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Abstract

Background: Phenotypic classification is problematic because small samples are ubiquitous; and, for these, use of
prior knowledge is critical. If knowledge concerning the feature-label distribution – for instance, genetic pathways – is
available, then it can be used in learning. Optimal Bayesian classification provides optimal classification under model
uncertainty. It differs from classical Bayesian methods in which a classification model is assumed and prior
distributions are placed on model parameters. With optimal Bayesian classification, uncertainty is treated directly on
the feature-label distribution, which assures full utilization of prior knowledge and is guaranteed to outperform
classical methods.

Results: The salient problem confronting optimal Bayesian classification is prior construction. In this paper, we
propose a new prior constructionmethodology based on a general framework of constraints in the form of conditional
probability statements. We call this prior themaximal knowledge-driven information prior (MKDIP). The new constraint
framework is more flexible than our previous methods as it naturally handles the potential inconsistency in archived
regulatory relationships and conditioning can be augmented by other knowledge, such as population statistics. We
also extend the application of prior construction to a multinomial mixture model when labels are unknown, which
often occurs in practice. The performance of the proposed methods is examined on two important pathway families,
the mammalian cell-cycle and a set of p53-related pathways, and also on a publicly available gene expression dataset
of non-small cell lung cancer when combined with the existing prior knowledge on relevant signaling pathways.

Conclusion: The new proposed general prior construction framework extends the prior construction methodology
to a more flexible framework that results in better inference when proper prior knowledge exists. Moreover, the
extension of optimal Bayesian classification to multinomial mixtures where data sets are both small and unlabeled,
enables superior classifier design using small, unstructured data sets. We have demonstrated the effectiveness of our
approach using pathway information and available knowledge of gene regulating functions; however, the underlying
theory can be applied to a wide variety of knowledge types, and other applications when there are small samples.
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Background
Small samples are commonplace in phenotypic classifi-
cation and, for these, prior knowledge is critical [1, 2].
If knowledge concerning the feature-label distribution is
available, say, genetic pathways, then it can be used to
design an optimal Bayesian classifier (OBC) for which
uncertainty is treated directly on the feature-label dis-
tribution. As typical with Bayesian methods, the salient
obstacle confronting OBC is prior construction. In this
paper, we propose a new prior construction framework to
incorporate gene regulatory knowledge via general types
of constraints in the form of probability statements quan-
tifying the probabilities of gene up- and down-regulation
conditioned on the regulatory status of other genes. We
extend the application of prior construction to a multi-
nomial mixture model when labels are unknown, a key
issue confronting the use of data arising from unplanned
experiments in practice.
Regarding prior construction, E. T. Jaynes has remarked

[3], “. . . there must exist a general formal theory of deter-
mination of priors by logical analysis of prior information
– and that to develop it is today the top priority research
problem of Bayesian theory”. It is precisely this kind of for-
mal structure that is presented in this paper. The formal
structure involves a constrained optimization in which
the constraints incorporate existing scientific knowledge
augmented by slackness variables. The constraints tighten
the prior distribution in accordance with prior knowledge,
while at the same time avoiding inadvertent over restric-
tion of the prior, an important consideration with small
samples.
Subsequent to the introduction of Jeffreys’ non-

informative prior [4], there was a series of information-
theoretic and statistical methods: Maximal data informa-
tion priors (MDIP) [5], non-informative priors for integers
[6], entropic priors [7], reference (non-informative) pri-
ors obtained through maximization of the missing infor-
mation [8], and least-informative priors [9] (see also
[10–12] and the references therein). The principle of max-
imum entropy can be seen as a method of constructing
least-informative priors [13, 14], though it was first intro-
duced in statistical mechanics for assigning probabilities.
Except in the Jeffreys’ prior, almost all the methods are
based on optimization: max- or min-imizing an objective
function, usually an information theoretic one. The least-
informative prior in [9] is found among a restricted set of
distributions, where the feasible region is a set of convex
combinations of certain types of distributions. In [15], sev-
eral non-informative and informative priors for different
problems are found. All of these methods emphasize the
separation of prior knowledge and observed sample data.
Although the methods above are appropriate tools

for generating prior probabilities, they are quite general
methodologies without targeting any specific type of prior

information. In that regard, the problem of prior selec-
tion, in any Bayesian paradigm, is usually treated conven-
tionally (even “subjectively”) and independent of the real
available prior knowledge and sample data.
Figure 1 shows a schematic view of the proposed mech-

anism for Bayesian operator design.
The a priori knowledge in the form of graphical models

(e.g., Markov random fields) has been widely utilized
in covariance matrix estimation in Gaussian graphical
models. In these studies, using a given graphical model
illustrating the interactions between variables, different
problems have been addressed: e.g., constraints on the
matrix structure [16, 17] or known independencies
between variables [18, 19]. Nonetheless, these studies rely
on a fundamental assumption: the given prior knowledge
is complete and hence provides one single solution. How-
ever, in many applications including genomics, the given
prior knowledge is uncertain, incomplete, and may be
inconsistent. Therefore, instead of interpreting the prior
knowledge as a single solution, e.g., a single deterministic
covariance matrix, we aim at constructing a prior distri-
bution on an uncertainty class.
In a different approach to prior knowledge, gene-gene

relationships (pathway-based or protein-protein interac-
tion (PPI) networks) are used to improve classification
accuracy [20–26], consistency of biomarker discovery [27,
28], accuracy of identifying differentially expressed genes
and regulatory target genes of a transcription factor [29–
31], and targeted therapeutic strategies [32, 33]. The
majority of these studies utilize gene expressions corre-
sponding to sub-networks in PPI networks, for instance:
mean or median of gene expression values in gene ontol-
ogy network modules [20], probabilistic inference of path-
way activity [24], and producing candidate sub-networks
via a Markov clustering algorithm applied to high quality
PPI networks [26, 34]. None of these methods incorporate
the regulating mechanisms (activating or suppressing)
into classification or feature-selection to the best of our
knowledge.
The fundamental difference of the work presented in

this paper is that we develop machinery to transform
knowledge contained in biological signaling pathways
to prior probabilities. We propose a general framework
capable of incorporating any source of prior information
by extending our previous prior construction methods
[35–37]. We call the final prior distribution constructed
via this framework, a maximal knowledge-driven infor-
mation prior (MKDIP). The new MKDIP construction
constitutes two steps: (1) Pairwise and functional informa-
tion quantification: information in the biological pathways
is quantified by an information theoretic formulation. (2)
Objective-based Prior Selection: combining sample data
and prior knowledge, we build an objective function, in
which the expected mean log-likelihood is regularized by
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Fig. 1 A schematic illustration of the proposed Bayesian prior construction approach for a binary-classification problem. Information contained in
the biological signaling pathways and their corresponding regulating functions is transformed to prior probabilities by MKDIP. Previously observed
sample points (labeled or unlabeled) are used along with the constructed priors to design a Bayesian classifier to classify a new sample point (patient)

the quantified information in step 1. As a special case,
where we do not have any sample data, or there is only
one data point available for constructing the prior proba-
bility, the proposed framework is reduced to a regularized
extension of the maximum entropy principle (MaxEnt)
[38].
Owing to population heterogeneity we often face amix-

ture model, for example, when considering tumor sample
heterogeneity where the assignment of a sample to any
subtype or stage is not necessarily given. Thus, we derive
the MKDIP construction and OBC for a mixture model.
In this paper, we assume that data are categorical, e.g.
binary or ternary gene-expression representations. Such
categorical representations have many potential applica-
tions, including those wherein we only have access to a
coarse set of measurements, e.g. epifluorescent imaging
[39], rather than fine-resolution measurements such as
microarray or RNA-Seq data. Finally, we emphasize that,
in our framework, no single model is selected; instead, we
consider all possible models as the uncertainty class that
can be representative of the available prior information

and assign probabilities to each model via the constructed
prior.

Methods
Notation
Boldface lower case letters represent column vectors.
Occasionally, concatenation of several vectors is also
shown by boldface lower case letters. For a vector a,
a0 represents the summation of all the elements and ai
denotes its i-th element. Probability sample spaces are
shown by calligraphic uppercase letters. Uppercase letters
are for sets and random variables (vectors). Probability
measure over the random variable (vector) X is denoted
by P(X), whether it be a probability density function
or a probability mass function. EX[ f (X)] represents the
expectation of f (X) with respect to X. P(x|y) denotes the
conditional probability P(X = x|Y = y). θ represents
generic parameters of a probability measure, for instance
P(X|Y ; θ) (or Pθ (X|Y )) is the conditional probability
parameterized by θ . γ represents generic hyperparame-
ter vectors. π(θ ; γ ) is the probability measure over the
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parameters θ governed by hyperparameters γ , the param-
eters themselves governing another probability measure
over some random variables. Throughout the paper, the
terms “pathway” and “network” are used interchangeably.
Also, the terms “feature”’ and “variable” are used inter-
changeably.Mult(p; n) andD(α) represent a multinomial
distribution with vector parameter p and n samples, and a
Dirichlet distribution with vector α, respectively.

Review of optimal Bayesian classification
Binary classification involves a feature vectorX = (X1,X2,
. . . ,Xd)

T ∈ �d composed of random variables (features),
a binary random variable (label) Y and a classifier ψ(X)

to predict Y. The error is ε[ψ]= P(ψ(X) �= Y ). An opti-
mal classifier, ψbay, called a Bayes classifier, has minimal
error, called the Bayes error, among all possible classi-
fiers. The underlying probability model for classification
is the joint feature-label distribution. It determines the
class prior probabilities c0 = c = P(Y = 0) and c1 =
1 − c = P(Y = 1), and the class-conditional densities
f0(x) = P(x|Y = 0) and f1(x) = P(x|Y = 1). A Bayes
classifier is given by

ψbay(x) =
{
1, c1f1(x) ≥ c0f0(x) ,
0, otherwise. . (1)

If the feature-label distribution is unknown but belongs
to an uncertainty class of feature-label distributions
parameterized by the vector θ ∈ �, then, given a ran-
dom sample Sn, an optimal Bayeisan classifier (OBC)
minimizes the expected error over �:

ψOBC = argmin
ψ∈C Eπ∗(θ)[ εθ [ψ] ] , (2)

where the expectation is relative to the posterior dis-
tribution π∗(θ) over �, which is derived from the
prior distribution π(θ) using Bayes’ rule [40, 41]. If we
let θ0 and θ1 denote the class 0 and class 1 param-
eters, then we can write θ as θ =[ c, θ0, θ1]. If we
assume that c, θ0, θ1 are independent prior to observ-
ing the data, i.e. π(θ) = π(c)π(θ0)π(θ1), then the
independence is preserved in the posterior distribution
π∗(θ) = π∗(c)π∗(θ0)π∗(θ1) and the posteriors are given
by π∗(θy) ∝ π(θy)

∏ny
i=1 fθy(x

y
i |y) for y = 0, 1, where

fθy(x
y
i |y) and ny are the class-conditional density and num-

ber of sample points for class y, respectively [42].
Given a classifier ψn designed from random sample Sn,

from the perspective of mean-square error, the best error
estimate minimizes the MSE between its true error (a
function of θ and ψn) and an error estimate (a function of
Sn and ψn). This Bayesian minimum-mean-square-error
(MMSE) estimate is given by the expected true error,
ε̂(ψn, Sn) = Eθ [ ε(ψn, θ)|Sn], where ε(ψn, θ) is the error
of ψn on the feature-label distribution parameterized by θ

and the expectation is taken relative to the prior distribu-
tion π(θ) [42]. The expectation given the sample is over
the posterior probability. Thus, ε̂(ψn, Sn) = Eπ∗ [ ε].
The effective class-conditional density for class y is

defined by

f� (x|y) =
∫

�y
fθy (x|y) π∗ (

θy
)
dθy, (3)

�y being the space for θy, and an OBC is given pointwise
by [40]

ψOBC (x) ={
0 if Eπ∗ [ c] f� (x|0) ≥ (1 − Eπ∗ [ c] )f� (x|1) ,
1 otherwise. .

(4)

For discrete classification there is no loss in general-
ity in assuming a single feature X taking values in the
set {1, . . . , b} of “bins”. Classification is determined by the
class 0 prior probability c and the class-conditional prob-
ability mass functions pi = P(X = i|Y = 0) and qi =
P(X = i|Y = 1), for i = 1, . . . , b. With uncertainty,
we assume beta class priors and define the parameters
θ0 = {

p1, p2, . . . , pb−1
}
and θ1 = {

q1, q2, . . . , qb−1
}
. The

bin probabilities must be valid. Thus,
{
p1, p2, . . . , pb−1

} ∈
�0 if and only if 0 ≤ pi ≤ 1 for i = 1, . . . , b − 1 and∑b−1

i=1 pi ≤ 1, in which case, pb = 1−∑b−1
i=1 pi. We use the

Dirichlet priors

π(θ0) ∝
b∏

i=1
pα0

i −1
i and π(θ1) ∝

b∏
i=1

qα1
i −1

i , (5)

where α
y
i > 0. These are conjugate priors, leading to

the posteriors of the same form. The effective class-
conditional densities are

f�
(
j|y) = Uy

j + α
y
j

ny + ∑b
i=1 α

y
i
, (6)

for y = 0, 1, and the OBC is given by

ψOBC( j) =
{
0, if Eπ∗ [ c] f�

(
j|0) ≥ (1 − Eπ∗ [ c] )f�

(
j|1) ;

1, otherwise.

(7)

where Uy
j denotes the observed count for class y in bin

j [40]. Hereafter,
∑b

i=1 α
y
i is represented by α

y
0, i.e. α

y
0 =∑b

i=1 α
y
i , and is called the precision factor. In the sequel,

the sub(super)-script relating to dependency on class y
may be dropped; nonetheless, availability of prior knowl-
edge for both classes is assumed.

Multinomial mixture model
In practice, data may not be labeled, due to potential
tumor-tissue sample or stage heterogeneity, but still we
want to classify a new sample point. A mixture model is
a natural model for this scenario, assuming each sample
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point xi arises from a mixture of multinomial distribu-
tions:

Pθ (xi) =
M−1∑
j=0

cjPθ j(xi), (8)

whereM is the number of components. When there exists
two components, similar to binary classification, M = 2.
The conjugate prior distribution family for component
probabilities (if unknown) is the Dirichlet distribution. In
the mixture model, no closed-form analytical posterior
distribution for the parameters exists, but Markov chain
Monte Carlo (MCMC) methods [43] can be employed
to numerically calculate the posterior distributions. Since
the conditional distributions can be calculated analyti-
cally in the multinomial mixture model, Gibbs sampling
[44, 45] can be employed for the Bayesian inference. If
the prior probability distribution over the component
probability vector (c =[ c0, c1, . . . , cM]) is a Dirichlet dis-
tribution D(φ) with parameter vector φ, the component-
conditional probabilities are θ j =[ pj1, p

j
2, . . . , p

j
b], and the

prior probability distribution over them is DirichletD(αj)
with parameter vector αj (as in the classification problem),
for j = 1, . . . ,M, the Gibbs updates are

y(t)
i ∼ P

(
yi = j|c(t−1), θ (t−1), xi

)
∝ c(t−1)

j pj,(t−1)
xi

c(t) ∼ P
(
c|φ, y(t)

)
= D

(
φ +

∑n

i=1

[
Iy(t)i =1, . . . , Iy(t)i =M

])

θj
(t) ∼ P

(
θ j|x, y(t),αj

)

= D
(

αj +
∑n

i=1:y(t)i =j

[
Ixi=1, . . . , Ixi=b

])
,

where the super-script in parentheses denotes the chain
iteration number, Iw is one if w is true, and otherwise Iw is
zero. In this framework, if the inference chain runs for Is
iterations, then the numerical approximation of the OBC
classification rule is

ψOBC(k) ≈ arg max
y∈{1,...,M}

Is∑
t=1

c(t)y py,(t)k . (9)

Without loss of generality the summation above can be
over the iterations of the chain considering burn-in and
thinning.

Prior construction: general framework
In this section, we propose a general framework for prior
construction. We begin with introducing a knowledge-
driven prior probability:

Definition 1 (Maximal Knowledge-driven Information
Prior) If � is a family of proper priors, then a maximal
knowledge-driven information prior (MKDIP) is a solution
to the following optimization problem:

argmin
π∈�

Eπ [Cθ (ξ ,D)] , (10)

where Cθ (ξ ,D) is a cost function that depends on (1) θ : the
random vector parameterizing the underlying probability
distribution, (2) ξ : state of (prior) knowledge, and (3) D:
partial observation (part of the sample data).
Alternatively, by parameterizing the prior probability as

π(θ ; γ ), with γ ∈ 	 denoting the hyperparameters, an
MKDIP can be found by solving

argmin
γ∈	

Eπ(θ ;γ )[Cθ (ξ ,D, γ )] . (11)

In contrast to non-informative priors, theMKDIP incor-
porates available prior knowledge and even part of the
data to construct an informative prior.
The MKDIP definition is very general because we want

a general framework for prior construction. The next def-
inition specializes it to cost functions of a specific form in
a constrained optimization.

Definition 2 (MKDIP: Constrained Optimization with
Additive Costs) As a special case in which Cθ can be
decomposed into additive terms, the cost function is of the
form:

Cθ (ξ ,D, γ ) = (1 − β)g(1)
θ (ξ , γ ) + βg(2)

θ (ξ ,D),

where β is a non-negative regularization parameter. In
this case, the MKDIP construction with additive costs
and constraints involves solving the following optimization
problem:

argmin
γ∈	

Eπ(θ ;γ )

[
(1 − β)g(1)

θ (ξ , γ ) + βg(2)
θ (ξ ,D)

]

Subject to: Eπ(θ ;γ )[ g(3)
θ ,i (ξ)]= 0; i ∈ {1, . . . , nc},

(12)

where g(3)
θ ,i , ∀i ∈ {1, . . . , nc}, are constraints resulting from

the state of knowledge ξ via a mapping:

T : ξ → Eπ(θ ;γ )

[
g(3)
θ ,i (ξ)

]
,∀i ∈ {1, . . . , nc}.

In the sequel, we will refer to g(1)(·) and g(2)(·) as the
cost functions, and g(3)

i (·)’s as the knowledge-driven con-
straints.We begin with introducing information-theoretic
cost functions, and then we propose a general set of map-
ping rules, denoted by T in Definition 2, to convert bio-
logical pathway knowledge into mathematical forms. We
then consider special cases with information-theoretic
cost functions.

Information-theoretic cost functions
Instead of having least squares (or mean-squared error) as
the standard cost functions in classical statistical inference
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problems, there is no universal cost function in the prior
construction literature. That being said, in this paper, we
utilize several widely used cost functions in the field:

1. (Maximum Entropy) The principle of
maximum-entropy (MaxEnt) for probability
construction [38] leads to the least informative prior
given the constraints in order to prevent adding
spurious information. Under our general framework
MaxEnt can be formulated by setting:

β = 0, g(1)
θ = −H[ θ ] ,

where H[ .] denotes the Shannon entropy.
2. (Maximal Data Information) The maximal data

information prior (MDIP) introduced by Zellner [46]
as a choice of the objective function is a criterion for
the constructed probability distribution to remain
maximally committed to the data [47]. To achieve
MDIP, we can set our general framework with:

β = 0, g(1)
θ = lnπ(θ ; γ ) + H[P(x|θ)]

= lnπ(θ ; γ ) − Ex|θ [ lnP(x|θ)] .

3. (Expected Mean Log-likelihood) The cost function
introduced in [35] is the first one that utilizes part of
the observed data for prior construction. In that, we
have

β = 1, g(2)
θ = −�(θ ;D),

where �(θ ;D) = 1
nD

∑nD
i=1 log f (xi|θ) is the mean

log-likelihood function of the sample points used for
prior construction (D), and nD denotes the number
of sample points in D. In [35], it is shown that this
cost function is equivalent to the average Kullback-
Leibler distance between the unknown distribution
(empirically estimated by some part of the samples)
and the uncertainty class of distributions.

As originally proposed, the preceding approaches did
not involve expectation over the uncertainty class. They
were extended to the general prior construction form in
Definition 1, including the expectation, in [36] to pro-
duce the regularized maximum entropy prior (RMEP),
the regularized maximal data information prior (RMDIP),
and the regularized expected mean log-likelihood prior
(REMLP). In all cases, optimization was subject to special-
ized constraints.
For MKDIP, we employ the same information-theoretic

cost functions in the prior construction optimization
framework. MKDIP-E, MKDIP-D, and MKDIP-R corre-
spond to using the same cost functions as REMP, RMDIP,
and REMLP, respectively, but with the new general types
of constraints. To wit, we employ functional information
from the signaling pathways and show that by adding
these new constraints that can be readily derived from

prior knowledge, we can improve both supervised (clas-
sification problem with labelled data) and unsupervised
(mixture problem without labels) learning of Bayesian
operators.

From prior knowledge to mathematical constraints
In this part, we present a general formulation for map-
ping the existing knowledge into a set of constraints. In
most scientific problems, the prior knowledge is in the
form of conditional probabilities. In the following, we con-
sider a hypothetical gene network and show how each
component in a given network can be converted into
the corresponding inequalities as general constraints in
MKDIP optimization.
Before proceeding we would like to say something about

contextual effects on regulation. Because a regulatory
model is not independent of cellular activity outside the
model, complete control relations such as A → B in the
model, meaning that gene B is up-regulated if and only if
geneA is up-regulated (after some time delay), do not nec-
essarily translate into conditional probability statements
of the form P(XB = 1|XA = 1) = 1, where XA and XB
represent the binary gene values corresponding to genes
A and B, respectively. Rather, what may be observed is
P(XB = 1|XA = 1) = 1 − δ, where δ > 0. The path-
way A → B need not imply P(XB = 1|XA = 1) = 1
because A → B is conditioned on the context of the
cell, where by context we mean the overall state of the
cell, not simply the activity being modeled. δ is called a
conditioning parameter. In an analogous fashion, rather
than P(XB = 1|XA = 0) = 0, what may be observed is
P(XB = 1|XA = 0) = η, where η > 0, because there
may be regulatory relations outside the model that up-
regulate B. Such activity is referred to as cross-talk and
η is called a crosstalk parameter. Conditioning and cross-
talk effects can involve multiple genes and can be char-
acterized analytically via context-dependent conditional
probabilities [48].
Consider binary gene valuesX1,X2, . . . ,Xm correspond-

ing to genes g1, g2, . . . , gm. There are m2m−1 conditional
probabilities of the form

P(Xi = ki|X1 = k1, . . . ,Xi−1 = ki−1,Xi+1 =
ki+1, . . . ,Xm = km)

= akii (k1, . . . , ki−1, ki+1, . . . , km) (13)

to serve as constraints, the chosen constraints to be the
conditional probabilities whose values are known (approx-
imately). For instance, if g2 and g3 regulate g1, with X1 = 1
when X2 = 1 and X3 = 0, then, ignoring context effects,

a11(1, 0, k4, . . . , km) = 1
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for all k4, . . . , km. If, however, we take context conditioning
into effect, then

a11(1, 0, k4, . . . , km) = 1 − δ1(1, 0, k4, . . . , km),

where δ1(1, 0, k4, . . . , km) is a conditioning parameter.
Moreover, ignoring context effects,

a11(1, 1, k4, . . . , km) = a11(0, 0, k4, . . . , km)

= a11(0, 1, k4, . . . , km) = 0

for all k4, . . . , km. If, however, we take crosstalk into effect,
then

a11(1, 1, k4, . . . , km) = η1(1, 1, k4, . . . , km)

a11(0, 0, k4, . . . , km) = η1(0, 0, k4, . . . , km)

a11(0, 1, k4, . . . , km) = η1(0, 1, k4, . . . , km),

where η1(1, 1, k4, . . . , km), η1(0, 0, k4, . . . , km), and
η1(0, 0, k4, . . . , km) are crosstalk parameters. In practice
it is unlikely that we would know the conditioning and
crosstalk parameters for all combinations of k4, . . . , km;
rather, we might just know the average, in which case,
δ1(1, 0, k4, . . . , km) reduces to δ1(1, 0), η1(1, 1, k4, . . . , km)

reduces to η1(1, 1), etc.
In this paradigm, the constraints resulting from our

state of knowledge are of the following form:

g(3)
θ ,i (ξ) =
P(Xi = ki|X1 = k1, . . . ,Xi−1 = ki−1,Xi+1 = ki+1,

. . . ,Xm = km) − akii (k1, . . . , ki−1, ki+1, . . . , km).
(14)

The basic setting is very general and the conditional
probabilities are what they are, whether or not they can
be expressed in the regulatory form of conditioning or
crosstalk parameters. The general scheme includes pre-
vious constraints and approaches proposed in [35] and
[36] for the Gaussian and discrete setups. Moreover, in
those we can drop the regulatory-set entropy because it
is replaced by the set of conditional probabilities based
on the regulatory set, whether forward (master predicting
slaves) or backwards (slaves predicting masters) [48].
In this paradigm, the optimization constraints take the

form

akii (k1, . . . , ki−1, ki+1, . . . , km) −
εi(k1, . . . , ki−1, ki+1, . . . , km)

≤ Eπ(θ ;γ )[P(Xi = ki|X1 = k1, . . . ,Xi−1 = ki−1,
Xi+1 = ki+1, . . . ,Xm = km)]

≤ akii (k1, . . . , ki−1, ki+1, . . . , km) +
εi(k1, . . . , ki−1, ki+1, . . . , km), (15)

where the expectation is with respect to the uncertainty
in the model parameters, that is, the distribution of the
model parameter θ , and εi is a slackness variable. Not

all will be used, depending on our prior knowledge. In
fact, the general conditional probabilities will not likely be
used because they will likely not be known when there
are too many conditioning variables. For instance, we
may not know the probability in Eq. (13), but may know
the conditioning on part of the variables which can be
extracted from some interaction network (e.g. biologi-
cal pathways). A slackness variable can be considered for
each constraint to make the constraint framework more
flexible, thereby allowing potential error or uncertainty
in prior knowledge (allowing potential inconsistencies in
prior knowledge). When using slackness variables, these
variables also become optimization parameters, and a lin-
ear function (summation of all slackness variables) times
a regulatory coefficient is added to the cost function of
the optimization in Eq. (12). In other words, when hav-
ing slackness variables, the optimization in Eq. (12) can be
written as

arg min
γ∈	,ε∈E Eπ(θ ;γ )

[
λ1[ (1 − β)g(1)

θ (ξ , γ ) + βg(2)
θ (ξ ,D)]

+ λ2

nc∑
i=1

εi
]

Subject to: − εi ≤ Eπ(θ ;γ )[ g(3)
θ ,i (ξ)]≤ εi; i ∈ {1, . . . , nc},

(16)

where λ1 and λ2 are non-negative regularization param-
eters, and ε and E represent the vector of all slackness
variables and the feasible region for slackness variables,
respectively. For each slackness variable, a possible range
can be defined (note that all slackness variables are non-
negative). The higher the uncertainty is about a constraint
stemming from prior knowledge, the greater the possi-
ble range for the corresponding slackness variable can be
(more on this in the “Results and discussion” section).
The new general type of constraints discussed here

introduces a formal procedure for incorporating prior
knowledge. It allows the incorporation of knowledge of
the functional regulations in the signaling pathways, any
constraints on the conditional probabilities, and also
knowledge of the cross-talk and conditioning parameters
(if present), unlike the previous work in [36] where only
partial information contained in the edges of the pathways
is used in an ad hoc way.

An illustrative example and connection with conditional
entropy
Now, consider a hypothetical network depicted in Fig. 2.
For instance, suppose we know that the expression of gene
g1 is regulated by g2, g3, and g5. Then we have

P(X1 = 1|X2 = k2,X3 = k3,X5 = k5) = a11(k2, k3, k5).
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Fig. 2 An illustrative example showing the components directly
connected to gene 1. In the Boolean function
{AND, OR, NOT} = {∧,∨,−}. Based on the regulating function of
gene 1, it is up-regulated if gene 5 is up-regulated and genes 2 and 3
are down-regulated

As an example,

P(X1 = 1|X2 = 1,X3 = 1,X5 = 0) = a11(12, 13, 05),

where the notation 12 denotes 1 for the second gene. Fur-
ther, we might not know a1(k2, k3, k5) for all combinations
of k2, k3, k5. Then we use the ones that we know. In the
case of conditioning with g2, g3, and g5 regulating g1, with
g1 on if the others are on,

a11(12, 13, 15) = 1 − δ1(12, 13, 15).

If limiting to 3-gene predictors, g3, and g5 regulate g1,
with g1 on if the other two are on, then

a11(k2, 13, 15) = 1 − δ1(k2, 13, 15),

meaning that the conditioning parameter depends on
whether X2 = 0 or 1.
Now, considering the conditional entropy, assuming

that δ1 = max(k2,k3,k5) δ1(k2, k3, k5) and δ1 < 0.5, we may
write
H[X1|X2,X3,X5]=

−
⎡
⎣ ∑

X2,X3,X5

[P (X1 = 0|X2 = x2,X3 = x3,X5 = x5)

× P (X2 = x2,X3 = x3,X5 = x5)
log [P (X1 = 0|X2 = x2,X3 = x3,X5 = x5)]
+ P (X1 = 1|X2 = x2,X3 = x3,X5 = x5)
× P (X2 = x2,X3 = x3,X5 = x5)

log [P (X1 = 1|X2 = x2,X3 = x3,X5 = x5)]
]
⎤
⎦

≤ h(δ1),

where h(δ) = −[ δ log(δ) + (1 − δ) log(1 − δ)]. Hence,
bounding the conditional probabilities, the conditional
entropy is in turn bounded by h(δ1):

lim
δ1→0+ H [X1|X2,X3,X5] = 0.

It should be noted that constraining H[X1|X2,X3,X5]
would not necessarily constrain the conditional probabil-
ities, and may be considered as a more relaxed type of
constraints. But, for example, in cases where there is no
knowledge about the status of a gene given its regulator
genes, constraining entropy is the only possible approach.
In our illustrative example, if we assume that the

Boolean regulating function of X1 is known as shown in
Fig. 2 and context effects exist, then the following knowl-
edge constraints can be extracted from the pathway and
regulating function:

a01 (k2, k3, 05) = 1 − δ1 (k2, k3, 05)
a01 (k2, 13, k5) = 1 − δ1 (k2, 13, k5)
a01 (12, k3, k5) = 1 − δ1 (12, k3, k5)
a11 (02, 03, 15) = 1 − δ1 (02, 03, 15) .

Now if we assume that the context does not affect the
value of X1, i.e. the value of X1 can be fully determined by
knowing the values of X2, X3, and X5, then we have the
following equations:

a01 (k2, k3, 05) = P (X1 = 0|X5 = 0) = 1 (17a)
a01 (k2, 13, k5) = P (X1 = 0|X3 = 1) = 1 (17b)
a01 (12, k3, k5) = P (X1 = 0|X2 = 1) = 1 (17c)
a11 (02, 03, 15) = P(X1 = 1|X2 = 0,X3 = 0,

X5 = 1) = 1. (17d)

It can be seen from the equations above that for some
setups of the regulator values, only a subset of them deter-
mines the value ofX1, regardless of the other regulator val-
ues. If we assume that the value of X5 cannot be observed,
for example X5 is an extracellular signal that cannot be
measured in gene expression data and thereafter X5 is not
in the features of our data, the only constraints relevant to
the feature-label distribution that can be extracted from
the regulating function knowledge will be

a01 (k2, 13, k5) = P (X1 = 0|X3 = 1) = 1
a01 (12, k3, k5) = P (X1 = 0|X2 = 1) = 1.

(18)
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Special case of Dirichlet distribution
Fixing the value of a single gene, being ON or OFF (i.e.
Xi = 0 or Xi = 1, respectively), corresponds to a partition
of the states, X = {1, . . . , b}. Here, the portions of X for
which (Xi = k1,Xj = k2) and (Xi �= k1,Xj = k2), for any
k1, k2 ∈ {0, 1}, are denoted by X i,j(k1, k2) and X i,j(kc1, k2),
respectively. For the Dirichlet distribution, where θ = p
and γ = α, the constraints on the expectation over the
conditional probability in (15) can be explicitly written as
functions of the prior probability parameters (hyperpa-
rameters). For the parameter of the Dirichlet distribution,
a vector α indexed by X , we denote the variable indi-
cating the summation of its entities in X i,j(k1, k2) by
αi,j(k1, k2) = ∑

k∈X i,j(k1,k2) αk . The notation can be eas-
ily extended for the cases having more than two fixed
genes. In this setup, if the set of random variables corre-
sponding to genes other than gi and the vector of their
corresponding values are shown by X̃i and x̃i, respectively,
the expectation over the conditional probability in (15)
is [36]:

Ep [P (Xi = ki|X1 = k1, . . . ,Xi−1 = ki−1,

Xi+1 = ki+1, . . . ,Xm = km)]

= Ep

[ ∑
k∈X i,X̃i(ki,x̃i)

pk∑
k∈X i,X̃i(ki,x̃i)

pk + ∑
k∈X i,X̃i(kci ,x̃i)

pk

]

= αi,X̃i
(
ki, x̃i

)
αi,X̃i

(
ki, x̃i

) + αi,X̃i
(
kci , x̃i

) ,
(19)

where the summation in the numerator and the first sum-
mation in the denominator of the second equality is over
the states (bins) for which (Xi = ki, X̃i = x̃i), and the
second summation in the denominator is over the states
(bins) for which (Xi = kci , X̃i = x̃i).
If there exists a set of genes that completely deter-

mines the value of gene gi (or only a specific setup
of their values that determines the value, as we had
in our illustrative example in Eq. (17)), then the con-
straints on the conditional probability conditioned on
all the genes other than gi can be changed to be con-
ditioned on that set only. Specifically, let Ri denote the
set of random variables corresponding to such a set of
genes/proteins and suppose there exists a specific setup
of their values ri that completely determines the value
of gene gi. If the set of all random variables correspond-
ing to the genes/proteins other than Xi and Ri is denoted
by Bi = X̃(i,Ri), and their corresponding values by bi,
then the constraints on the conditional probability can be
written as

Ep [P (Xi = ki|Ri = ri)]

= Ep

[∑
bi∈OBi

∑
k∈X i,Ri ,Bi (ki,ri,bi) pk∑

bi∈OBi

∑
k∈X i,Ri ,Bi (ki,ri,bi) pk

+ ∑
bi∈OBi

∑
k∈X i,Ri ,Bi(kci ,ri,bi)

pk

]

=
∑

bi∈OBi
αi,Ri,Bi(ki, ri, bi)∑

bi∈OBi
αi,Ri,Bi(ki, ri, bi)

+ ∑
bi∈OBi

αi,Ri,Bi(kci , ri, bi)
,

(20)

where OBi is the set of all possible vectors of values for Bi.
For a multinomial model with a Dirichlet prior dis-

tribution, a constraint on the conditional probabilities
translates into a constraint on the above expectation over
the conditional probabilities (as in Eq. (15)). In our illus-
trative example and from the equations in Eq. (17), there
are four of these constraints on the conditional probabil-
ity for gene g1. For example, in the second constraint from
the second line of Eq. (17) (Eq. 17b), Xi = X1, ki = 0,
Ri = {X3}, ri =[ 0], and Bi = {X2,X5}. One might have
several constraints for each gene extracted from its reg-
ulatory function (more on extracting general constraints
from regulating functions in the “Results and discussion”
section).

Results and discussion
The performance of the proposed general prior construc-
tion framework with different types of objective func-
tions and constraints is examined and compared with
other methods on two pathways, a mammalian cell-cycle
pathway and a pathway involving the gene TP53. Here
we employ Boolean network modeling of genes/proteins
(hereafter referred to as entities or nodes) [49] with
perturbation (BNp). A Boolean Network with p nodes
(genes/proteins) is defined as B = (V, F), where V repre-
sents the set of entities (genes/proteins) {v1, . . . , vp}, and
F is the set of Boolean predictor functions {f1, . . . , fp}. At
each step in a BNp, a decision is made by a Bernoulli
random variable with the success probability equal to the
perturbation probability, ppert , as to whether a node value
is determined by perturbation of randomly flipping its
value or by the logic model imposed from the interactions
in the signaling pathways. A BNp with a positive pertur-
bation probability can be modeled by an ergodic Markov
chain, and possesses a steady-state distribution (SSD) [50].
The performance of different prior construction methods
can be compared based on the expected true error of the
optimal Bayesian classifiers designed with those priors,
and also by comparing these errors with some other well
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known classification methods. Another comparison met-
ric of prior construction methods is the expected norm
of the difference between the true parameters and the
posterior mean of these parameters inferred using the
constructed prior distributions. Here, the true parameters
are the vectors of the true class-conditional SSDs, i.e. the
vectors of the true class-conditional bin probabilities of
the BNp.
Moreover, the performance of the proposed framework

is compared with other methods on a publicly available
gene expression dataset of non-small cell lung cancer
when combined with the existing prior knowledge on
relevant signaling pathways.

Mammalian cell cycle classification
A Boolean logic regulatory network for the dynamical
behavior of the cell cycle of normal mammalian cells is
proposed in [51]. Figure 3(a) shows the corresponding
pathways. In normal cells, cell division is coordinated via
extracellular signals controlling the activation of CycD.
Rb is a tumor suppressor gene and is expressed when
the inhibitor cyclins are not present. Expression of p27
blocks the action of CycE or CycA, and lets the tumor-
suppressor gene Rb be expressed even in the presence of
CycE and CycA, and results in a stop in the cell cycle.
Therefore, in the wild-type cell-cycle network, expressing
p27 lets the cell cycle stop. But following the proposed
mutation in [51], for the mutated case, p27 is always
inactive (i.e. can never be activated), thereby creating
a situation where both CycD and Rb might be inac-
tive and the cell can cycle in the absence of any growth
factor.
The full functional regulations in the cell-cycle Boolean

network are shown in Table 1.
Following [36], for the binary classification problem,

y = 0 corresponds to the normal system functioning
based on Table 1, and y = 1 corresponds to the mutated
(cancerous) system where CycD, p27, and Rb are perma-
nently down-regulated (are stuck at zero), which creates
a situation where the cell cycles even in the absence of
any growth factor. The perturbation probability is set to
0.01 and 0.05 for the normal and mutated system, respec-
tively. A BNp has a transition probability matrix (TPM),
and as mentioned earlier, with positive perturbation prob-
ability can be modeled by an ergodic Markov chain, and
possesses a SSD [50]. Here, each class has a vector of
steady-state bin probabilities, resulting from the regu-
lating functions of its corresponding BNp and the per-
turbation probability. The constructed SSDs are further
marginalized to a subset of seven genes to prevent triv-
ial classification scenarios. The final feature vector is x =
[ E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, CycB], and the
state space size is 27 = 128. The true parameters for each

a

b

Fig. 3 Signaling pathways corresponding to Tables 1 and 2. Signaling
pathways for: 3(a) the normal mammalian cell cycle (corresponding
to Table 1) and 3(b) a simplified pathway involving TP53
(corresponding to Table 2)
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Table 1 Boolean regulating functions of normal mammalian cell
cycle [51]. In the Boolean functions {AND, OR, NOT} = {∧,∨,−}
Gene Node name Boolean regulating function

CycD v1 Extracellular signal

Rb v2 (v1 ∧ v4 ∧ v5 ∧ v10) ∨ (v6 ∧ v1 ∧ v10)

E2F v3 (v2 ∧ v5 ∧ v10) ∨ (v6 ∧ v2 ∧ v10)

CycE v4 (v3 ∧ v2)

CycA v5 (v3 ∧ v2 ∧ v7 ∧ (v8 ∧ v9)) ∨ (v5 ∧ v2 ∧ v7∧
(v8 ∧ v9))

p27 v6 (v1∧v4∧v5∧v10)∨(v6∧(v4 ∧ v5)∧v10∧v1)

Cdc20 v7 v10

Cdh1 v8 (v5 ∧ v10) ∨ (v7) ∨ (v6 ∧ v10)

UbcH10 v9 (v8) ∨ (v8 ∧ v9 ∧ (v7 ∨ v5 ∨ v10))

CycB v10 (v7 ∧ v8)

class are the final class-conditional steady-state bin prob-
abilities, p0 and p1 for the normal and mutated systems,
respectively, which are utilized for taking samples.

Classification problem corresponding to TP53
TP53 is a tumor suppressor gene involved in various bio-
logical pathways [36]. Mutated p53 has been observed
in almost half of the common human cancers [52], and
in more than 90% of patients with severe ovarian cancer
[53]. A simplified pathway involving TP53, based on logic
in [54], is shown in Fig. 3(b). DNA double-strand break
affects the operation of these pathways, and the Boolean
network modeling of these pathways under this uncer-
tainty has been studied in [53, 54]. The full functional
regulations are shown in Table 2.
Following [36], two scenarios, dna-dsb=0 and dna-

dsb=1, weighted by 0.95 and 0.05, are considered and
the SSD of the normal system is constructed based on
the ergodic Markov chain model of the BNp with the
regulating functions in Table 2 by assuming the pertur-
bation probability 0.01. The SSD for the mutated (can-
cerous) case is constructed by assuming a permanent
down regulation of TP53 in the BNp, and perturbation
probability 0.05. Knowing that dna-dsb is not measur-
able, and to avoid trivial classification situations, the

Table 2 Boolean regulating functions corresponding to the
pathway in Fig. 3(b) [54]. In the Boolean functions
{AND, OR, NOT} = {∧,∨,−}
Gene Node name Boolean regulating function

dna − dsb v1 Extracellular signal

ATM v2 v4 ∧ (v2 ∨ v1)

P53 v3 v5 ∧ (v2 ∨ v4)

Wip1 v4 v3

Mdm2 v5 v2 ∧ (v3 ∨ v4)

SSDs are marginalized to a subset of three entities x =
[ ATM,Wip1,Mdm2]. The state space size in this case is
23 = 8. The true parameters for each class are the final
class-conditional steady-state bin probabilities, p0 and p1
for the normal and mutated systems, respectively, which
are used for data generation.

Extracting general constraints from regulating functions
If knowledge of the regulating functions exists, it
can be used in the general constraint framework
of the MKDIP, i.e. it can be used to constrain the
conditional probabilities. In other words, the knowl-
edge about the regulating function of gene i can
be used to set εi(k1, . . . , ki−1, ki+1, . . . , km), and
akii (k1, . . . , ki−1, ki+1, . . . , km) in the general form of con-
straints in (15). If the true regulating function of gene i is
known, and it is not context sensitive, then the conditional
probability of its status, akii (k1, . . . , ki−1, ki+1, . . . , km), is
known for sure, and δi(k1, . . . , ki−1, ki+1, . . . , km) = 0. But
in reality, the true regulating functions are not known,
and are also context sensitive. The dependence on the
context translates into δi(k1, . . . , ki−1, ki+1, . . . , km) being
greater than zero. The greater the context effect on the
gene status, the larger δi is. Moreover, the uncertainty
over the regulating function is captured by the slackness
variables εi(k1, . . . , ki−1, ki+1, . . . , km) in Eq. (15). In other
words, the uncertainty is translated to the possible range
of the slackness variable values in the prior construction
optimization framework. The higher the uncertainty
is, the greater the range should be in the optimization
framework. In fact, slackness variables make the whole
constraint framework consistent, even for cases where
the conditional probability constraints imposed by prior
knowledge are not completely in line with each other, and
guarantee the existence of a solution.
As an example, for the classification problems of the

mammalian cell-cycle network and the TP53 network,
assuming the regulating functions in Tables 1 and 2
are the true regulating functions, the context effect can
be observed in the dependence of the output of the
Boolean regulating functions in the tables on the extracel-
lular signals, non-measurable entities, and the genes that
have been marginalized out in our setup. In the absence
of quantitative knowledge about the context effect, i.e.
akii (k1, . . . , ki−1, ki+1, . . . , km) for all possible setups of the
regulator values, one can impose only those with such
knowledge. For example, in the mammalian cell-cycle net-
work, CycB’s regulating function only depends on the
values included in the observed feature set; therefore the
conditional probabilities are known for all regulator value
setups. But for CycE the regulating function depends on
Rb, which is marginalized out in our feature set, and also
itself depends on an extracellular signal. Hence, the con-
ditional probability constraints for CycE are known only
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for the setup of the features that determine the output of
the Boolean regulating function independent of the other
regulator values.
In our comparison analysis, akii (k1, . . . , ki−1, ki+1, . . . ,

km) for each gene/protein in Eq. (15) is set to one for the
feature value setups that determine the Boolean regulating
output regardless of the context. But since the observed
data are not fully described by these functions, and the
system has uncertainty, we let the possible range for the
slackness variables in Eq. (15) be [ 0, 1).
We now continue the examples on two of the mam-

malian cell-cycle network nodes, CycB and CycE. For
CycB the following constraints on the prior distribution
are extracted from its regulating function:

Ep[P(v10 = 0|v8 = 1)]≥ 1 − ε1

Ep[P(v10 = 0|v7 = 1)]≥ 1 − ε2

Ep[P(v10 = 1|v7 = 0, v8 = 0)]≥ 1 − ε3.

For CycE, one of its regulators is Rb (v2), which is not
included in the feature set, i.e. not observed, but is known
to be down-regulated in the mutated (cancerous) case.
Thus, the set of constraints extracted from the regulating
function of CycE for the normal case includes only

Ep[P(v4 = 0|v3 = 0)]≥ 1 − ε1

and for the mutated case consists of

Ep[P(v4 = 0|v3 = 0)]≥ 1 − ε1

Ep[P(v4 = 1|v3 = 1)]≥ 1 − ε2.

As another example, for the TP53 network, the set
of constraints extracted from the regulating functions in
Table 2 for the normal case are shown in the left panel of
Table 3.
The first and second constraints for MKDIP in the left

panel of Table 3 come from the regulating function of v2 in
Table 2. Although v1 is an extracellular signal, the value of
v4 imposes two constraints on the value of v2. But the reg-
ulating function of v4 in Table 2 only depends on v3, which
is not included in our feature set, so we have no imposed

constraints on the conditional probability from its regu-
lating function. The other two constraints for MKDIP in
the left panel of Table 3 are extracted from the regulat-
ing function of v5 in Table 2. Although v3 is not included
in the observed features, for two setups of its regulators,
(v2 = 1) and (v2 = 0, v4 = 1), the value of v5 can be
determined, so the constraint is imposed on the prior dis-
tribution from the regulating function. For comparison,
the constraints extracted from the pathway in Fig. 3(b)
based on the method of [36] are provided in the right
panel of Table 3.

Performance comparison in classification setup
For both the mammalian cell cycle and TP53 problems,
the performance of 11 methods are compared for classi-
fication performance. OBC with the Jeffreys’ prior, OBC
with our previous prior construction methods in [36]
(RMEP, RMDIP, REMLP), OBCwith our proposed general
framework of constraints (MKDIP-E, MKDIP-D,MKDIP-
R), and also well known methods including Histogram
rule (Hist), CART [55], Random Forest (RF)[56], and
Support Vector Machine classification (SVM) [57, 58].
Also, for all the Bayesian methods using OBC, the pos-
terior mean of the parameters’ distance from the true
parameters is calculated and compared. The samples from
the true distributions are stratified fixing two different
class prior probabilities. Following [36], we assume that
maxi p

y,true
i , for y ∈ {0, 1}, is known within a +/ −

5% interval (can come from existing population statis-
tics in practice). Two simulation scenarios are performed:
one assuming the complete knowledge of the optimal
precision factors [36] α

y
0 = ∑b

i=1 α
y
i , y ∈ {0, 1} for

prior construction methods (oracle precision factor); and
the other estimating the optimal precision factor from
the observed data itself. Two class prior probabilities,
c = 0.6 and c = 0.5, are considered. Along with the
true class-conditional SSDs of the two classes, the cor-
responding Bayes error corresponds to the best perfor-
mance that any classification rule for that classification
problem (feature-label distribution) can yield. Fixing c
and the true class-conditional bin probabilities, n sample

Table 3 The set of constraints extracted from the regulating functions and pathways for the TP53 network. Constraints extracted from
the Boolean regulating functions in Table 2 corresponding to the pathway in Fig. 3(b) used in MKDIP-E, MKDIP-D, MKDIP-R (left).
Constraints extracted based on [36] from the pathway in Fig. 3(b) used in RMEP, RMDIP, REMLP (right)

(a) MKDIP Constraints (b) Constraints in Methods of [36]

Node Constraint Node Constraint

v2 Ep[ P(v2 = 0|v4 = 1)]≥ 1 − ε1 v2 Ep[ P(v2 = 0|v4 = 1)]≥ 1 − ε1

v2 Ep[ P(v2 = 1|v4 = 0)]≥ 1 − ε2 v5 Ep[ P(v5 = 1|v2 = 0, v4 = 1)]≥ 1 − ε2

v5 Ep[ P(v5 = 0|v2 = 1)]≥ 1 − ε3

v5 Ep[ P(v5 = 1|v2 = 0, v4 = 1)]≥ 1 − ε4
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points by stratified sampling (n0 = �cn� sample points
from class 0 and n1 = n − n0 sample points from
class 1) are taken for prior construction (if used by the
method), classifier training, and posterior distribution
calculations. Then the designed classifier’s true classifi-
cation error is calculated for all classification methods.
The posterior mean of parameter distance from the true
parameter (true steady-state bin probabilities vector) is
calculated based on

∑1
y=0 ||αy∗/αy∗

0 − py||2, where αy∗
and py represent the parameters of the posterior dis-
tribution and true bin probabilities vector for class y,
respectively. For each fixed c and n, 800 Monte Carlo rep-
etitions are done to calculate the expected classification
errors and posterior distances from the true parameters
for each parameter setup. For REMLP and MKDIP-R,
which use a fraction of data in their prior construction
procedure, 10 data points from each class are used for
prior construction, and all for the inference and poste-
rior calculation (here the number of data points used for
prior construction is not fine-tuned, but a small num-
ber is chosen to avoid overfitting). The overall procedure
taken for a fixed classification problem and a fixed sam-
ple size (fixed n) in each Monte Carlo repetition is as
follows:

• The true bin probabilities p0 and p1 are fixed.
• n0 and n1 are determined using c as n0 = �cn� and

n − n0.
• Observations (training data) are randomly sampled

from the multinomial distribution for each class, i.e.
(Uy

1, . . . ,U
y
b) ∼ Mult(py; ny), for y ∈ {0, 1}.

• 10 data points are randomly taken from the training
data points of each class to be used in the prior
construction methods that utilize partial data
(REMLP and MKDIP-R)

• All the classification rules are trained based on their
constructed prior (if applicable to that classification
rule) and the training data.

• The classification errors associated with the
classifiers are computed using p0 and p1. Also for the
Bayesian methods, the posterior probability mass
(mean) distance from the true parameters (true bin
probabilities, p0 and p1) is calculated.

The regularization parameter λ1 is set to 0.5, and λ2
is set to 0.25 and 0.5 for the mammalian cell cycle
classification problem and the TP53 classification prob-
lem, respectively. The results of expected classification
error and posterior mean distance from the true param-
eters for the mammalian cell-cycle network are shown
in Tables 4 and 6, respectively. Tables 5 and 7 contain
the results of expected classification error and poste-
rior mean distance from the true parameters for the
TP53 network.

The best performance (with the lowest error in Tables 4
and 5, and lowest distance in Tables 6 and 7) for each sam-
ple size, are written in bold. For the mammalian cell-cycle
network, MKDIP methods show the best (or as good as
the best) performance in all the scenarios in terms of both
the expected classification error and posterior parameter
estimates. For the TP53 network, MKDIP methods show
the best performances in posterior parameter estimates,
and are competitive with the previous knowledge-driven
prior construction methods in terms of the expected clas-
sification error.

Performance comparison in mixture setup
The performance of the OBC with different prior con-
struction methods, including OBC with the Jeffreys’ prior,
OBC with prior constructions methods of [36] (RMEP,
RMDIP, REMLP), and OBC with the general framework
of constraints (MKDIP-E, MKDIP-D, MKDIP-R), are fur-
ther compared in the mixture setup with missing labels,
for both the mammalian cell-cycle and the TP53 sys-
tems. Also, the OBC with prior distribution centered on
the true parameters with a relatively low variance (here-
inafter abbreviated as PDCOTP method in Tables 8 and
9) is considered as the comparison baseline, though it is
not a practical method. Similar to the classification prob-
lems, we assume that only two components (classes) exist,
normal and mutated (cancerous). Here, c0 is fixed at 0.6
(c1 = 1 − c0 = 0.4), but the sampling is not strati-
fied. The component-conditional SSDs (bin probabilities)
for the two components are as before in the classification
problem, i.e. the same as the class-conditional SSDs in the
classification problem.
For each sample point, first the label (y) is generated

from a Bernoulli distribution with success probability
c1, and then the bin observation is generated given the
label, from the corresponding class-conditional SSD (class
conditional bin probabilities vector, py), i.e. the bin obser-
vation is a sample from a categorical distribution with
parameter vector py but the label is hidden for the infer-
ence chain and classifier training. n sample points are
generated and fed into the Gibbs inference chain with dif-
ferent priors from the different prior construction meth-
ods. Then the OBC is calculated based on Eq. 9. For each
sample size, 400 Monte Carlo repetitions are done to cal-
culate the expected true error and the error of classifying
the unlabeled observed data used for the inference itself.
To have a fair comparison of different methods’ class-

conditional prior probability construction, we assume that
we have a rough idea of the mixture weights (class prob-
abilities). In practice this can come from existing popu-
lation statistics. That is, the Dirichlet prior distribution
over the mixture weights (class probabilities) parameters,
φ in D(φ), are sampled in each iteration from a uniform
distribution that is centered on the true mixture weights
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Table 4 Expected true error of different classification rules for the mammalian cell-cycle network. The constructed priors are
considered using two precision factors: optimal precision factor (left) and estimated precision factor (right), with c = 0.5, and c = 0.6,
where the minimum achievable error (Bayes error) is denoted by ErrBayes

(a) c = 0.5, optimal precision factor,ErrBayes = 0.2648 (b) c = 0.5, estimated precision factor, ErrBayes = 0.2648

Method/ n 30 60 90 120 150 Method/ n 30 60 90 120 150

Hist 0.3710 0.3423 0.3255 0.3155 0.3081 Hist 0.3710 0.3423 0.3255 0.3155 0.3081

CART 0.3326 0.3195 0.3057 0.3031 0.2975 CART 0.3326 0.3195 0.3057 0.3031 0.2975

RF 0.3359 0.3160 0.3015 0.2991 0.2933 RF 0.3359 0.3160 0.3015 0.2991 0.2933

SVM 0.3359 0.3112 0.2977 0.2959 0.2940 SVM 0.3359 0.3112 0.2977 0.2959 0.2940

Jeffreys’ 0.3710 0.3423 0.3255 0.3155 0.3081 Jeffreys’ 0.3710 0.3423 0.3255 0.3155 0.3081

RMEP 0.3236 0.3070 0.3010 0.2946 0.2910 RMEP 0.3315 0.3059 0.2985 0.2963 0.2930

RMDIP 0.3236 0.3070 0.3010 0.2946 0.2910 RMDIP 0.3314 0.3060 0.2986 0.2965 0.2931

REMLP 0.3425 0.3264 0.3146 0.3067 0.3011 REMLP 0.3488 0.3352 0.3202 0.3101 0.3048

MKDIP-E 0.3221 0.3070 0.3010 0.2949 0.2910 MKDIP-E 0.3313 0.3056 0.2982 0.2962 0.2929

MKDIP-D 0.3232 0.3070 0.3010 0.2952 0.2910 MKDIP-D 0.3315 0.3061 0.2986 0.2965 0.2931

MKDIP-R 0.3149 0.3028 0.2985 0.2943 0.2907 MKDIP-R 0.3205 0.3041 0.2969 0.2947 0.2919

(c) c = 0.6, optimal precision factor, ErrBayes = 0.31 (d) c = 0.6, estimated precision factor, ErrBayes = 0.31

Method/ n 30 60 90 120 150 Method/ n 30 60 90 120 150

Hist 0.3622 0.3608 0.3624 0.3641 0.3652 Hist 0.3622 0.3608 0.3624 0.3641 0.3652

CART 0.3554 0.3556 0.3507 0.3510 0.3447 CART 0.3554 0.3556 0.3507 0.3510 0.3447

RF 0.3524 0.3514 0.3467 0.3476 0.3420 RF 0.3524 0.3514 0.3467 0.3476 0.3420

SVM 0.3735 0.3684 0.3615 0.3602 0.3544 SVM 0.3735 0.3684 0.3615 0.3602 0.3544

Jeffreys’ 0.3620 0.3559 0.3519 0.3502 0.3472 Jeffreys’ 0.3620 0.3559 0.3519 0.3502 0.3472

RMEP 0.3415 0.3385 0.3394 0.3390 0.3386 RMEP 0.3528 0.3415 0.3407 0.3388 0.3378

RMDIP 0.3415 0.3383 0.3394 0.3390 0.3386 RMDIP 0.3529 0.3415 0.3408 0.3388 0.3378

REMLP 0.3666 0.3625 0.3587 0.3558 0.3530 REMLP 0.3700 0.3650 0.3603 0.3578 0.3546

MKDIP-E 0.3415 0.3384 0.3394 0.3390 0.3386 MKDIP-E 0.3525 0.3413 0.3405 0.3387 0.3377

MKDIP-D 0.3415 0.3386 0.3394 0.3390 0.3386 MKDIP-D 0.3532 0.3418 0.3409 0.3389 0.3379

MKDIP-R 0.3437 0.3409 0.3404 0.3401 0.3389 MKDIP-R 0.3486 0.3416 0.3416 0.3402 0.3387

The lowest error for each sample size is written in bold

vector +/ − 10% interval, and fixed for all the methods
in that repetition. For the REMLP and MKDIP-R that
need labeled data in their prior construction procedure,
the predicted labels from using the Jeffreys’ prior are used
and one fourth of the data points are used in prior con-
struction for these two methods, and all for inference.
The reason for using a larger number of data points in
prior construction within the mixture setup compared to
the classification setup is that in the mixture setup, data
points are missing their true class labels, and the initial
label estimates may be inaccurate. One can use a relatively
larger number of data points in prior construction, which
still avoids overfitting. The regularization parameters λ1
and λ2 are set as in the classification problem. Optimal
precision factors are used for all prior construction meth-
ods. The results are shown in Tables 8 and 9 for the

mammalian cell-cycle and TP53 models, respectively. The
best performance (lowest error) for each sample size and
the best performance among practical methods (all other
than PDCOTP), if different, is written in bold. As can be
seen from the tables, in most cases the MKDIP methods
have the best performance among the practical methods.
With larger sample sizes, MKDIP-R even outperforms
PDCOTP in the mammalian cell-cycle system.

Performance comparison on a real data set
In this section the performance of the proposed methods
are examined on a publicly available gene expression
dataset. Here, we have considered the classification of
two subtypes of non-small cell lung cancer (NSCLC),
lung adenocarcinoma (LUA) versus lung squamous cell
carcinoma (LUS). Lung cancer is the second most
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Table 5 Expected true error of different classification rules for the TP53 network. The constructed priors are considered using two
precision factors: optimal precision factor (left) and estimated precision factor (right), with c = 0.5, and c = 0.6, where the minimum
achievable error (Bayes error) is denoted by ErrBayes

(a) c = 0.5, optimal precision factor,ErrBayes = 0.3146 (b) c = 0.5, estimated precision factor, ErrBayes = 0.3146

Method/ n 15 30 45 60 75 Method/ n 15 30 45 60 75

Hist 0.3586 0.3439 0.3337 0.3321 0.3296 Hist 0.3586 0.3439 0.3337 0.3321 0.3296

CART 0.3633 0.3492 0.3350 0.3314 0.3295 CART 0.3633 0.3492 0.3350 0.3314 0.3295

RF 0.3791 0.3574 0.3461 0.3400 0.3362 RF 0.3791 0.3574 0.3461 0.3400 0.3362

SVM 0.3902 0.3481 0.3433 0.3324 0.3322 SVM 0.3902 0.3481 0.3433 0.3324 0.3322

Jeffreys’ 0.3809 0.3439 0.3457 0.3321 0.3334 Jeffreys’ 0.3809 0.3439 0.3457 0.3321 0.3334

RMEP 0.3399 0.3392 0.3360 0.3315 0.3328 RMEP 0.3791 0.3489 0.3377 0.3329 0.3302

RMDIP 0.3399 0.3392 0.3360 0.3315 0.3328 RMDIP 0.3789 0.3490 0.3378 0.3329 0.3302

REMLP 0.3405 0.3340 0.3320 0.3292 0.3287 REMLP 0.3417 0.3372 0.3350 0.3318 0.3292

MKDIP-E 0.3397 0.3398 0.3351 0.3306 0.3297 MKDIP-E 0.3675 0.3470 0.3373 0.3326 0.3298

MKDIP-D 0.3397 0.3398 0.3347 0.3306 0.3297 MKDIP-D 0.3668 0.3472 0.3374 0.3327 0.3298

MKDIP-R 0.3435 0.3354 0.3321 0.3295 0.3283 MKDIP-R 0.3471 0.3402 0.3349 0.3316 0.3287

(c) c = 0.6, optimal precision factor, ErrBayes = 0.2691 (d) c = 0.6, estimated precision factor, ErrBayes = 0.2691

Method/ n 15 30 45 60 75 Method/ n 15 30 45 60 75

Hist 0.3081 0.2965 0.2906 0.2883 0.2846 Hist 0.3081 0.2965 0.2906 0.2883 0.2846

CART 0.3173 0.2988 0.2882 0.2846 0.2796 CART 0.3173 0.2988 0.2882 0.2846 0.2796

RF 0.3333 0.3035 0.2946 0.2850 0.2842 RF 0.3333 0.3035 0.2946 0.2850 0.2842

SVM 0.3322 0.3091 0.2991 0.2926 0.2857 SVM 0.3322 0.3091 0.2991 0.2926 0.2857

Jeffreys’ 0.3105 0.2936 0.2860 0.2828 0.2819 Jeffreys’ 0.3105 0.2936 0.2860 0.2828 0.2819

RMEP 0.2924 0.2922 0.2847 0.2843 0.2835 RMEP 0.3346 0.3024 0.2894 0.2860 0.2823

RMDIP 0.2924 0.2922 0.2847 0.2843 0.2835 RMDIP 0.3344 0.3023 0.2895 0.2858 0.2823

REMLP 0.3003 0.2908 0.2869 0.2839 0.2832 REMLP 0.3054 0.2930 0.2910 0.2870 0.2850

MKDIP-E 0.2924 0.2909 0.2837 0.2851 0.2837 MKDIP-E 0.3341 0.3025 0.2898 0.2864 0.2822

MKDIP-D 0.2924 0.2909 0.2837 0.2851 0.2837 MKDIP-D 0.3347 0.3024 0.2898 0.2862 0.2822

MKDIP-R 0.3032 0.2917 0.2868 0.2843 0.2825 MKDIP-R 0.3096 0.2981 0.2910 0.2869 0.2849

The lowest error for each sample size is written in bold

commonly diagnosed cancer and the leading cause of can-
cer death in both men and women in the United States
[59]. About 84% of lung cancers are NSCLC [59] and
LUA and LUS combined account for about 70% of lung
cancers based on the American Cancer Society statistics
for NSCLC. We have downloaded LUA and LUS datasets
(both labeled as TCGA provisional) in the form of mRNA
expression z-scores (based on RNA-Seq profiling) from
the public database cBioPortal [60, 61] for the patient sets
tagged as “All Complete Tumors", denoting the set of all
tumor samples that have mRNA and sequencing data.
The two datasets for LUA and LUS consist of 230 and
177 sample points, respectively. We have quantized the
data into binary levels based on the following preprocess-
ing steps. First, to remove the bias for each patient, each
patient’s data are normalized by the mean of the z-scores

of a randomly selected subset from the list of the recur-
rently mutated genes (half the size of the list) from the
MutSig [62] (directly provided by cBioPortal). Then, a two
component Gaussian mixture model is fit to each gene in
each data set, and the normalized data are quantized by
being assigned to one component, namely 0 or 1 (1 being
the component with higher mean). We confine the feature
set to {EGFR,PIK3CA,AKT,KRAS,RAF1,BAD,P53,BCL2}
which are among the genes in the most relevant signal-
ing pathways to the NSCLC [63]. These genes are altered,
in different forms, in 86% and 89% of the sequenced LUA
and LUS tumor samples on the cBioPortal, respectively.
There are 256 bins in this classification setting, since
the feature set consists of 8 genes. The pathways rele-
vant to the NSCLC classification problem considered here
are collected from KEGG [64, 65] Pathways for NSCLC
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Table 6 Expected difference between the true model (for mammalian cell-cycle network) and estimated posterior probability masses.
Optimal precision factor (left) and estimated precision factor (right), with c = 0.5, and c = 0.6

(a) c = 0.5, optimal precision factor (b) c = 0.5, estimated precision factor

Method/ n 30 60 90 120 150 Method/ n 30 60 90 120 150

Jeffreys’ 0.2155 0.1578 0.1300 0.1134 0.1010 Jeffreys’ 0.2155 0.1578 0.1300 0.1134 0.1010

RMEP 0.1591 0.1293 0.1126 0.1020 0.0912 RMEP 0.1761 0.1381 0.1177 0.1032 0.0943

RMDIP 0.1591 0.1294 0.1126 0.1020 0.0912 RMDIP 0.1761 0.1381 0.1177 0.1032 0.0943

REMLP 0.1863 0.1436 0.1225 0.1088 0.0970 REMLP 0.2060 0.1607 0.1315 0.1120 0.1019

MKDIP-E 0.1589 0.1293 0.1126 0.1019 0.0911 MKDIP-E 0.1760 0.1381 0.1177 0.1031 0.0943

MKDIP-D 0.1591 0.1293 0.1126 0.1020 0.0912 MKDIP-D 0.1761 0.1381 0.1177 0.1032 0.0943

MKDIP-R 0.1563 0.1283 0.1118 0.1012 0.0907 MKDIP-R 0.1742 0.1392 0.1184 0.1036 0.0949

(c) c = 0.6, optimal precision factor (d) c = 0.6, estimated precision factor

Method/ n 30 60 90 120 150 Method/ n 30 60 90 120 150

Jeffreys’ 0.2183 0.1595 0.1322 0.1146 0.1027 Jeffreys’ 0.2183 0.1595 0.1322 0.1146 0.1027

RMEP 0.1628 0.1332 0.1154 0.1039 0.0946 RMEP 0.1805 0.1408 0.1201 0.1061 0.0961

RMDIP 0.1628 0.1333 0.1154 0.1039 0.0947 RMDIP 0.1805 0.1408 0.1201 0.1061 0.0961

REMLP 0.1867 0.1471 0.1247 0.1101 0.0990 REMLP 0.2065 0.1635 0.1346 0.1166 0.1036

MKDIP-E 0.1627 0.1332 0.1154 0.1038 0.0946 MKDIP-E 0.1804 0.1408 0.1200 0.1061 0.0961

MKDIP-D 0.1628 0.1332 0.1154 0.1039 0.0946 MKDIP-D 0.1805 0.1408 0.1201 0.1061 0.0961

MKDIP-R 0.1598 0.1317 0.1144 0.1032 0.0940 MKDIP-R 0.1814 0.1421 0.1207 0.1065 0.0965

The lowest distance for each sample size is written in bold

Table 7 Expected difference between the true model (for TP53 network) and estimated posterior probability masses. Optimal
precision factor (left) and estimated precision factor (right), with c = 0.5, and c = 0.6

(a) c = 0.5, optimal precision factor (b) c = 0.5, estimated precision factor

Method/ n 15 30 45 60 75 Method/ n 15 30 45 60 75

Jeffreys’ 0.2285 0.1716 0.1429 0.1242 0.1114 Jeffreys’ 0.2285 0.1716 0.1429 0.1242 0.1114

RMEP 0.1427 0.1165 0.1051 0.0934 0.0880 RMEP 0.2218 0.1578 0.1280 0.1095 0.0981

RMDIP 0.1424 0.1163 0.1048 0.0932 0.0878 RMDIP 0.2217 0.1575 0.1281 0.1094 0.0981

REMLP 0.1698 0.1337 0.1199 0.1091 0.0985 REMLP 0.1845 0.1505 0.1366 0.1235 0.1133

MKDIP-E 0.1412 0.1161 0.1050 0.0933 0.0880 MKDIP-E 0.2149 0.1565 0.1282 0.1096 0.0981

MKDIP-D 0.1407 0.1158 0.1047 0.0931 0.0878 MKDIP-D 0.2149 0.1564 0.1281 0.1096 0.0981

MKDIP-R 0.1564 0.1247 0.1118 0.1031 0.0930 MKDIP-R 0.1733 0.1410 0.1281 0.1171 0.1082

(c) c = 0.6, optimal precision factor (d) c = 0.6, estimated precision factor

Method/ n 15 30 45 60 75 Method/ n 15 30 45 60 75

Jeffreys’ 0.2319 0.1723 0.1438 0.1262 0.1137 Jeffreys’ 0.2319 0.1723 0.1438 0.1262 0.1137

RMEP 0.1476 0.1222 0.1090 0.0987 0.0923 RMEP 0.2182 0.1599 0.1304 0.1144 0.1032

RMDIP 0.1474 0.1220 0.1087 0.0985 0.0921 RMDIP 0.2179 0.1597 0.1303 0.1144 0.1031

REMLP 0.1751 0.1332 0.1192 0.1077 0.0980 REMLP 0.1937 0.1522 0.1363 0.1235 0.1144

MKDIP-E 0.1457 0.1215 0.1086 0.0985 0.0922 MKDIP-E 0.2165 0.1586 0.1304 0.1147 0.1036

MKDIP-D 0.1452 0.1211 0.1084 0.0983 0.0920 MKDIP-D 0.2164 0.1585 0.1303 0.1147 0.1035

MKDIP-R 0.1574 0.1217 0.1093 0.1010 0.0926 MKDIP-R 0.1758 0.1418 0.1274 0.1158 0.1086

The lowest distance for each sample size is written in bold
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Table 8 Expected errors of different Bayesian classification rules in the mixture model for the mammalian cell-cycle network. Expected
true error (left) and expected error on unlabeled training data (right), with c0 = 0.6

Method/ n 30 60 90 120 150 Method/ n 30 60 90 120 150

PDCOTP 0.3216 0.3246 0.3280 0.3309 0.3334 PDCOTP 0.3236 0.3270 0.3314 0.3355 0.3339

Jeffreys’ 0.4709 0.4743 0.4704 0.4675 0.4654 Jeffreys’ 0.4751 0.4621 0.4681 0.4700 0.4645

RMEP 0.3417 0.3340 0.3307 0.3300 0.3299 RMEP 0.3447 0.3409 0.3366 0.3323 0.3316

RMDIP 0.3408 0.3336 0.3300 0.3305 0.3301 RMDIP 0.3442 0.3404 0.3342 0.3344 0.3343

REMLP 0.3754 0.3835 0.3882 0.3857 0.3844 REMLP 0.3748 0.3821 0.3908 0.3826 0.3812

MKDIP-E 0.3411 0.3341 0.3297 0.3297 0.3306 MKDIP-E 0.3457 0.3386 0.3351 0.3312 0.3320

MKDIP-D 0.3407 0.3330 0.3306 0.3304 0.3303 MKDIP-D 0.3482 0.3387 0.3381 0.3342 0.3334

MKDIP-R 0.3457 0.3342 0.3299 0.3286 0.3289 MKDIP-R 0.3449 0.3343 0.3330 0.3306 0.3275

The lowest error for each sample size and the lowest error among practical methods is written in bold

and PI3K-AKT signaling pathways, and also from [63], as
shown in Fig. 4. The corresponding regulating functions
are shown in Table 10.
The informative prior construction methods utilize the

knowledge in the pathways in Fig. 4, and the MKDIP
methods also use the regulating relationships in Table 10
in order to construct prior distributions. The incidence
rate of the two subtypes, LUA and LUS, varies based
on demographic factors. Here, we approximate the class
probability c = P(Y = LUA) as c ≈ 0.57, based on
the latest statistics of the American Cancer Society for
NSCLC, and also based on a weighted average of the rates
for 11 countries given in [66]. In each Monte Carlo rep-
etition, n sample points by stratified sampling, i.e. n0 =
�cn� and n1 = n − n0 sample points, are randomly
taken from preprocessed LUA (class 0) and LUS (class
1) datasets, respectively, for prior construction (if used
by the method) and classifier training, and the rest of
the sample points are held out for error estimation. For
each n, 400 Monte Carlo repetitions are done to calculate
the expected classification error. In the prior construc-
tion methods, first the optimization is solved for both
classes with the precision factors α

y
0 = 200, y ∈ {0, 1},

and then their optimal values are estimated using the

training points. For REMLP and MKDIP-R, which use a
fraction of the training data in their prior construction
procedure, min

(
20,max(6, �0.25ny�)

)
sample points from

the training data of each class (y ∈ {0, 1}) are used for
prior construction, and all the training data are used for
inference. The regularization parameters λ1 and λ2 are
set to 0.5 and 0.25, respectively. The results are shown
in Table 11. In the table, the best performance among
Hist, CART, RF and SVM is shown as Best Non Bayesian
method. Best RM represents the best performance among
RMEP, RMDIP, and REMLP. BestMKDIP denotes the best
performance among the MKDIP methods.
The best performing rule for each sample size is writ-

ten in bold. As can be seen from the table, OBC with
MKDIP prior construction methods has the best per-
formance among the classification rules. It is also clear
that the classification performance can be significantly
improved when pathway prior knowledge is integrated
for constructing prior probabilities, especially when the
sample size is small.

Implementation remarks
The results presented in this paper are based on Monte
Carlo simulations, where thousands of optimization

Table 9 Expected errors of different Bayesian classification rules in the mixture model for the TP53 network. Expected true error (left)
and expected error on unlabeled training data (right), with c0 = 0.6

Method/ n 15 30 45 60 75 Method/ n 15 30 45 60 75

PDCOTP 0.2746 0.2824 0.2829 0.2996 0.2960 PDCOTP 0.2762 0.2818 0.2900 0.3027 0.2900

Jeffreys’ 0.4204 0.4324 0.4335 0.4432 0.4361 Jeffreys’ 0.4220 0.4314 0.4381 0.4419 0.4348

RMEP 0.3274 0.3204 0.3327 0.3402 0.3422 RMEP 0.3471 0.3350 0.3487 0.3543 0.3529

RMDIP 0.3297 0.3260 0.3327 0.3406 0.3432 RMDIP 0.3504 0.3423 0.3496 0.3551 0.3545

REMLP 0.3637 0.3687 0.3706 0.3658 0.3653 REMLP 0.3489 0.3579 0.3709 0.3593 0.3556

MKDIP-E 0.3312 0.3246 0.3322 0.3428 0.3386 MKDIP-E 0.3502 0.3378 0.3486 0.3585 0.3492

MKDIP-D 0.3321 0.3204 0.3306 0.3436 0.3366 MKDIP-D 0.3551 0.3329 0.3473 0.3570 0.3475

MKDIP-R 0.3872 0.3749 0.3667 0.3607 0.3586 MKDIP-R 0.3613 0.3583 0.3589 0.3539 0.3462

The lowest error for each sample size and the lowest error among practical methods is written in bold
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Table 10 Regulating functions corresponding to the signaling
pathways in Fig. 4. In the Boolean functions
{AND, OR, NOT} = {∧,∨,−}
Gene Node name Boolean regulating function

EGFR v1 -

PIK3CA v2 v1 ∨ v4

AKT v3 v2

KRAS v4 -

RAF1 v5 v4 ∧ v3

BAD v6 v3

P53 v7 -

BCL2 v8 v6 ∨ v7

problems are solved for each sample size for each prob-
lem. Thus, the regularization parameters and the number
of sample points used in prior construction are prese-
lected for each problem. One can use cross validation
to set these parameters in a specific application. It has
been shown in [36] that by assuming precision factors
greater than 1 (αy

0 > 1, y ∈ {0, 1}), all three objective
functions used are convex for the class of Dirichlet prior
probabilities for multinomial likelihood functions. But
unfortunately, we cannot guarantee the convexity of the
feasible space due to the convolved constraints. Therefore,
we have employed algorithms for nonconvex optimiza-
tion problems and there is no guarantee of convergence
to the global optimum. The method used for solving the
optimization framework of the prior construction is based
on the interior-point algorithm for nonlinear constrained
optimization [67, 68] implemented in the fmincon func-
tion in MATLAB. In this paper, since the interest is in
classification problems with small training sample sizes
(which is often the case in bioinformatics) and also due
to Monte Carlo simulations, we have only shown perfor-
mance results on small networks with only a few genes. In
practice, there would be no problem using the proposed
method for larger networks, since there would then be a
single one-time analysis. One should also note that with
small sample sizes, one needs feature selection to keep the
number of features small. In the experiments in this paper,
feature selection is automatically done by focusing on the
most relevant network by biological prior knowledge.

Conclusion
Bayesian methods have shown promising performance
in classification problems in the presence of uncertainty
and small sample sizes, which often occur in transla-
tional genomics problems. The impediment in using these
methods is prior construction to integrate existing prior
biological knowledge. In this paper we have proposed
a knowledge-driven prior construction method with a

Fig. 4 Signaling pathways corresponding to NSCLC classification. The
pathways are collected from KEGG Pathways for NSCLC and PI3K-AKT
pathways, and from [63]
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Table 11 Expected error of different classification rules
calculated on a real dataset. The classification is between LUA
(class 0) and LUS (class 1), with c = 0.57

Method/ n 34 74 114 134 174

Best Non Bayesian 0.1764 0.1574 0.1473 0.1426 0.1371

Jeffreys’ 0.1766 0.1574 0.1476 0.1425 0.1371

Best RM 0.1426 0.1289 0.1164 0.1083 0.1000

Best MKDIP 0.1401 0.1273 0.1162 0.1075 0.0998

general framework of mapping prior biological knowl-
edge into a set of constraints. Knowledge can come from
biological signaling pathways and other population stud-
ies, and be translated into constraints over conditional
probabilities. This general scheme includes the previous
approaches of using biological prior knowledge in prior
construction. Here, the superior performance of this gen-
eral scheme is shown on two important pathway families,
the mammalian cell-cycle pathway and the pathway cen-
tering around TP53. In addition, prior construction and
the OBC are extended to a mixture model, where data
sets are with missing labels. Moreover, comparisons on a
publicly available gene expression dataset show that clas-
sification performance can be significantly improved for
small sample sizes when corresponding pathway prior
knowledge is integrated for constructing prior probabili-
ties.
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