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Abstract

Background: Proteins perform their functions usually by interacting with other proteins. Predicting which proteins
interact is a fundamental problem. Experimental methods are slow, expensive, and have a high rate of error. Many
computational methods have been proposed among which sequence-based ones are very promising. However, so far
no such method is able to predict effectively the entire human interactome: they require too much time or memory.

Results: We present SPRINT (Scoring PRotein INTeractions), a new sequence-based algorithm and tool for predicting
protein-protein interactions. We comprehensively compare SPRINT with state-of-the-art programs on seven most
reliable human PPI datasets and show that it is more accurate while running orders of magnitude faster and using
very little memory.

Conclusion: SPRINT is the only sequence-based program that can effectively predict the entire human interactome:
it requires between 15 and 100 min, depending on the dataset. Our goal is to transform the very challenging problem
of predicting the entire human interactome into a routine task.

Availability: The source code of SPRINT is freely available from https://github.com/lucian-ilie/SPRINT/ and the
datasets and predicted PPIs from www.csd.uwo.ca/faculty/ilie/SPRINT/.
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Background
Protein-protein interactions (PPI) play a key role in many
cellular processes since proteins usually perform their
functions by interacting with other proteins. Genome-
wide identification of PPIs is of fundamental importance
in understanding the cell regulatory mechanisms [1] and
PPI identification is one of the major objectives of systems
biology. Various experimental techniques for identifying
PPIs have been developed, most notably high throughput
procedures such as two-hybrid assay and affinity systems
[2]. Such methods are slow and expensive and have a
high rate of error. A variety of computational methods
have been designed to help predicting PPIs, employ-
ing sequence homology, gene co-expression, phylogenetic
profiles, etc. [3–5].
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Sequence-based approaches [6–17] are faster and
cheaper and can be used in addition to other methods,
to improve their performance. Several top methods were
evaluated by Park [18]. Park and Marcotte [19] made the
crucial observation that the datasets previously used for
evaluation were biased due to the frequent occurrence
of protein pairs common to testing and training data.
They have shown that the prediction of the algorithms
on the testing protein pairs is improved when the protein
sequences are seen in training. To avoid this bias, they
have built datasets of three levels of difficulty such that the
predictive performance on these datasets generalizes to
the population level. The performance of the top methods
tested by Park [18] on the unbiased datasets of [19] was
significantly lower than previously published, thus raising
the bar higher for sequence-based methods.
We introduce a new sequence-based PPI prediction

method, SPRINT (Scoring PRotein INTeractions), that is
more accurate than the current state-of-the-art methods
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as well as orders of magnitude faster. The SPRINT algo-
rithm relies on the same basic hypothesis that underlies
most sequence-based approaches: a pair of proteins that
are pairwise similar with a pair of interacting proteins
has a higher chance to interact. However, the way this
idea is used is very different. Similar regions are iden-
tified using an effective multiple spaced-seed approach
and then processed to eliminate elements that occur too
often to be involved in interactions. Finally, a score is com-
puted for each protein pair such that high scores indicate
increased probability of interactions. Details are given in
the “Methods” section.
We compared SPRINT with the top programs consid-

ered by Park [18] and Park andMarcotte [19] as well as the
new method of Ding et al. [20]. The closest competitors
are the machine learning-based programs of Ding et al.
[20] and Martin et al. [6], and PIPE2 [7, 21], which does
not use machine learning. All comparisons are done using
human datasets.
To comprehensively compare the performance, we use

multiple datasets, built according to the procedure of Park
and Marcotte [19] from six of the most reliable human
PPI databases: Biogrid, HPRD, InnateDB (experimentally
validated and manually curated PPIs), IntAct, and MINT.
SPRINT provides the best predictions overall, especially
for the more difficult C2 and C3 types.
Then, we use the entire human interactome to com-

pare the speed. The comparisons of [18] and [19] used
fairly small datasets for comparison. In reality, these pro-
grams are meant to be used on entire proteomes and
interactomes, where all protein sequences and known
interactions are involved. SPRINT is several orders of
magnitude faster. It takes between 15 and 100 min
on a 12-core machine while the closest competitor,
Ding’s program, requires weeks and Martin’s and PIPE2
require years. Moreover, Ding’s program is unable to
run the larger datasets as its memory requirements are
very high.
The source code of SPRINT is freely available.

Results
We compare in this section SPRINT with several state-
of-the-art sequence-based programs for PPI prediction
on the most important human PPI datasets available. We
focus on accurate prediction of the entire human inter-
actome and therefore we have been using only human
datasets. We start with a discussion concerning the
datasets employed, as the way they are constructed can
significantly impact the performance of the predicting
programs.

Park andMarcotte’s evaluation scheme
Park and Marcotte [19] noticed that all methods have sig-
nificantly higher performance for the protein pairs in the

testing data whose sequences appear also in the training
data. Three cases are possible, depending on whether both
proteins in the test data appear in training (C1), only one
appears (C2), or none (C3). They show that essentially
all datasets previously used for cross validation are very
close to the C1 type, whereas in theHIPPIEmeta-database
of human PPIs [22] the C1-type human protein pairs
accounts for only 19.2% of these cases, whereas C2-type
and C3-type pairs make up 49.2% and 31.6%, respec-
tively. Therefore, testing performed on C1-type data is
not expected to generalize well to the full population. The
authors proceeded to designing three separate human PPI
datasets that follow the C1, C2, and C3-type rules.

Datasets
We first describe the procedure of Park and Marcotte [19]
in detail. The protein sequences are from UniProt [23].
The interactions were downloaded from the protein inter-
action network analysis platform [24] that integrates data
from six public PPI databases: IntAct [25], MINT [26],
BioGRID [27], DIP [28], HPRD [29] andMIPSMPact [30].
The datasets were processed by [19] as follows. Proteins in
each data set were clustered using CD-HIT2 [31] such that
they shared sequence identity less than 40%. Proteins with
less than 50 amino acids as well as homo-dimeric inter-
actions were removed. Negative PPI data were generated
by randomly sampling protein pairs that are not known to
interact. See [19] for more details.
The total number of proteins used is 20,117, involving

24,718 PPIs. The training and testing datasets are divided
into forty splits (from the file human_random.tar.gz), each
consisting of one training file and three testing files, one
for each type C1, C2, C3. Therefore, each C1, C2, or
C3 curve produced is the average of forty curves. In
addition, they tested also 40-fold cross validation on the
entire PPI set. In reality, the ratio between interacting and
noninteracting protein pairs is believed to be 1:100 or
lower. However, this would make it very slow or impos-
sible to run some of the algorithms. Therefore, Park and
Marcotte decided to use ratio 1:1.
We have used Park and Marcotte’s procedure to design

similar testing datasets using six other human PPI
databases. Among the most widely known human PPI
databases we have chosen six that appear to be the most
widely used: Biogrid, HPRD, InnateDB (experimentally
validated and manually curated PPIs), IntAct, and MINT.
We have used 20,160 human protein sequences down-
loaded from UniProt. The protein sequences and inter-
actions were downloaded in Oct. 2016. We perform four
tests for each program on each dataset: 10 fold cross-
validation using all PPIs and C1, C2, and C3 tests, the
datasets for which are built as explained above, with the
ratio between training and testing pairs of 10:1. The details
of all datasets are given in Table 1.
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Competing methods
We have compared SPRINT with the four methods con-
sidered by [19]. Three of those use machine learning: [6],
[8], and [9], whereas the fourth does not: PIPE [7]. Since
the first three methods do not have names, we use the
first author’s name to identify them: Martin [6], Shen
[8], and Guo [9]. Note that we have tested the improved
PIPE2 [21], the same version that was tested by Park and
Marcotte.
Many programs have been proposed for PPI prediction,

however, very few are available. We have obtained the
source code for two programs: the PPI-PK method of [10]
and the program of Ding et al. [20]. The PPI-PK method
was too slow on our system to be tested. We managed to
run the program of Ding et al. [20] on all datasets. After
eliminating the programs of Shen et al. [8] and Guo et al.
[9] as placing last on the first datasets, comparison on all
subsequent tests were performed against Martin, PIPE2,
and Ding.
Note that PIPE2 and SPRINT do not require negative

training data as they do not use machine learning algo-
rithms. All the other programs require both positive and
negative training sets. Note also that Ding’s program uses
also additional information concerning electrostatic and
hydrophobic properties of amino acids.

Performance comparison
Park andMarcotte datasets
We present first the comparison of all five methods con-
sidered on the datasets of Park andMarcotte in Fig. 1. The
receiver operating characteristic (ROC) and precision-
recall (PR) curves for the four tests, CV, C1, C2, and C3,
are presented.
The prediction performance on CV and C1 is very sim-

ilar. The performance decreases from C1 to C2 and again
to C3, both for ROC and PR curves. This is expected
due to the way the datasets are constructed. The ROC
curves do not distinguish very well between the predic-
tion performance of the five methods. The difference is

more clear in the PR curves. The SPRINT curve is almost
always on top, especially at the beginning of the curve,
where it matters the most for prediction. Ding’s and Mar-
tin’s are very close for CV and C1 datasets, followed by
PIPE2. For C2 and C3 tests, the performance of Ding’s and
Martin’s programs deteriorates and PIPE2 advances in
second position.

Seven human PPI databases
For a comprehensive comparison, we have compared the
top four programs on six datasets, computed as men-
tioned above from six databases: Biogrid, HPRDRelease 9,
InnateDB (experimentally validated and manually curated
PPIs), IntAct, and MINT. Since the prediction on the CV
datasets is similar with C1, we use only C1, C2 and C3
datasets.
For the purpose of predicting new PPIs, the behaviour

at high specificity is important. We therefore compare
the sensitivity, precision and F1-score for several high
specificity values. The table with all values is given in
the Additional file 1. We present here in Table 2 the
average values for each dataset type (C1, C2, and C3)
over all datasets for each specificity value. At the bot-
tom of the table we give also the average over all three
dataset types. The performance of SPRINT with respect
to all three measures, sensitivity, precision, and F1-score
is the highest. Only Ding comes close for C1 datasets. the
overall average of SPRINT is much higher than Ding’s.
PIPE2 comes third and Martin last. The performance
of PIPE2 decreases much less from C1 to C3 com-
pared with Ding’s. It should be noted that a weighted
overall average, where the contribution of each dataset
type C1,2,3 is proportional with its share of the gen-
eral population, would place PIPE2 slightly ahead of
Ding.
The area under the ROC and PR curves is given in

Table 3 for all seven datasets, including the C1-, C2-,
and C3-average, as well as the overall average across
types. Ding is the winner for the C1 tests and SPRINT

Table 1 The datasets used for comparing PPI prediction methods

Dataset PPIs Website

All Training Testing

Park and Marcotte 24,718 14,186 1250 www.marcottelab.org/differentialGeneralization

Biogrid 215,029 100,000 10,000 https://thebiogrid.org

HPRD release 9 34,044 10,000 1000 www.hprd.org

InnateDB experim. validated 165,655 65,000 6500 www.innatedb.com

InnateDB manually curated 9913 3600 360 www.innatedb.com

IntAct 111,744 52,500 5250 www.ebi.ac.uk/intact

MINT 16,914 7000 700 mint.bio.uniroma2.it

The second column contains the total number of PPIs, while the third the fourth columns give the number of PPIs used for training and testing, respectively, in the C1, C2,
and C3 tests

www.marcottelab.org/differentialGeneralization
https://thebiogrid.org
www.hprd.org
www.innatedb.com
www.innatedb.com
www.ebi.ac.uk/intact
mint.bio.uniroma2.it
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Table 2 Performance comparison at high specificity

Sensitivity, precision, and F1-score averages for seven datasets are given for each dataset type C1, C2 and C3, as well as overall averages across types. Darker colours represent
better results. The best results are in bold

is the winner for the C2 and C3 tests. In the over-
all average, SPRINT comes on top. Martin is third and
PIPE2 last.
All ROC and PR curves are included in the Additional

file 2.

Predicting the entire human interactome
The goal of all PPI prediction methods is to predict new
interactions from existing reliable ones. That means, in
practice we input all known interactions – the entire inter-
actome of an organism – and predict new ones. Of the
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Fig. 1 Performance comparison on Park and Marcotte datasets: ROC and PR curves. The ROC curves (top row) and PR curves (bottom row) for CV,
C1, C2, and C3 tests, from left to right



Li and Ilie BMC Bioinformatics  (2017) 18:485 Page 5 of 11

Table 3 Area under curves

AUROC and AUPR curves are given for seven datasets and three types, C1, C2, C3, for each, as well as averages for each type and overall average across types. Darker colours
represent better results. The best results are in bold

newly predicted interactions, only those that are the most
likely to be true interactions are kept.
For predicting the entire interactome, we need to pre-

dict the probability of interaction between any two pro-
teins. For N proteins, that means we need to consider
(N2 + N)/2 protein pairs. For our 20,160 proteins, that
is about 203 million potential interactions. For example,
predicting one pair per second results in over six years of
computation time.
We have tested the four programs, Martin’s, PIPE2,

Ding’s, and SPRINT, on the entire human interactome,
considering as given PPIs each of the six datasets in
Table 1. The tests were performed on a DELL PowerEdge
R620 computer with 12 cores Intel Xeon at 2.0 GHz and
256 GB of RAM, running Linux Red Hat, CentOS 6.3.
The time and memory values are shown in Table 4 for

all three stages: preprocessing, training, and predicting.
For each dataset, training is performed on all PPIs in that
dataset and then predictions are made for all 203 million
protein pairs.

Note that PIPE2 and SPRINT do not require any train-
ing. Also, preprocessing is performed only once for all
protein sequences. As long as no protein sequences are
added, no preprocessing needs to be done. For SPRINT,
we provide all necessary similarities for all reviewed
human proteins in UniProt. If new protein sequences
are added, the program has an option (“-add”) that
is able to compute only the new similarities, which is
very fast.
Therefore, the comparison is between predicting time

of PIPE2 and SPRINT and training plus predicting time of
Martin and Ding. PIPE2 and Martin are very slow and the
predicting times are estimated by running the programs
for 100 h and then estimating according to the number of
protein pairs left to process. Both take too long to be used
on the entire human interactome.
Ding’s program is faster than the other two but uses a

large amount of memory. It ran out of 256 GB of mem-
ory when training on the two largest datasets: Biogrid and
InnateDB experimentally validated. It seems able to train
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Table 4 Human interactome comparison: running time and peak memory

Dataset Program Time (s) Memory (GB)

Preprocess Train Predict Preprocess Train Predict

Biogrid Martin 32,400 > 1,209,600 – 2.5 6.1 –

PIPE2 312,120 N/A †1,150,675,200 2.1 N/A 18.9

Ding 37,708 – – 3.3 > 256 –

SPRINT 105,480 N/A 6,120 11.2 N/A 3.0

HPRD Release 9 Martin 32,400 584,640 †107,222,400 2.5 3.2 1.5

PIPE2 312,120 N/A †435,628,800 2.1 N/A 18.9

Ding 37,708 236,551 374,360 3.3 79.5 79.5

SPRINT 105,480 N/A 1,257 11.2 N/A 3.0

Innate experim. validated Martin 32,400 > 1,209,600 – 2.5 5.7 –

PIPE2 312,120 N/A †872,294,400 2.1 N/A 18.9

Ding 37,708 – – 3.3 > 256 –

SPRINT 105,480 N/A 3,600 11.2 N/A 3.0

Innate manually curated Martin 32,400 26,280 †30,888,000 2.5 1.9 1.5

PIPE2 312,120 N/A †230,342,400 2.1 N/A 18.9

Ding 37,708 55,532 285,323 3.3 25.4 25.4

SPRINT 105,480 N/A 930 11.2 N/A 3.0

IntAct Martin 32,400 > 1,209,600 – 2.5 3.5 –

PIPE2 312,120 N/A †616,464,000 2.1 N/A 18.9

Ding 37,708 > 1,209,600 – 3.3 220 –

SPRINT 105,480 N/A 2,672 11.2 N/A 3.0

MINT Martin 32,400 101,160 †52,557,120 2.5 2.3 1.5

PIPE2 312,120 N/A †372,902,400 2.1 N/A 18.9

Ding 37,708 120,720 331,865 3.3 41.1 41.1

SPRINT 105,480 N/A 952 11.2 N/A 3.0

The predicting time for Martin’s and PIPE2 was estimated by running it for 100 h and then estimating the total time according to the number of pairs left to predict. Note that
PIPE2 and SPRINT do not require training as they are not using machine learning. For the entries marked with a dash, the program ran out of (256 GB) memory or ran for more
than 14 days. Times marked with a dagger† are estimated

on the IntAct dataset but it could not finish training in 14
days, which is the longest we can run a job on our system.
SPRINT is approximately five orders of magnitude

faster than PIPE2 and Martin. It is over two orders
of magnitude faster than Ding but this is based
on the small datasets. The results on IntAct seem
to indicate that the difference increases for large
datasets.
Another interesting property of SPRINT is that it

appears to scale sublinearly with the size of the datasets,
that is, the larger the datasets, the faster it runs (per
PPI). This means SPRINT will continue to be fast as the
datasets will grow, which it is to be expected.
It should be noted that SPRINT runs in parallel

whereas the other are serial. Martin’s and PIPE2 are much

slower, so parallelizing the prediction would not make
any difference. Ding’s program on the other hand uses
a considerable amout of time for training, which can-
not be easily parallelized. The very large difference in
speed is due to the fact that while Martin, PIPE2, and
Ding consider one protein pair at the time, out of the
203 million, SPRINT simply computes all 203 million
scores at the same time; see the “Methods” section for
details.
In terms of memory, SPRINT requires a very mod-

est amount of memory to predict. We successfully ran
SPRINT on all entire human interactome tests in serial
mode on an older MacBook (1.4 GHz processor, 4 GB
RAM); the running time was between 35 min for Innate
manually curated to 11 h for Biogriod.
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Fig. 2 Time and memory comparison. The time and memory are
given for predicting the entire human interactome; the closer to
origin, the better

The comparison is more visually clear in Fig. 2
where the time (in hours) and memory are plotted
together for the four programs compared and those
datasets for which we have either a value or at least an
estimate. Note the logarithmic scale for time. The point
with the highest memory for Ding’s program (for the
IntAct dataset) has time value fourteen days, which is the
only lower bound we have. The real time may be much
larger.

Methods
Basic idea
Proteins similar with interacting proteins are likely to
interact as well. That is, if P1 is known to interact with P2
and the sequences of P1 and P′

1 are highly similar and the
sequences of P2 and P′

2 are highly similar, then P′
1 and P′

2
are likely to interact as well. In a way or another, this is
essentially the idea behind the brute force calculation of
PIPE as well as themachine learning algorithms ofMartin,
Shen, and Guo.
SPRINT uses a complex algorithm to quickly evaluate

the contribution of similar subsequences to the likelihood
of interaction. The basic idea is illustrated on a toy exam-
ple in Fig. 3. Assume we have given three protein pairs
(P1,Q1), (P2,Q2), (P3,Q3), of which (P1,Q1) is a known
interaction. Also, assume that we have detected the sim-
ilar subsequences indicated by blocks of the same colour
in the figure. That is, X1,X2, and X3 are similar with each
other, Y1 and Y3 are similar, etc. In this context, the fact
that X1 and U1 belong to interacting proteins increases
the likelihood that P2 and Q2 interact because P2 con-
tains X2 that is similar with X1 and Q2 contains U2 that is

similar with U1. Six such subsequence pairs between the
interacting proteins P1 and Q1 are marked with dashed
lines in Fig. 3 and they imply, using the above reasoning,
two subsequence pairs in-between P2 and Q2 and three
in between P3 and Q3, also marked with dashed lines.
SPRINT is counting the contribution from such dash lines
in order to estimate the likelihood of interaction of any
protein pair. In our example, SPRINT would count two
dash lines for (P2,Q2) and three for (P3,Q3).
Long similar regions should have a higher weight than

short ones. To account for this we assume that all con-
tributing blocks have a fixed length k and that a region of
length � contributes � − k + 1 blocks. As k is fixed, this
grows linearly with �. The precise score is given later in
this section.

Finding similar subsequences
As described above, the first step of SPRINT is the iden-
tification of similar subsequences among the input pro-
tein sequences. This is done using spaced seeds. Spaced
seeds [32, 33] are an alternative to BLAST’s hit-and-
extend method, that we briefly recall. Assume a match
of size five is used. In this case, an exact match consists
of five consecutive matching amino acids between two
protein sequences. This is called a hit. Any such hit is
then extended to the left and to the right until the score
drops below a given threshold. If the score is sufficiently
high, then the two extended subsequences are reported as
similar.
Denote the five consecutive matches of a BLAST-like

seed by 11111; this is called a consecutive seed of weight
five. Spaced seeds consists of matches interspersed by
don’t care positions; here is an example of such a spaced
seed: 11****11***1. A spaced match requires only the
amino acids in positions corresponding to 1’s in the seed
to match; in the given example, only the amino acids in

Fig. 3 Interaction inference. The proteins P1 and Q1 are known to
interact; blocks of the same colour represent occurrences of similar
subsequences. Dashed lines indicate potential contributions to
interactions: there are six between P1 and Q1 and they imply two
between P2 and Q2 and three between P3 and Q3
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positions 1, 2, 7, 8, and 12 have to match. Given the spaced
seed above, two exact spaced matches are underlined in
Fig. 4a.
Note that the number of matches (the weight) is the

same as for the consecutive seed; five in our case. There is
a trade-off between speed and probability of finding sim-
ilarities. Lower weight has increased sensitivity because it
is easier to hit similar regions but lower speed since more
random hits are expected and have to be processed. The
best value for our problem turned out to be five.
The hit-and-extend approach works in the same way as

described above, except that the initial matches are spaced
as opposed to consecutive.
Spaced seeds have higher probability of detecting sim-

ilar subsequences, while the number of hits is the same
as for consecutive seeds; the expected number of hits is
given by the weight of the seed, which is the same; see
[32] for details. Several seeds [33] can detect more simi-
lar subsequences as they capture different similarities. The
distribution of matches and don’t care positions is cru-
cial for the quality of the seeds and we have used SpEED
[34, 35] to compute the following seeds used by
SPRINT; we have experimentally determined that four
seeds of weight five are the best choice: SEED4,5 =
{11****11***1, 1**1*1***1*1, 11**1***1**1,
1*1******111}.
In order to further increase the probability of find-

ing similar subsequences, we consider also hits between
similar matches, as opposed to exact ones. For example,
the two amino acid sequences in Fig. 4b, though simi-
lar, do not have any exact spaced matches. In order to
capture such similarities, we consider also hits consisting
of similar spaced matches; an example is shown by the
underlined subsequences in Fig. 4b.
To make this idea precise, we need a few definitions.

Spaced-mers are defined analogously with k-mers but
using a spaced seed. A k-mer is a contiguous sequence of
k amino acids. Given a spaced seed, a spaced-mer con-
sists of k amino acids interspersed with spaces, according
to the seed. For a spaced seed s, we shall call the spaced-
mers also s-mers. Figure 5 shows an example of all s-mers
of a sequence, for s =11****11***1:
An exact hit therefore consists of two occurrences of

the same s-mer. An approximate hit, on the other hand,

a b

Fig. 4 Spaced-seed hits. An exact hit (a) and an approximate hit (b) of
the same spaced seed

requires two similar s-mers. Assume a similarity matrixM
is given. Given a seed s and two s-mers w and z, the score
between the two s-mers is given by the sum of the scores
of the pairs of amino acids in the two s-mers, that is, we
sum over indexes corresponding to 1’s in the seed:

Ss-mer(w, z) =
∑

s[i]=1

M(wi, zi) . (1)

For example, for the s-mers w = VL KT A and
z = HL KS A from Fig. 4b, we have Ss-mer(w, z) =
M(V,H) + M(L,L) + M(K,K) + M(T,S) + M(A,A).
Using (1), we define the set of s-mers that are similar

with a given s-mer w:

Sim(w) = {z | zs-mer, Ss-mer(w, z) ≥ Thit} . (2)

Note that Sim(w) depends on the parameter Thit that
controls how similar two s-mers have to be in order to
form a hit. It also depends on the seed s and the similarity
matrix M but we do not include them into the notation,
for clarity.
All such hits dues to similar s-mers are found and then

extended both ways in order to identify similar regions.
That means, now we have to evaluate the similarity of all
the amino acids involved, so we use the regular k-mers.
The score between two k-mersA and B is computed as the
sum of all scores of corresponding amino acids:

Sk-mer(A,B) =
k∑

i=1
M(Ai,Bi) , (3)

where Ai is the ith amino acid of A. Given a hit that
consists of two s-mers w and z, we consider the two k-
mers that contain the occurrences of the two s-mers w
and z in the center, denoted k-mer(w) and k-mer(z). If
Sk-mer(k-mer(w), k-mer(z)) ≥ Tsim, then the two regions
are deemed similar. Note the parameter Tsim that controls,
together with k-mer size k, how similar two regions should
be in order to be identified as such.

Implementation
Details of the fast implementation are given next. The pro-
tein sequences are encoded into bits using five bits per
amino acid. (The five bits used for encoding are unre-
lated with the weight of the spaced seeds employed. It is
a coincidence that both numbers are five.) Each protein

Fig. 5 S-mers. An example of all s-mers of a sequence
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sequence is encoded as an array of unsigned 64-bit inte-
gers; each 64-bit integer stores 12 amino acids within 60
bits and 4 bits are unused. Each spaced seed is encoded
using also five bits per position, 11111 for a 1 (match)
and00000 for a * (don’t care). Bitwise operations are then
heavily used in order to speed up recording spaced-mers
into hash tables.
All spaced-mers in all protein sequences are computed

and stored in a hash table, together with their location in
the protein sequences. Because of our representation, the
computation of each spaced-mer requires only one bitwise
AND and one bit SHIFT operation. Once all spaced-mers
are stored, for each spaced-mer in the table, all similar
spaced-mers are computed and then all hits between the
spaced-mer and similar ones are easily collected from the
table and extended in search for similarities.

Post-processing similarities
We first process the similar subsequences we computed
in the previous phase to remove those appearing too
many times as they are believed to be just repeats that
occur very often in the protein sequences without any
relevance for the interaction process. We explain the algo-
rithm on the toy example below. For the protein sequence
MVLSPADKTNVKAAWG, assume we have found the simi-
larities marked by lines in Fig. 6a. For example, the top line
means that MVLSP was found to be similar with another
subsequence somewhere else, the bottom line represents
the same about the subsequence KTNVKAAW, etc.
The counts in the bottom row indicate how many times

each position occurs in all similarities found. (In the figure
above, this means the number of lines that cover that posi-
tion). All positions with a high count, above a threshold
Thc, will be eliminated from all similarities, which will
be modified accordingly. In our example, assuming the
threshold is 5, positions 3, 4, 8, 9, and 10 have counts 5
or higher and are eliminated; see Fig. 6b. The new sim-
ilarities are indicated by the lines above the sequence.
For example, MVLSP has positions 3 and 4 removed and
becomes two similarities, MV and P. The counterpart of
each similarity is modified the same way.

Scoring PPIs
What we have computed so far are similarities, that is,
pairs of similar subsequences of the same length. We now

a b

Fig. 6 Similarity processing. An example of similarities before (a) and
after (b) post-processing

show how to compute the scores. First, we extend the
definition of the score from k-mers to arbitrary subse-
quences of equal length. For two subsequences X and Y of
length n, the score is given by the sum of the scores of all
corresponding k-mer pairs; using (3):

Se(X,Y ) =
n−k+1∑

i=1
Sk-mer(X[ i . . i+k−1] ,Y [ i . . i+k−1] ) ,

(4)

where X[ i . . j]= XiXi+1 · · ·Xj. It is important to recall
that any two similar sequences we find have the same
length, therefore the above scoring function can be used.
Finally, we describe how the scores for whole protein

sequences are computed. Initially all scores are set to
zero. Each pair of proteins (P1,P2) that are known to
interact has its own contribution to the scores of other
pairs. For each computed similarity (X1,Y1) between
P1 and another protein Q1 (X1 is a subsequence of
P1 and Y1 is a subsequence of Q1) and for each sim-
ilarity (X2,Y2) between P2 and another protein Q2,
the score between Q1 and Q2, Sp(Q1,Q2), is increased,
using (4), by:

Sp(Q1,Q2) ← Sp(Q1,Q2)

+ Se(X1,Y1)(|X2| − k + 1) + Se(X2,Y2)(|X1| − k + 1)
|Q1||Q2| ,

(5)

where |Q| denotes the length of the amino acid sequence
Q. That means, the score of each corresponding k-mer
pair between X1 and Y1 is multiplied by the number of
k-mers in X2, that is, the number of times it is used to sup-
port the fact that Q1 is interacting with Q2. Similarly, the
score of each corresponding k-mer pair between X2 and
Y2 is multiplied by the number of k-mers in X1. The score
obtained this way is then normalized by dividing it by the
product of the lengths of the proteins involved.

Predicting interactions
Once the score are computed, by considering all given
interactions and similar subsequences and computing
their impact on the other scores as above, predicting inter-
actions is simply done according to the scores. All protein
pairs are sorted decreasingly by the scores; higher scores
represent higher probability to interact. If a threshold is
provided, then those pairs with scores above the threshold
are reported as interacting.

SPRINT
We put all the above together to summarize the SPRINT
algorithm for predicting PPIs. The input consists of the
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proteins sequences and PPIs. The default set of seeds is
given by SEED4,5 above but any set can be used.

SPRINT(Ps,Pi)
input: protein sequences Ps, protein interactions Pi
global: seed set SEED
output: all protein pairs sorted decreasingly by score
[Hash spaced-mers]
1. for each seed s in SEED do
2. for each protein sequence p in Ps do
3. for i from 0 to |p| − |s| do
4. w ← the s-mer at position i in p
5. store w in hash table Hs
6. store i in the list of w [list of positions where w
occurs]
[Compute similarities]
7. for each seed s in SEED do
8. for each s-mer w in Hs do
9. compute the set Sim(w) of s-mers similar with w
(see (2))
10. for each z ∈ Sim(w) do
11. for each position i in the list of w do
12. for each position j in the list of z do
13. if Sk-mer(k-mer(w), k-mer(z)) ≥ Tsim
14. then extend the similarity both ways
15. store the pair of subsequences found
16. Process similarities to remove positions with count
higher than Thc
[Compute scores]
17. for each pair (P,Q) ∈ Ps × Ps do
18. Sp(P,Q) ← 0
19. for each (P1,P2) ∈ Pi do
20. for each protein Q1 and each similarity (X1,Y1) in
(P1,Q1) do
21. for each protein Q2 and each similarity (X2,Y2) in
(P2,Q2) do
22. increase the score Sp(Q1,Q2) as in (5)
[Predict PPIs]
23. sort the pairs in Ps × Ps decreasingly by score
24. if a threshold is provided
25. then output those with score above threshold

Note that the behaviour of SPRINT depends on a num-
ber of parameters: the similarity matrix M, the k-mer
size k, and the thresholds Thit, Tsim, and Thc. The default
matrix M is PAM120 but SPRINT accepts any similarity
matrix. We have tested BLOSUM80 and BLOSUM62 and
the results are nearly identical. The default values for the
remaining parameters are k = 20, Thit = 15, Tsim = 35,
and Thc = 40. These values have been experimentally
determined using only Park and Marcotte’s data set. All
the other datasets have been used exclusively for test-
ing. The program is quite stable, the results being almost
unaffected by small variations of these parameters.

Conclusion
We have presented a new algorithm and software,
SPRINT, for predicting PPIs that has higher performance
than the current state-of-the-art programs while running
orders of magnitude faster and using very little memory.
SPRINT is very easy to use and we hope it will make PPI
prediction for entire interactomes a routine task. It can be
used on its own or in connection with other tools for PPI
prediction.
Plenty of room for improvement remains, especially for

the C2 and C3 data. Also, we hope to use the algorithm
of SPRINT to predict interacting sites. Since they work
directly with the sequence of amino acids, sequence-based
methods often have an advantage in finding the actual
positions where interaction occurs.

Availability and requirements
Project name: SPRINT
Projecthome page: https://github.com/lucian-ilie/SPRINT
Operating system(s): Platform independent
Programming language(s): C++, OpenMP
License: GPLv3.
Any restrictions to use by non-academics: None.
Data: Park and Marcotte’s datasets are available from
www.marcottelab.org/differentialGeneralization/.TheUniProt
protein sequences we used, precomputed similarities for
these sequences, the datasets, and the top 1% predicted
PPIs for the entire human interactome can be found at
www.csd.uwo.ca/faculty/ilie/SPRINT/.

Additional files

Additional file 1: This file contains all sensitivity, precision, and F1-score
values for our tests. The averages were included in Table 2. (XLSX 78 KB)

Additional file 2: This file contains the ROC and PR curves for all tests.
(PDF 4782 KB)
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