts
The first step of DMRfinder (extract_CpG_data.py) con-
verts the output from Bismark’s aligner (or any alterna-
tive aligner that produces a similarly formatted file) into
a table of methylated/unmethylated counts at each CpG
site. The output table is sorted by chromosome and pos-
ition (1-based). The methylation counts are merged, in
that the totals for the cytosine and the guanine of each
CpG site are summed. This script of DMRfinder is not
limited to canonical genomic CpG sites, so it will in-
clude counts of novel CpG sites, as indicated in the
alignment file. Furthermore, this script allows for the
analysis of spatially-linked methylation information in
user-specified genomic intervals.

Fig. 1 Overview of DMRfinder. A simple MethylC-seq analysis of two replicates each of control and experimental groups. After alignment of the
reads, the three steps of DMRfinder ultimately produce a list of genomic regions with methylation differences between the control and
experimental samples
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Clustering CpG sites into regions
A modified single-linkage clustering algorithm is imple-
mented in DMRfinder (combine_CpG_sites.py). The
program determines the valid CpG sites that meet mini-
mum coverage criteria for one or more samples. Then it
groups sites that are within a specified distance of each
other into regions. This single-linkage clustering can
lead to the chaining effect, in which distant CpG sites
are placed into the same region due an extended series
of intermediate sites. The DMRfinder script limits this
effect by splitting any region whose length exceeds a
specified threshold (by default, 500 bp). After clustering,
each region is additionally required to meet a total
methylation count minimum (by default, twenty) in each
sample before being tested for differential methylation
(note that this parameter does not strictly correspond to
read coverage, since a single read may have methylation
data at multiple CpG sites). The overall clustering
process is controlled exclusively by the parameters that
define which CpG sites are considered valid and the
distances between those sites; it does not consider
methylation levels, and thus is not biased in favor of (or
opposed to) finding DMRs.

Testing regions for differential methylation
The final step of the DMRfinder pipeline (findDMRs.r)
conducts pairwise tests of sample groups to identify
genomic regions that are differentially methylated. The
underlying statistics are based on Bayesian beta-
binomial hierarchical modeling, which accounts for both
the biological variation of replicates and the binomial
nature of the methylation data. This is followed by Wald
tests, as implemented in the R/Bioconductor package
DSS [10]. Regions that meet the minimum methylation
difference (by default, 10%) and the maximum p- and q-
values (by default, p < 0.05) are reported as DMRs.

Results and discussion
We compared the performance of DMRfinder against
other software packages using the 4.8 billion reads gener-
ated by Lister et al. [9] in their study of two human cell
lines, IMR90 and H1. The reads were preprocessed,
aligned, and analyzed for DMRs as described in Additional
file 1.

Extracting methylation counts
The post-alignment steps of the Bismark pipeline pro-
vide comprehensive genome-wide methylation informa-
tion, summarizing results based on the sequence context
of every cytosine on both forward and reverse strands.
For research projects focused on CpG methylation, this
process can be greatly streamlined, especially when a tar-
geted sequencing approach (such as RRBS) is employed.
Hence, the first step of DMRfinder tabulates methylation

counts specifically at CpG sites. To extract methylation
counts from the Lister et al. [9] IMR90 replicate 1a sam-
ples, DMRfinder completed the process in less than half
the time of the Bismark pipeline and required 193 times
less disk space (Table 1). With datasets generated from a
targeted sequencing approach, rather than genome-wide,
DMRfinder is even more efficient at producing methyla-
tion counts.
Another important difference between DMRfinder and

Bismark concerns novel CpG sites. The Bismark script
‘coverage2cytosine’ analyzes only CpG sites that are
found in the reference genome. Since the canonical
reference genomic sequence is not perfectly accurate for
any individual, let alone for a subset of cells from a par-
ticular individual [11], determining the methylation
status of known genomic CpG dinucleotides is inher-
ently limited. Natural variants can lead to the creation of
novel CpG sites, and, unlike Bismark, DMRfinder incor-
porates these sites into its output.
For example, all the reads of the IMR90 datasets that

aligned to a particular genomic segment of chromosome
1 (Fig. 2a) showed a deletion of the adenine at position
21,741,341, a known variant (rs11348696, dbSNP build
150) that results in the creation of a novel CpG site
(Fig. 2b). However, the output from coverage2cytosine in
Bismark skips that site (Fig. 2c), thus indicating that this
genomic region has a low level of methylation. On the
other hand, the output from DMRfinder includes the
novel CpG site (Fig. 2d), revealing that the region actu-
ally has a higher methylation level. Furthermore, this
particular site is in the middle of a CEBPB binding site
(Fig. 2a), as shown by the UCSC genome browser [12].
DNA methylation has been shown to affect the binding
of this transcription factor to DNA [13], so this novel
CpG site may have a functional consequence in these
cells.
The appearance of novel CpG sites is not an insignifi-

cantly rare occurrence. For the Lister et al. [9] IMR90
replicate 1a dataset, 53,442 novel CpG sites had methy-
lation information in the alignments that was collected
by DMRfinder but ignored by Bismark, such as the
example in Fig. 2. Although this amounted to just 0.2%
of the nearly 25 million reference CpG sites for which
there were methylation counts, these sites have the

Table 1 Comparison of production of methylation counts with
Bismark and DMRfinder

Bismark DMRfinder

Run-time (sec) 22,514 9,378

Disk usage (Gb) 172.51 0.89

The Bismark scripts ‘bismark_methylation_extractor’ and ‘coverage2cytosine’
and the DMRfinder script ‘extract_CpG_data.py’ were used to analyze the
335.2 million aligned reads of the Lister et al. [9] IMR90 replicate 1a samples
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potential to affect regulatory models in specific cell types
or tissues.
Another novel aspect of the first step of DMRfinder is

that it allows for the analysis of spatially-linked methyla-
tion information. This can be used to determine if
methylation differences occur in a nonrandom pattern,
which may reflect an alteration in the cellular popula-
tions being studied (Additional file 2).

Clustering CpG sites into regions
Despite the single-base resolution of bisulfite-sequencing
data, the inherent noise in such data combined with bio-
logical reality indicates that considering sets of spatially
adjacent CpG sites as forming a functional unit may be
more informative. To this end, the second step of
DMRfinder clusters valid CpG sites that are located within
a minimum distance parameter of each other. It then
modifies these single-linkage clusters by splitting any clus-
ter whose length exceeds a specified threshold into mul-
tiple subregions, thus limiting the chaining effect. Since
the clustering process is based on the locations of valid
CpG sites and not methylation levels, it is not biased in
favor of (or opposed to) finding DMRs.
A similar single-linkage clustering algorithm is imple-

mented in the R/Bioconductor package BiSeq [14]. By
adjusting the parameters of DMRfinder, clusters were
produced that were identical to those from BiSeq
(Table 2). However, in analyzing the six IMR90 samples

of Lister et al. [9], DMRfinder was more than 31 times
faster than BiSeq (Table 3).
In addition, the default modified clustering approach

of DMRfinder is superior to pure single-linkage cluster-
ing (SLC) in that the former splits large clusters to
reduce the chaining effect. This leads to additional
DMRs, such as the example shown in Fig. 3a. With SLC,
all 40 CpG sites in this region were clustered together,
and the subsequent statistical test indicated that there
was not a significant methylation difference (q-value
0.12). DMRfinder split this region, and the middle sub-
region was determined to be a DMR, with a methylation
difference of 35% and a q-value of 1.4e-11 (Fig. 3a). The
splitting function also helps to define DMRs more pre-
cisely, as shown in Fig. 3b. After SLC, this entire region
of 37 CpG sites was identified as a DMR (methylation
difference 22%, q-value 1.8e-7), but, with splitting, it was
determined that only the first subregion accounted for
most of the differential methylation (methylation differ-
ence 66%, q-value 2.0e-14).
Furthermore, the minimum count parameters of the

clustering algorithm in DMRfinder, which have no paral-
lel in BiSeq, ensure that the subsequent statistical tests
have sufficient power.

Testing regions for differential methylation
The final step of the DMRfinder pipeline is to test the
regions defined in the previous step for statistically

a

b

c d

Fig. 2 DMRfinder analyzes novel CpG sites. a A segment of chromosome 1 in a CEBPB binding site, as shown with the UCSC genome browser
[12]. The canonical sequence has three CpG sites (blue boxes, #1, 3, and 4). The deletion of the adenine at position 21,741,341, a known variant
(rs11348696) results in the creation of a novel CpG site (red box, #2). b The alignment of the methylation strings of six reads from the IMR90
replicate 1 dataset with the genomic segment in part A. The methylation strings show only CpG methylation status (‘z’ = unmethylated, ‘Z’ = methylated).
All six reads have a deletion of the adenine at position 21,741,341 (‘-’), and thus indicate that the methylation status occurs in a CpG context. cWith
Bismark, the output summarizing methylation counts lists data for sites #1, 3, and 4, but omits the new CpG site. dWith DMRfinder, the output includes
the novel CpG site, revealing a higher methylation level in this genomic region
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significant methylation differences. The R/Bioconductor
package DSS [10] provides the basis for the beta-
binomial modeling of methylation counts and subse-
quent Wald tests. DSS itself calls DMRs by combining
CpG sites that individually achieve a high level of statis-
tical significance. By contrast, DMRfinder considers only
the clusters, not individual CpG sites. Because methyla-
tion counts are conglomerated within each cluster, the
number of hypothesis tests is reduced, thereby increas-
ing statistical power.
The performance of DMRfinder was benchmarked

against other software packages in two analyses. First,
the two IMR90 replicates of Lister et al. [9] were com-
pared against each other, in an analysis that should re-
sult in no DMRs (see Additional file 1 for details). The
two software packages utilizing data smoothing, bsseq
[8] and BiSeq [14], required excessive computational
time (Table 3). In addition, bsseq identified 32,643 re-
gions (spanning 18.8Mbp) with methylation differences
of at least 10%. BiSeq called 56,398 differentially methyl-
ated CpG sites with a p-value threshold of 1e-5, but the
analysis could not be completed due to time and mem-
ory (64Gb) limitations. By contrast, DSS and DMRfinder
identified zero and two DMRs, respectively. Though
using the same underlying statistics as DSS, DMRfinder
required substantially less computational time because it
tests regions for differential methylation, not each CpG
site (Table 3).
The second analysis was to determine DMRs between

IMR90 and H1 cells. With DSS, a total of 178,776 re-
gions were identified, covering 141.7 Mbp of the gen-
ome. Again using a minimum methylation difference of
10% and a maximum q-value of 0.05, DMRfinder called
more than six times as many DMRs, though they spanned a

Table 3 Comparison of run-times (sec) to analyze the Lister et
al. [9] IMR90 samples, which had methylation counts at 21-25
million CpG sites

bsseq BiSeq DSS DMRfinder

Clustering – 17,367 – 556

Smoothing 18,151 563,738 – –

Finding DMRs 187 297,501a 7,400 552
abetaRegression() step only

a

b

Fig. 3 Improved DMR identification by DMRfinder compared to
single-linkage clustering (SLC). a With SLC (dashed lines), all 40 CpG
sites in this region of chromosome 9 were clustered together, and
no DMR was called. With DMRfinder (solid lines), the region was split
into three subregions, and the middle subregion was determined to
be a DMR. b With SLC, a DMR was identified as spanning all 37 CpG
sites in this region of chromosome 6. After splitting with DMRfinder,
only the first subregion was classified as a DMR

Table 2 Clusters formed by DMRfinder and BiSeq in analyzing
the Lister et al. [9] IMR90 samples

Number of
clusters

Total length
(Mbp)

Average
length (bp)

DMRfinder (default) 522,963 46.0 88.0

DMRfinder
(−r 1 -m 1 -x 1e9 -c 5)

795,637 168.7 212.1

BiSeq 795,637 168.7 212.1

DMRfinder was run using default parameters and an alternative set of
parameters matching BiSeq’s clustering approach

Fig. 4 Comparison of DMRs found by DMRfinder and DSS. The
clustering approach of DMRfinder leads to DMRs that are more
numerous but much shorter than those identified by DSS
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similar total genomic distance (172.3Mbp) due to their
smaller size (Fig. 4). The overall large quantity of differential
methylation found by both DSS and DMRfinder was due to
the fact that the H1 cells had a much higher level of CpG
methylation than the IMR90 cells (83.6% vs. 67.1%), consist-
ent with previous results [9].
However, most of the DMRs called by DMRfinder

(86.9%) had no overlap with those identified by DSS.
This was because DMRfinder conglomerates methylation
counts within each cluster, thus allowing smaller methy-
lation differences to be detected, whereas DSS requires
multiple individual sites to achieve a high level of signifi-
cance. In fact, 38.5% of the DMRs found by DMRfinder
contained CpG sites of which zero were considered sig-
nificant by DSS, such as the example shown in Fig. 5a.
Even though all of the CpG sites in this region had
methylation differences of at least 13%, none of them
achieved the default DSS statistical threshold of a p-
value less than 1e-5. On the other hand, DMRfinder
classified this region as a DMR, with an overall methyla-
tion difference of 25% and a q-value of 1.6e-4. This high-
lights the advantage of testing regions rather than
individual CpG sites.
Further examination of the DMRs called by DSS re-

vealed other critical differences between its approach
and that of DMRfinder. In order to call a DMR, DSS re-
quires more than half of a set of at least four consecutive
CpG sites to have a p-value below 1e-5. However, it does
not consider the actual genomic positions of the sites,
which leads to some DMRs that span large genomic seg-
ments (Fig. 4). In the example shown in Fig. 5b, the
DMR called by DSS spanned more than 700 bp, with
one of the CpG sites far upstream of the others. Nearby
CpG sites were excluded from the DMR, because their
individual p-values failed to meet the threshold. A total
of 60.4% of the DMRs identified by DSS had at least one
CpG site within 100 bp of one or both ends of the re-
gion, like this example (Fig. 5b). By contrast, such DMRs
are not called by DMRfinder (except in cases of cluster

a

b

c

Fig. 5 Comparison of DMR identification by DMRfinder and DSS. a A
region on chromosome 20 that covers seven CpG sites. The
methylation levels of IMR90 at all seven sites are higher than those
of H1 (circles), but on an individual basis, none of the sites showed
significant differential methylation (squares), using the threshold of
DSS (p-value < 1e-5). With DMRfinder, the sites were clustered
together, and the weighted methylation fractions (dashed lines)
were determined to be statistically significantly different. b DMRs
identified by DSS and DMRfinder in a region on chromosome 13.
The DMR called by DSS spanned four CpG sites and more than
700 bp (purple box). With DMRfinder, the CpG sites were grouped
into two clusters, both of which were classified as DMRs (green
boxes). c A DMR identified uniquely by DSS on chromosome 7. Two
of the CpG sites in the DMR were hypermethylated in IMR90 cells,
and two were hypomethylated. For the entire region, DMRfinder
calculated a small methylation difference and did not call a DMR
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splitting), because clusters are formed based on genomic
distance. In this example, DMRfinder formed two clus-
ters from the CpG sites, each of which was separately
classified as a DMR (Fig. 5b).
Another difference between DMRfinder and DSS is that

the latter does not consider methylation levels. For ex-
ample, the DSS-called DMR shown in Fig. 5c had two CpG
sites that were hypermethylated in IMR90 cells, and two
that were hypomethylated. Thus, although each site had a
large methylation difference (more than 50%), the differ-
ence in average methylation levels for this DMR was min-
uscule. Just 0.7% of the DMRs called by DSS contained a
mixture of hyper- and hypo-methylated significant sites,
like this example. However, this number was diminished
because the H1 cell line was simply much more methylated
than IMR90, and, in comparisons of samples with similar
levels of methylation, this type of DMR would be called
more frequently by DSS. By contrast, this type of false posi-
tive is not observed with DMRfinder; it tests for differential
methylation by region, not by site, and methylation levels
are a central part of the analysis. In this example, the calcu-
lated methylation difference was less than 1% and no DMR
was called by DMRfinder (Fig. 5c).

Conclusions
DMRfinder identifies differentially methylated regions
from MethylC-seq data more efficiently than other soft-
ware packages. It extracts methylation counts, even from
novel CpG sites not found in the reference sequence,
and performs a modified single-linkage clustering of
CpG sites. This clustering allows for the sensitive and
unbiased detection of DMRs via a Bayesian beta-
binomial model, leading to reduced false positives and
more candidate DMRs than other packages.
Like other MethylC-seq analysis tools, DMRfinder does

not allow for more complicated modeling of the data. It
identifies individual regions that are differentially methyl-
ated but does not consider sets of regions or quantitative
traits, and it cannot account for batch effects. These are
areas for potential further improvements.
Complete descriptions of the software options of DMRfin-

der and illustrative examples are found in the UserGuide
that accompanies the open-source software on GitHub, and
in the provided DMRfinder archive (Additional file 3).

Availability and requirements
Project name: DMRfinder
Project home page: github.com/jsh58/DMRfinder
Operating system: Linux
Programming language: Python, R
Other requirements: DSS (www.bioconductor.org/pack-
ages/release/bioc/html/DSS.html)
License: MIT
Any restrictions to use by non-academics: none

Additional files

Additional file 1: Methods and commands used to analyze the datasets
from Lister et al. [9]. (PDF 451 kb)

Additional file 2: Methylation linkage analysis. (PDF 381 kb)

Additional file 3: Archive of DMRfinder, version 0.2. (ZIP 500 kb)
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DMR: Differentially methylated region; DSS: Dispersion Shrinkage for
Sequencing data, an R/Bioconductor package for detecting DMRs;
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