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Abstract

Background: Identification of essential genes is not only useful for our understanding of the minimal gene set
required for cellular life but also aids the identification of novel drug targets in pathogens. In this work, we present a
simple and effective gene essentiality prediction method using information-theoretic features that are derived
exclusively from the gene sequences.

Results: We developed a Random Forest classifier and performed an extensive model performance evaluation
among and within 15 selected bacteria. In intra-organism predictions, where training and testing sets are taken from
the same organism, AUC (Area Under the Curve) scores ranging from 0.73 to 0.90, 0.84 on average, were obtained.
Cross-organism predictions using 5-fold cross-validation, pairwise, leave-one-species-out, leave-one-taxon-out, and
cross-taxon yielded average AUC scores of 0.88, 0.75, 0.80, 0.82, and 0.78, respectively. To further show the applicability
of our method in other domains of life, we predicted the essential genes of the yeast Schizosaccharomyces pombe and
obtained a similar accuracy (AUC 0.84).

Conclusions: The proposed method enables a simple and reliable identification of essential genes without searching
in databases for orthologs and demanding further experimental data such as network topology and gene-expression.
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Background
The subset of genes which are necessary for the viabil-
ity and reproduction of an organism are called essential
genes. Detection of these genes is very crucial for under-
standing the minimal requirements for maintaining life
[1, 2]. Since the disruption or deletion of essential genes of
a pathogen results in the death of the organism, essential
genes can be used as potential drug targets [3, 4]. Fur-
thermore, studies on essential genes are very important in
synthetic biology for re-engineering microorganisms and
creating cells with a minimal genome [5].
Genome-wide systematic or random experimental lab-

oratory procedures such as transposon mutagenesis [6],
single gene knock-out [7, 8], and RNA interference [9]
are used to identify the EGs. Although the experimen-
tal methods are fairly accurate, they are often time-
consuming and expensive. Moreover, gene essentiality
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results of the experimental methods may depend on
growth conditions [10]. To bypass these constraints, var-
ious computational prediction methods have been pro-
posed. The earliest computational methods were based on
comparative genomics in which gene essentiality anno-
tations are transferred among species through homology
mappings [11, 12]. Later on, as the list of genes for
model organisms became available in public databases
(such as DEG [13], CEG [14], and OGEE [15]), researchers
have studied the characteristics and features of essential
genes and deployed machine-learning based prediction
methods.
A wide range of features has been associated with

gene essentiality. The features can be broadly catego-
rized into sequence information (e.g., GC content, pro-
tein length, and codon composition) [16–18], network
topology (e.g., degree centrality and clustering coefficient)
[19–22], homology (e.g., number of paralogs) [17, 23, 24],
gene expression (e.g., mRNA expression level and fluc-
tuations in gene-expression) [22, 25], cellular localiza-
tion (e.g., cytoplasmic score and outer membrane score)
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[22, 26, 27], functional domain (e.g., domain enrich-
ment) [25], and physicochemical property (e.g., molecular
weight and number of moles of amino acids) [26, 27].
Except for the sequence based and sequence derived

features, which can be obtained directly from the DNA
or protein sequences, the others require pre-computed
experimental data. Network topology based features
require the availability or construction of protein-protein
interaction, gene regulatory networks, or metabolic net-
works. Similarly, the gene expression and functional
domain features demand the expression data and a search
in protein domain databases such as PROSITE and PFAM.
Although experimental and genetic network information
is available for the well-studied species, they are not
available for all organisms, especially not for the newly
sequenced and under-studied. Hence, predictors relying
only on sequence information are of special importance.
A number of researchers have proposed sequence-

based essential gene predictors [16–18, 23, 26–29]. Ning
et al. [16] used nucleotide, di-nucleotide, codon, and
amino acid frequencies along with what is known as
CodonW features. The CodonW features, which are
sequence derived, are obtained from a codon usage anal-
ysis software (http://codonw.sourceforge.net). However,
some of the CodonW features are not purely obtainable
from the DNA or protein sequence. For instance, the
Codon Adaptation Index (CAI) is a measure of the rela-
tive adaptability of the codon usage of a gene compared
to the codon usage of highly expressed genes [30]. That
means, one needs to first distinguish the highly expressed
genes in the organism. Due to its effectiveness, the CAI
feature is used by all sequence based predictors. Ning
et al. performed cross-validation experiments consider-
ing 16 bacteria species. The other very effective essential
gene predictor based solely on sequence and sequence-
derived properties is Song et al’s ZUPLS [17]. ZUPLS
uses features from the so-called Z-curve, sequence-based
(e.g., size, CAI, and strand), homology mapping, and
domain enrichment scores. Cross-organism results were
shown using models trained on E. coli and B. subtilis.
Among the sequence based methods, ZUPLUS is the
best method. Although homology and domain informa-
tion are sequence based, they require a priori information
in databases. In 2011, Palaniappan and Palaniappan [26]
presented a predictor based on sequence, pysio-chemical
properties, and cellular localization information. In addi-
tion to predictions of essential genes between organisms
(leave-one-species-out and cross-validation), they showed
results at a higher taxonomic level (leave-one-taxon-out).
Very recently, Liu et al. [27] using similar features to [26]
made an extensive study on 31 bacteria species and pre-
sented self-test, cross-validation, pairwise, and leave-one-
species-out experimental results. Yu et al. [18] and Li et al.
[28] used a different set of features based on fractal and

inter-nucleotide distance sequences. In 2013, a method
called Geptop (gene essentiality prediction tool based on
orthology and phylogeny) [23] was proposed and due to
the high accuracy and the availability of a Web server,
it is the most used computational tool. Geptop identifies
orthologs by the reciprocal best hit method and computes
evolutionary distance between genomes using the Com-
position Vector (CV) method [31]. Then, an essentiality
score is defined and a threshold-based classification is
performed.
Other computational methods which use sequence

information together with network topology and gene
expression include the works of Deng et al. [25] and Cheng
et al. [22, 24]. Deng et al. [25] have used thirteen features.
Along with the sequence dependent features such as pro-
tein length and number of codons, they have used features
related to network topology, gene-expression, homology,
phylogenetics, and protein domain knowledge. A combi-
nation of four machine-learning algorithms (Naïve Bayes,
logistic regression, C4.5 decision tree, and CN2 rule)
were applied. They showed the effective transferability of
essentiality annotations among E. coli, B. subtilis, Acine-
tobacter baylyi, and Pseudomonas aeruginosa. Cheng
et al. [22] proposed a novel computational method which
is based on Naive Bayes classifier, logistic regression,
and a genetic algorithm. They have used a combina-
tion of network topology, gene expression, and sequence-
related features and reciprocally predicted essential genes
among 21 species. To our knowledge, Cheng et al.’s
predictor is the best, in terms of higher prediction
accuracy.
In a previous work [32], we proposed a support vector

machine (SVM) based predictor using information-
theoretic features and relying only on sequence infor-
mation and showed that decent results can be obtained.
However, most of the analysis was limited to very few
commonly used bacteria. The information-theoretic fea-
tures are entropy (Shannon and Gibbs), mutual infor-
mation (MI), conditional mutual information (CMI), and
Markov model based. These quantities measure the struc-
tural and organizational properties in the DNA sequences.
The entropy computations will highlight the degree of
randomness and thermodynamic stability of the genes.
In [33], we have analyzed the application and implica-
tion of Shannon andGibbs entropies in bacterial genomes.
MI has been extensively used in various computational
biology and bioinformatics applications. For instance, MI
profiles were used as genomic signatures to reveal phy-
logenetic relationships between genomic sequences [34],
as a metric of phylogenetic profile similarity [35], and for
identification of single nucleotide polymorphisms (SNPs)
[36]. Hence, MI and CMI features make use of sequence
organization and dependencies and capture the differ-
ences between essential and non-essential genes. The
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Markov features are selected for measuring statistical
dependencies.
In the present work, in addition to the information-

theoretic features used in [32], Kullback-Leibler
divergence (KLD) between the distribution of k-mers
(k = 1, 2, 3) in the genes and the corresponding distribu-
tions in the organism used for training, total CMI, total
MI, and 2 more entropy features were included. More-
over, we used a Random Forest classifier and executed
an extensive model evaluation within and among 15
bacteria species. To show the applicability of our method
to in other domains of life, essential genes of the fission
yeast Schizosaccharomyces pombe were predicted. More-
over, in addition to the common evaluation approaches
such as cross-validation in a single organism, pairwise
cross-organism predictions, and leave-one-species-out,
to assess the generalization performance of our models,
following the approach pointed out in [26], we performed
cross-taxon and leave-one-taxon-out experiments. The
obtained results are then compared to the 8 pre-existing
prediction methods mentioned above.

Methods
Data sources
The essential and non-essential protein coding genes for
the 16 species were obtained from the database of essen-
tial genes (DEG 13.5). DEG collects the list of essential
genes in both eukaryotes and prokaryotes, which were
identified by various gene knock-out experimental proce-
dures such as transposon mutagenessis and RNA interfer-
ence [13]. The list of species used in this study is presented
in Table 1. The genome sequences were downloaded from
the NCBI database (ftp://ftp.ncbi.nih.gov/genomes/).

Information theoretic features
In computational biology and bioinformatics, information-
theoretic quantities have been widely used to model,
analyze, and/or measure both structural and organiza-
tional properties in biological sequences. In this work, we
used IT quantities to produce features which will enable
the classification of essential and non-essential genes.
The features used in this study are: 4 entropy (E), 17
mutual information (MI), 65 conditional mutual infor-
mation (CMI), 3 Kullback-Leibler divergence (KLD), and
2 Markov model (M) related. Here, we present a brief
description of the information-theoretic quantities used
in this work, which was also presented in [32]. A detailed
description can be found in standard information theory
text books [37].

Mutual information (MI)
The mutual information measures the information shared
by two random variables. It is the amount of information
provided by one random variable about the other. Here,

mutual information was used to measure the information
between consecutive bases X and Y and is mathematically
defined as

I(X,Y ) =
∑

x∈�

∑

y∈�

P(x, y) log2
P(x, y)
P(x)P(y)

, (1)

where � is the set of nucleotides {A,T ,C,G}, P(x, y)
is the joint probability, and P(x) and P(y) are the
marginal probabilities. The probabilities are estimated
from their relative frequencies in the corresponding gene
sequences. Along with the total mutual information com-
puted according to Eq. (1), for each base pair (x, y), the
quantity P(x, y) log2

P(x,y)
P(x)P(y) is calculated and used as a

feature. Therefore, a total of 17 MI-related features were
calculated.

Conditional mutual information (CMI)
The mutual information between two random variables X
and Y conditioned on a third random variable Z having a
probability mass function (pmf) P(z) is given by

I(X;Y |Z) =
∑

z∈�

P(z)
∑

x∈�

∑

y∈�

P(x, y|z) log2
P(x, y|z)

P(x|z)P(y|z)

=
∑

x∈�

∑

y∈�

∑

z∈�

P(x, y, z) log2
P(z)P(x, y, z)
P(x, z)P(y, z)

(2)

where P(x, yz), P(x, z), and P(y, z) are the joint pmfs of
the random variables shown in brackets. The three posi-
tions in a DNA triplet are regarded as the random vari-
ables X, Z, and Y, respectively. The mutual information
between the bases at the first and the third position con-
ditioned on the base in the middle is calculated according
to Eq. (2) and used as a feature. In addition, for each
possible triplet, the quantity P(x, y, z) log2

P(z)P(x,y,z)
P(x,z)P(y,z) was

calculated. Resulting in a total of 65 CMI-based features.

Entropy (E)
The Shannon entropy [38] quantifies the average informa-
tion content of the gene sequence from the distribution
of symbols. The Shannon entropy for a block size of N is
defined as

HN = −
∑

i
P(N)
s (i) log2 P

(N)
s (i) , (3)

where P(N)
s (i) is the probability of the ith word of block

sizeN. Shannon entropies of the genes were calculated for
block sizes of 2 and 3.
Similarly, the Gibbs entropy is defined as

SG = −kB
∑

i
PNG (i) lnPNG (i) , (4)

where PG(i) is the probability to be in the ith state and
kB is the Boltzmann constant (1.38 × 10−23 J/K). Gibbs’

ftp://ftp.ncbi.nih.gov/genomes/
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Table 1 The list and detail of the organisms used in this work

No. Organism Abbr. Number of essential genes Number of non-essential genes Accession No.

1 Acinetobacter baylyi ADP1 AB 499 2594 NC_005966

2 Bacillus subtilis 168 BS 271 3904 NC_000964

3 Escherichia coli MG1655 EC 296 4077 NC_000913

4 Francisella novicida U112 FN 392 1329 NC_008601

5 Haemophilus influenzae Rd KW20 HI 642 512 NC_000907

6 Helicobacter pylori 26695 HP 323 1135 NC_000915

7 Mycoplasma genitalium G37 MG 381 94 NC_000908

8 Mycoplasma pulmonis UAB CTIP MP 310 322 NC_002771

9 Mycobacterium tuberculosis H37Rv MT 614 2552 NC_000962

10 Pseudomonas aeruginosa UCBPP-PA14 PA 335 960 NC_008463

11 Staphylococcus aureus N315 SA 302 2281 NC_002745

12 Staphylococcus aureus NCTC 8325 SA2 351 2541 NC_007795

13 Salmonella enterica serovar Typhi SE 353 4005 NC_004631

14 Salmonella typhimurium LT2 ST 230 4228 NC_003197

15 Vibrio cholerae N16961 VC 779 2943 NC_002505

16 Schizosaccharomyces pombe 972h- SP 1260 3573 NC_003424

entropy is similar to Shannon’s entropy except for the
Boltzmann constant. Nevertheless, unlike the Shannon
case, where the probability is defined according to the fre-
quency of occurrence, we associated the probability dis-
tribution with the thermodynamic stability quantified by
the nearest-neighbor free energy parameters. The prob-
ability distribution, PG(i), is modeled by the Boltzmann
distribution given by

PNG (i) = nie
− E(i)

kBT

∑
j
nje

− E(j)
kBT

. (5)

ni is the frequency of the ith word of block size N and
T is the temperature in Kelvin. E(i) is the energy of the
codon according to [39]. For block sizes greater than two,
the energies were computed by adding the involved di-
nucleotides. Shannon and Gibbs entropies for block size
of 2 and 3 were calculated and used as features.

Markov (M)
Assuming that the gene sequences in the essential and
non-essential classes are generated by two separate
Markov sources, we construct a Markov chain and use the
scores of the genes as Markov features. The training set is
subdivided into a subset containing the essential and non-
essential samples. Thereafter, each subset is used to gen-
erate a Markov chain of a preselected or estimated order
m (MC+(m) and MC−(m) for essential and non-essential
genes, respectively). The transition probabilities of the
twoMarkov chains are empirically estimated using the so-
called Lidstone estimator [40, 41]. Let Nx(v) denote the

number of times a word v of length m appears in a train-
ing sequence x. The probability that the next nucleotide is
a, where a ∈ � = {A,C,G,T}, conditioned on the context
v ∈ �m is

Pv,a = Nx(va) + δ

Nx(v) + 4δ
. (6)

The parameter δ assigns a pseudo count to unseen
symbols to avoid zero probabilities. We experimentally
checked and found that the smaller values of δ are better
and consequently set δ = 0.001. After the two Markov
chains were constructed, they were used to score each
gene sequence.
First, the correct Markov chain order for both EGs

and NEGs in the training dataset is estimated. Then, two
Markov chains of the estimated orders are constructed.
After that, the features are computed by scoring every
gene using the generated Markov chains. If we represent
the sequence as b1, b2, b3, ..., bL, the score is calculated as

Score =
L−m∑

i=1
P (bibi+1 . . . bi+m)

log2
(
P (bi+m|bibi+1 . . . bi+m−1)

P(bi+m)

)
.

(7)

The score gives an indication of how likely the sequence
is generated by the given m-th order Markov chain.
The scores of the gene sequence on the Markov chains
MC+(m) and MC−(m) were used as features. For inter-
organism essentiality predictions, theMarkov orders were
estimated from the training sets. As shown in [32], the
estimated order provided better results. After evaluating
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the performances of selected Markov order estimators in
the literature [41–45], the CMI based estimator proposed
by Papapetrou and Kugiumtzis [46] is chosen. However,
in cross-organism and cross-taxa predictions, order esti-
mation increased the computational complexity without
improving the result. Hence, we decided to use a fixed
orderMarkov chain. After experimenting with orders 1 up
to 6, order 1 (i.e.,m = 1) was selected.

Kullback-Leibler divergence (KLD)
The Kullback-Leibler divergence (KLD) [47] measures the
similarity of a probability distribution P(x) to a model
distribution Q(x), and it is calculated as

KLD =
∑

i
P(x) log2

P(x)
Q(x)

. (8)

The frequencies of the nucleotides, di-nucleotides, and
tri-nucleotides in a given gene sequence were compared
against the corresponding frequencies in the genome of
the organism used for training the model (background
distributions).

Classifier design and evaluation
Feature preparation and computations were performed
using Python 3.5.2. We implemented a Random For-
est classifier using the data analytics platform Konstanz
Information Miner (KNIME 3.3.1) [48]. Information gain
is used as a split criteria. Typically, the number of
non-essential genes is significantly larger than that of
the essential genes. To balance the two classes, various
schemes of under- and over-sampling approaches could
be taken. Since it was shown in [18] that the choice of a
balancing approach does not influence the performance
of essential gene predictions, we selected the random
under-sampling of non-essential genes.

In cross-organism predictions, classifiers were trained
on one (or more) organism and tested on another, whereas
in intra-organism predictions 80% of the data is used for
training the models and 20% is used for testing. The ran-
dom selections were repeated 100 times, i.e., 100-fold
Monte Carlo cross-validation were performed for model
establishment.
The Area Under the Curve (AUC) of the Receiver Oper-

ating characteristic Curve (ROC) was used to evaluate
the performance of our classifier. The ROC plots the
true positive rate versus false positive rate. It shows the
trade-off between sensitivity and specificity for all pos-
sible thresholds. Other performance evaluation such as
F-measure and Accuracy were also calculated. However,
these parameters depend on the selected threshold value.
Therefore, we mainly used the AUC score for analyzing
the performance of the classifier. The evaluation of our
model using the other measures can be obtained from the
the provided Additional file.

Results and discussion
Intra-organism cross-validation predictions
In intra-organism predictions, both the training and test-
ing data is obtained from the same organism. The average
AUC scores of a 100-fold Monte Carlo cross-validation
experiment on the 15 bacteria are presented in Fig. 1.
The values range between 0.73 and 0.90, 0.84 on aver-
age. Except for three bacteria, namely HI, HP, and MG,
the AUC scores are more than 0.80. We also performed
a feature selection experiment using the information gain
rankings, selecting the top 50, 60, 70, and 80 features
(Fig. 1). Using the top 70 features provided the better
accuracy on average. For MG taking only the top 50 fea-
tures yielded a 4% gain. The result demonstrates that
fewer features can be used to improve the computational

Fig. 1 Average AUC scores of intra-organism essential gene predictions in 15 bacteria species. The prediction performance of the top 50,60,70, and
80 features based on information gain is also shown
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complexity without affecting the accuracy of the predic-
tions. Overall, the improvement gained by feature selec-
tion is not significant. Therefore, in the remaining parts of
this work, feature selection is not considered. To assess the
contributions of the different feature types to the classifi-
cation task, the information gain rankings for all species
were collected and a global feature ranking was obtained
(Additional file 1: Table S1). The top 20 features consists
of 8 MI, 8 CMI, 2 entropy, 1 Markov, and 1 KLD features.
This shows that all feature classes contribute to the high
prediction performances.
Compared to Ning et al. [16] essentiality predictor

which uses only sequence based and sequence derived fea-
tures, our method yielded better AUC scores. The AUC
scores for EC and MP were improved from 0.82 to 0.86
and from 0.74 to 0.80, respectively. Similarly, in compar-
ison with the inter-nucleotide distance sequences based
essential gene predictor proposed by Li et al. [28], our
method provided an improvement of up to 9%. For EC,
the AUC score is improved from 0.80 to 0.86, for BS from
0.81 to 0.89, for SE from 0.80 to 0.89, and for SA from
0.88 to 0.90. In addition, our average AUC score (0.84) was
also much better than Yu et al. [18] fractal features based
predictor (0.77 on 27 selected bacteria).

Cross-organism predictions
So far, both the training and test sets were taken from
a single genome. In this section, models trained on a

given organism (or groups) are used to predict the essen-
tial and non-essential genes of another distinct organ-
ism. Cross-organism predictions are more realistic and
useful in ab initio identification of essential genes. Two
approaches were taken. The first approach is a pair-
wise cross-organism prediction in which models trained
on one species are used to predict the essential and
non-essential genes of every other species, separately.
The other approach is a leave-one-species-out procedure
whereby genes of the 14 bacteria are collectively used for
establishing a model and essential genes of the remaining
bacterium are predicted.

Pairwise predictions
Pairwise cross-organism predictions among the 15 bac-
teria were performed to see how well essentiality anno-
tations can be transferred between both closely and
distantly related species. A heat map of the 21 × 21
average AUC matrix is presented in Fig. 2. The bacteria
are also grouped together according to the phyloge-
netic tree constructed using the PhyloT tree generator
(http://phylot.biobyte.de/index.html). The overall predic-
tion performances were very good (AUC scores of up to
0.92 were obtained). However, cross-predictions among
MT and MG, MP, FN, and HP are very bad, even
sometimes worse than a random guess. As described
in [12, 22], larger evolutionary distance, differences in
growth conditions, phenotypes, and lifestyles, and poor

Fig. 2 Pairwise cross-organism predictions results. 15 × 15 average AUC scores are presented. The phylogenetic relationship and the taxonomic
classification of the bacteria are also shown

http://phylot.biobyte.de/index.html
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quality of the training data may have led to poor
performances.
Although close evolutionary distance and similar

lifestyles provide common essential gene characteristics,
the results for the distantly related species were also good.
For instance, BS and EC diverged over a billion years ago
[49], before the divergence of plants and animals, and yet
highly accurate predictions were possible (AUC score of
0.86). In addition, models trained based on the taxonomic
orders Bacillales (BS, SA, SA2) and Enterobacterales (EC,
SE, ST) produced better overall performance. Hence,
future blind essentiality predictions of a new species can
be done using one of these bacteria.
The performance of our predictor is as good as the

other existing state-of-the art gene essentiality predictors
which use homology, gene-expression and network topol-
ogy based features in addition to sequence-derived
information. Note that sequence similarity searching is
computationally expensive. The comparison to Deng
et al. [25] and Song et al. [17] ZUPLS classifiers among
AB, BS, EC, and PA is shown in Table 2. On average, our
method is slightly better than Deng et al’s (2%). ZUPLS
is the best method among the sequence-based predictors
and on average it is only 3% better than our method. How-
ever, since a database search for homology and domain
information are not required, our method could be more
advantageous in case of limited computational power.
Cheng et al. [24] and Liu et al. [27] made pairwise pre-

dictions on 21 and 31 species, respectively, providing the
21 × 21 and 31 × 31 AUC matrices. We filtered out the
common bacterial species and compared the results. Here,
it should be noted that, in all the three methods, the
classifiers for each species are trained independently and
tested on every other species. Hence, taking the sub-group
(15 × 15) and comparing the results is fair. Looking at
the distribution of the AUC scores and the correspond-
ing mean AUC values, our predictor (0.75) was 14% better
than Liu et al.’s (0.61) while Cheng et al.’s predictor (0.79),

Table 2 Comparing prediction performance (average AUC
score) among AB, BS, EC and PA

Train Test Deng et al. [25] Song et al. [17] Our method

AB EC 0.89 0.91 0.86

BS AB - 0.86 0.84

BS EC 0.86 0.91 0.86

BS PA - 0.81 0.78

EC AB 0.8 0.86 0.84

EC BS 0.8 0.93 0.86

EC PA - 0.81 0.81

PA EC 0.82 - 0.82

Average 0.83 0.87 0.84

being the best essentiality predictor, was 4% better than
ours. Considering that Cheng et al. used network, gene
expression, and homology information, the AUC scores of
our method are very good.

Leave-one-species-out predictions
In the leave-one-species-out approach, we predicted the
essential/non-essential genes of one species using a model
trained on the remaining 14 bacterial annotated genes.
This approach is also very practical for blind essentiality
annotations of new organisms. In [32], we performed this
analysis using an SVM classifier. Here, the Random Forest
machine learning algorithm is used, alternatively.
The prediction performance of our method using

both SVM and Random Forest classifiers is shown in
Table 3. Apart from MG whose AUC score is 0.68,
very good results (AUC ≥ 0.75) were obtained for all
other species. Both machine learning algorithms yielded
a similar 0.8 average AUC score and comparable results
on individual species. This shows that the high pre-
diction accuracy of our method is due to the ability
of the information-theoretic features to capture gene
essentiality/non-essentiality attributes.
Three studies have used a leave-one-species-out

approach to assess the performance of their models.
Palaniappan and Mukherjee [26] in 2011, Geptop [23] in
2013, and Liu et al. [27] in 2017. The average AUC score
has a 10% and 19% improvement over Liu et al.’s and
Palaniappan and Mukherjee’s, respectively. Our method
is also comparable to Geptop. However, for well-studied
organisms like EC and BS, Geptop is significantly bet-
ter. Along with the homology- and phylogeny-based
predictor, in [23], the results of another method, called
integrative compositional information predictor, were
reported. Codon and amino acid compositions and
CodonW features (158 features) were used. Compared to
this method which used sequence composition features,
our method is slightly better.

Cross-validation on all bacteria
The other most common method to asses the prediction
accuracy of machine learning models is a 5-fold cross-
validation. After the total data consisting of 6078 essential
genes and 33477 non-essential genes is divided into 5
separate folds, each fold is tested on a model trained on
the combination of the other 4 folds. Average AUC score
of 0.88 was obtained. Again, in comparison with Ning
et al. [16] (0.82 AUC) and Palaniappan andMukherjee [26]
(0.8 AUC), our method is superior.

Cross-taxonomic predictions
Palaniappan and Mukherjee [26] tested the generalization
ability of their classifiers across taxonomic boundaries.
We made a similar assessment on our classifier at higher
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Table 3 Leave-one-species-out results using SVM and Random Forest classifiers

Our method Liu et al. Palaniappan and Mukherjee Geptop (homology) Geptop* (Composition)

Training on (No. of species) 14 30 14 18 18

Random Forest SVM SVM SVM Score based Score based

AB 0.81 0.83 0.75 0.74 0.85 0.79

BS 0.84 0.84 0.77 0.58 0.95 0.81

EC 0.87 0.88 0.83 0.65 0.95 0.84

FN 0.83 0.83 0.67 0.66 0.84 0.74

HI 0.75 0.77 0.54 0.46 0.57 0.59

HP 0.75 0.74 0.52 0.59 0.60 0.64

MG 0.68 0.66 0.60 0.64 0.72 0.56

MP 0.75 0.74 0.64 0.61 0.87 0.76

MT 0.80 0.77 0.70 0.49 0.73 0.77

PA 0.80 0.80 0.65 0.66 0.80 0.79

SA 0.88 0.90 0.81 0.66 0.84 0.86

SA2 0.86 0.85 0.80 - 0.88 0.83

SE 0.86 0.86 0.69 - 0.95 0.86

ST 0.81 0.79 0.84 0.53 0.71 0.69

VC 0.75 0.72 0.69 - 0.61 0.72

Average 0.80 0.80 0.70 0.61 0.79 0.75

The average AUC scores of four existing methods are also presented for comparison. Geptop* is a sequence composition based predictor presented along with Geptop [23]

taxonomic level. Species belonging to a similar taxonomic
order are grouped together (see Fig. 2) and cross-taxon
and leave-one-taxon-out tests were made. The four tax-
onomic orders are Bacillales (BS, SA, and SA2), Enter-
obacterales (EC, SE, and ST), Mycoplasmatales (MG and
MP), and Pseudomonadales (AB and PA). Species without
a taxonomic pair were left out of this taxonomic analysis.
The cross-taxonomic results are depicted in Fig. 3. The
cross-taxonomic results are as good as the cross-organism
counterparts. For example, the prediction of EC using
BS yielded 0.86 AUC score and predicting Enterobac-
terales using Bacillales also yielded 0.85. In the leave-one-
taxon-out setting, very accurate results were obtained. For

Bacillales and Enterobacterales the average AUC scores
were 0.85 whereas Mycoplasmatales and Pseudomon-
adales had 0.78 and 0.80, respectively. In comparison to
Palaniappan and Mukherjee our classifier produced an
outstanding performance (Fig. 4).

Essential gene prediction of an eukaryotic organism
To verify the applicability of our method to the predic-
tion of essential genes in other domains of life, we selected
the fission yeast Schizosaccharomyces pombe which is
regarded as a very important model organism for the
study of eukaryotic molecular and cellular biology [50].
It has 1260 essential and 3573 non-essential genes. The

Fig. 3 Cross-taxon prediction results
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Fig. 4 Leave-one-taxon out predictions of our method and an existing method [26]

Random Forest classifier was trained using 80% of the
data and is tested on the remaining 20%, performing
50-fold Monte Carlo cross-validation steps. The average
ROC curve is shown in Fig. 5. An average AUC score
of 0.84 was obtained, which is consistent with the pre-
diction results of the bacterial genomes. This shows that
information-theoretic measures can be reliably used for
the prediction of essential genes also across all domains of
life. We also tested the transferability of essentiality anno-
tations from bacteria to yeast. A model trained on the 15
bacteria was used for classification and a relatively low
AUC score of 0.65 was obtained. Classifiers trained on EC
and BS yielded better AUC scores of 0.76 and 0.79, respec-
tively. The reason for the low cross-organism prediction
performance and the detailed application of the proposed
method on eukaryotic organisms shall be investigated in a
future work.

Conclusions
We proposed a machine-learning based computational
method for predicting essential genes using information-
theoretic measures as features. The features are directly

Fig. 5 ROC curve for the prediction of Schizosaccharomyces pombe
essential genes

derived from the DNA sequence and hence can be applied
to any species. The applicability of the existing computa-
tional methods which make use of network topology, gene
ontology annotations, and gene-expression depends on
the availability of pre-computed experimental data such
as protein/gene interaction networks and gene-expression
data. However, these experimental data are available
for a few well-studied organisms. Other works of gene
essentiality predictions also use homology and functional
domain knowledge through database searches. Although
the homology features are sequence-based, the compu-
tational complexity for sequence alignment is very high.
Therefore, our method provides a simple and reliable
alternative.
Extensive performance evaluation using different setups

were performed on selected 15 bacterial species. In intra-
organism predictions, very high AUC scores ranging from
0.73 to 0.9 were obtained. In cross-organism pairwise pre-
dictions, the vast majority of the results are very good.
Scores as high as 0.92 and mean AUC of 0.75 were
achieved. However, due to factors such as high evolution-
ary distance, different lifestyles, growth conditions, and
phenotypes there were very few poor results [25]. Based
on the results, for future blind predictions, we suggest
using one of the well-studied bacteria, such as B. sub-
tilis and E. coli (the essentiality annotations are of high
quality). In addition, 5-fold cross-validation and leave-
one-species-out experiments have yielded average AUC
scores of 0.88 and 0.80, respectively. Furthermore, our
model performed very well at higher taxonomic ranks
(order). An average score of 0.82 in cross-taxon and
0.78 in leave-one-taxon-out predictions, which is signifi-
cantly superior to the previously published result having
average AUC of 0.62. Finally, in order to show that our
method is not limited to essential gene prediction of
bacteria, we predicted the essential genes of the yeast
Schizosaccharomyces pombe and a similar performance
was achieved (AUC score of 0.84). However, prediction of
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Schizosaccharomyces pombe essential genes using a model
trained with the 15 bacteria yielded 0.65.
Our method is better than most of the existing predic-

tors which rely on sequence information, only, and is on
a par with the state-of-the-art predictors using homology,
network topology, and gene-expression data in addition to
sequence features.
We believe that the information-theoretic features can

be effectively used in other biological classification prob-
lems. For instance, in [51] sequence motifs and k-mers
were used for categorization of microRNAs. Hence, in
the future, we will use the information-theoretic fea-
tures for other prediction problems including microRNA
detection.

Additional file

Additional file 1: Feature selection and detailed results. TableS1
provides an insight into the contribution of the different features. Detailed
prediction results using various performance measures are provided in the
other tables. (XLSX 78 kb)
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