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Abstract

Background: Protein remote homology detection plays a vital role in studies of protein structures and functions.
Almost all of the traditional machine leaning methods require fixed length features to represent the protein
sequences. However, it is never an easy task to extract the discriminative features with limited knowledge of
proteins. On the other hand, deep learning technique has demonstrated its advantage in automatically learning
representations. It is worthwhile to explore the applications of deep learning techniques to the protein remote

homology detection.

Results: In this study, we employ the Bidirectional Long Short-Term Memory (BLSTM) to learn effective features
from pseudo proteins, also propose a predictor called ProDec-BLSTM: it includes input layer, bidirectional LSTM,
time distributed dense layer and output layer. This neural network can automatically extract the discriminative
features by using bidirectional LSTM and the time distributed dense layer.

Conclusion: Experimental results on a widely-used benchmark dataset show that ProDec-BLSTM outperforms
other related methods in terms of both the mean ROC and mean ROC50 scores. This promising result shows that
ProDec-BLSTM is a useful tool for protein remote homology detection. Furthermore, the hidden patterns learnt by
ProDec-BLSTM can be interpreted and visualized, and therefore, additional useful information can be obtained.

Keywords: Protein sequence analysis, Protein remote homology detection, Neural network, Bidirectional Long

Short-Term Memory

Background

Protein remote protein homology detection plays a vital
role in the field of bioinformatics since remote homolo-
gous proteins share similar structures and functions,
which is critical for the studies of protein 3D structure
and function [1, 2]. Unfortunately, because of their low
protein sequence similarities, the performance of predic-
tors is still too low to be applied to real world applica-
tions [3]. During the past decades, some powerful
computational methods have been proposed to deal with
this problem. The earliest and most widely used
methods are alignment-based approaches, including se-
quence alignment [4-8], profile alignment [9-14] and
HMM alignment [15-17]. Later, discriminative methods
have been proposed, which treat protein remote
homology protein detection as a superfamily level
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classification task. These methods take the advantages of
machine learning algorithms by using both positive and
negative samples to train a classifier [18, 19]. A key of
these methods is to find an effective representation of
proteins. In this regard, several feature extraction
methods have been proposed, for example, Top-n-gram
extracted the evolutionary information from the profiles
[20], Thomas Lingner proposed an approach to incorp-
orate the distances between short oligomers [21], and
some methods incorporated physicochemical properties
of amino acids into the feature vector representation,
such as SVM-RQA [22], SVM-PCD [23], SVM-PDT
[24], disPseAAC [25]. Kernel tricks are also employed in
discriminative methods, which are used to measure the
similarity between protein pairs [26]. Several kernels
have been proposed to calculate the similarity between
protein samples, such as mismatch kernel [27], motif
kernel [28], LA kernel [29], SW-PSSM [30], SVM-
Pairwise [31], etc. For more information of these
methods, please refer to a recent review paper [1].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1842-2&domain=pdf
mailto:bliu@hit.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Li et al. BMC Bioinformatics (2017) 18:443

The aforementioned methods have obviously facili-
tated the development of this important field. How-
ever, further studies are still required. Almost all the
machine learning methods require fixed length vectors
as inputs. Nevertheless, the lengths of protein
sequences vary significantly. During the vectorization
process, the sequence-order information and the
position dependency effects are lost, and this informa-
tion is critical for protein sequence analysis and nu-
cleic acid analysis [32-34]. Although some studies
attempted to incorporate this information into the pre-
dictors [21, 24, 35, 36], it is never an easy task due to
the limited knowledge of proteins.

Recently, deep learning techniques have demonstrated
their ability for improving the discriminative power com-
pared with other machine learning methods [37, 38], and
have been widely applied to the field of bioinformatics
[39], such as the estimation of protein model quality [40],
protein structure prediction [41-43], protein disorder pre-
diction [44], etc. Recurrent Neural Network (RNN) is one
of the most successful deep learning techniques, which is
designed to utilize sequential information of input data
with cyclic connections among building blocks, such as
Long Short-Term Memory (LSTM) [45, 46], and gated re-
current units (GRUs) [47]. LSTM can automatically detect
the long-terms and short-terms dependency relationships
in protein sequences, and decides how to process a
current subsequence according to the information ex-
tracted from the prior subsequences [48]. LSTM has also
been applied to protein remote homology detection to
automatically to generate the representation of proteins
[48]. Compared with other methods, it is able to identify
effective patterns of protein sequences. Although this ap-
proach has achieved state-of-the-art performance, it has
several shortcomings: 1) Hochreiter’s neural network [48]
only has two layers: LSTM and output layer. Its capacity is
too limited to capture sequence-order effects, especially
for the long proteins; 2) Features are generated only based
on the last output of LSTM. However, as protein se-
quences contains hundreds of amino acids, it is hard to
detect the dependency relationships of all the subse-
quences by only considering information contained in the
last output of LSTM; 3) The last output generated from
LSTM contains complex dependencies, which cannot be
traced to any specific subsequence for further analysis.

Here, we are to propose a computational predictor
for protein remote homology detection based on
Bidirectional Long Short-Term Memory [45, 46, 49],
called ProDec-BLSTM, to address the aforementioned
disadvantages of the existing methods in this field. Pro-
Dec-BLSTM consisted of input layer, bidirectional
LSTM layer, time distributed dense layer and output
layer. With this neural network, both the long and
short dependency information of pseudo proteins can
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be captured by tapping the information from every me-
diate hidden value of bidirectional LSTM. Experimental
results on a widely used benchmark dataset and an up-
dated independent dataset show that ProDec-BLSTM
outperforms other existing methods. Furthermore, the
patterns learnt by ProDec-BLSTM can be interpreted
and visualized, providing additional information for fur-
ther analysis.

Methods

SCOP benchmark dataset

A widely used benchmark dataset has been used to
evaluate the performance of various methods [28], which
was constructed based on the SCOP database [50] by
Hochreiter [48]. This dataset can be accessed from
http://www.bioinf jku.at/software/LSTM_protein/.

The SCOP database [50] classifies the protein se-
quences into a hierarchy structure, whose levels from
top to bottom are class, fold, superfamily, and family.
4019 proteins sequences are extracted from SCOP data-
base, whose identities are lower than 95%, and they are
divided into 102 families and 52 superfamilies. For each
family, there are at least 10 positive samples. For the 102
families in the database, the training and testing datasets
are defined as:

Strain (k) = S;;ain (k) UEa:ain (k) USt_rain (k)
StESt (k) = S:est (k) US;est (k)
(k=1,2,...,102)
(1)

where S (k) represents the k™ positive testing dataset
with proteins in ™ family, and S/, (k) represents the
k™ positive training dataset containing proteins in the
same superfamily and not in the &A™ family. E;, (k) de-
notes the extended positive training dataset for k™ train-
ing dataset. The added training samples are extracted
from Uniref50 [51] by using PSI-BLAST [9] with default
parameters except that the e-value was set as 10.0. For
all of the superfamilies except which k™ family belongs to,
select one family in each of the superfamilies respectively,
to form the K™ negative testing dataset S__ (k) and the
rest of proteins in these superfamilies are included in the
negative training dataset S, (k). The average number of
samples of all the 102 training datasets is 9077.

Neural network architectures based on bidirectional LSTM
In this section, we will introduce the network architec-
ture of ProDec-BLSTM, as shown in Fig. 1. This net-
work has four layers: input layer, bidirectional LSTM
layer, time distributed dense layer, and output layer. The
input layer is designed to encode the pseudo protein by
one-hot encoding [52].Bidirectional LSTM extracts the
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Fig. 1 The structure of ProDec-BLSTM. The input layer converts the pseudo proteins into feature vectors by one-hot encoding. Next, the subsequences
within the sliding window are fed into the bidirectional LSTM layer for extracting the sequence patterns. Then, the time distributed dense layer weights
the extracted patterns. Finally, the extracted feature vectors are fed into output layer for prediction
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dependency relationships between subsequences. We
take the advantages of every intermediate hidden value
from bidirectional LSTM to better handling the long
length of protein sequences. More comprehensive de-
pendency information can be included into the hidden
values by using bidirectional LSTM. Then, those inter-
mediate hidden values are connected to the time distrib-
uted dense layer. Because memory cells in one block
extract different levels of dependency information, the
time distributed dense layer is designed to weight the
dependency relationships extracted from different cells.
The outputs of time distributed dense layer are
concatenated into one feature vector and be fed into the
output layer for prediction. Next, we will introduce the
four layers in more details.

Input layer
The input layer transfers the protein sequence into a
representing matrix, and fed it into the bidirectional
LSTM layer.

Given a protein sequence P:

P =R, Ry,...,R (2)

where R; denotes the 1st residue, R, denotes the 2nd
residue and so forth, / represents the length of P. Then
the P is converted into pseudo protein P”’ based on

PSSM [26, 53] generated by PSI-BLAST with command
line “-evalue 0.001 -num_iterations 3".

The input matrix at the /™ time step can be obtained
by one-hot encoding of P"’ [52], shown as:

M; = (Vi, Vi1, oo, Vigw-1) (3)

1R, = AA,
0, otherwise

T
vi= (e, €n,...,€20) €5 = { (4)
where v, is the representing vector for R; w denotes the size
of the sliding window;, i represents the start position of the
subsequence, AA; denotes the j™ standard amino acid.

Bidirectional LSTM Layer

Bidirectional LSTM layer is the most important part in
ProDec-BLSTM, aiming to extract the sequence pat-
terns from pseudo proteins. The basic unit of LSTM is
the memory cell. In this study, we adopted the memory
cell described in [46], whose structure is shown in Fig. 2.
The memory cell receives two input streams: the subse-
quence within the sliding window, and the output of
LSTM from the last time step. Based on the two infor-
mation streams, the three gates coordinate with each
other to update and output the cell state. The input gate
controls how much of new information can flow into
the cell; The forget gate decides how much stored infor-
mation in the cell will be kept. By coordination of input
gate and forget gate, the cell state is updated. The output
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Fig. 2 The structure of LSTM memory cell. There are three gates, including input gate (marked as i), forget gate (marked as ), output gate (marked as
0), to control the information stream flowing in and out the block. o denotes the sigmoid function, which produces a value bounded by 0 and 1. The
internal cell state is maintained and updated by the coordination of input gate and forget gate. The output gate controls outputting information
stored in the cell. h is the output of the memory cell, x is representing matrix of the input subsequence and t mean the ¢ time step
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gate controls outputting the information stored in the
cell, which is hidden value (denoted as h;, in Fig. 2).

The bidirectional LSTM is made up of two reversed
unidirectional LSTM. To handle the long pseudo protein
sequences, and better capture the dependency informa-
tion of subsequences, we tap into all of the intermediate
hidden values generated by bidirectional LSTM. The
hidden values generated by the forward LSTM and back-
ward LSTM for the same input subsequence are
concatenated into a vector, which is shown in Eq. (5).

h, = (hf,h}) (5)

where h is hidden value, f represents the forward LSTM, b
represents the backward LSTM, ¢ means the ™ time step.
In the bidirectional LSTM layer, the pseudo protein is
processed N-terminus to C-terminus and C-terminus to
N-terminus simultaneously. Therefore, hf contains de-
pendencies between the target subsequence and its left

neighbouring subsequence. h? contains dependencies
between the target subsequence and its right neighbour-
ing subsequence. These two dependency relationships
are concatenated into one vector h,, which can be inter-
preted as the feature of the target subsequence. There-
fore, more comprehensive dependencies can be included
into the intermediate hidden values by using bidirec-
tional LSTM.

Time distributed dense layer

Different memory cells in one block extracts different
levels of dependency relationships. Thus, we add the
time distributed dense layer after the bidirectional LSTM
layer to give weights to the hidden values generated
from different memory cells. The time distributed dense

receives the hidden value generated from memory block,
and outputs a single value for one subsequence. The
outputs of time distributed dense layer at every position
are then concatenated into one vector, which is fed into
the output layer for prediction.

Output layer

The output layer is a fully connected network with one
node and it performs the binary prediction based on the
representing vectors generated by the time distributed
dense layer. Therefore, for each protein, its probability
of belonging to a specific superfamily is produced.

Implementation details

This network was implemented by using Keras 2.0.6
(https://github.com/fchollet/keras) with the backend of
Theano (0.9.0) [54].

The size of the sliding window was set as 3, and the
protein sequence length was fixed as 400. The bidirec-
tional LSTM has 50 memory cells in one block. The
time distributed fully dense layer was a fully connected
layer with the one output node, using ReLu activation
function [55]. All the initializations of weights and bias
were set as the default in Keras. The model was opti-
mized by the algorithm of RMSprop [56] with the loss
function of binary crossentropy at learning rate 0.01.
The batch size was 32. Dropout [57] was included in bi-
directional LSTM layer and the proportion of disconnec-
tion was 0.2. Each model was optimized by training for
150 epochs.

Performance measure
In this study, ROC score and ROC50 score are used to
evaluate the performance of various methods. Receiver
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operating characteristics (ROC) curve is plotted by using
the true positive rate as the x axis and the false positive
rate as the y axis, which are calculated based on different
classification threshold [58]. ROC score refers to the
normalized area under ROC curve. ROC50 is the nor-
malized area when the first 50 false positive samples
occur. For a perfect classification, ROC score and
ROCS50 are equal to 1.

Results and discussion

Comparison with various methods

We compared ProDec-BLSTM with various related
methods, including GPkernel [28], GPextended [28],
GPboost [28], SVM-Pairwise [31], Mismatch [27],
eMOTIF [59], LA-kernel [29], PSI-BLAST [9] and
LSTM [48]. The results are shown in Table 1, from
which we can see that ProDec-BLSTM outperforms all
of other methods. Both ProDec-BLSTM and LSTM
[48] are based on deep learning techniques with smart
representation of proteins, and all the other approaches
are based on Support Vector Machines (SVMs). These
results indicate that the LSTM method is a suitable ap-
proach for protein remote homology detection. As dis-
cussed above, the SVM-based methods rely on the
quality of hand-made features and kernel tricks. How-
ever, due to the imited knowledges of proteins, their
discriminative power is still low. In contrast, the deep
learning algorithms, especially LSTM are able to
automatically extract the features from proteins
sequences, and capture the sequence-order effects. The
t-test is employed to measure the differences between
ProDec-BLSTM and LSTM [48]. The results show that
ProDec-BLSTM significantly outperforms LSTM [48]
in terms of ROC scores (P-value=0.05) and ROC50
scores (P-value = 3.04e-09). There are four main
reasons for ProDec-BLSTM outperforms LSTM: 1)
ProDec-BLSTM taps into all of the intermediate hid-
den values generated by bidirectional LSTM to better

Table 1 Mean ROC and ROC50 scores of various methods on
the SCOP benchmark dataset (Eq. 1)

Methods Mean ROC Mean ROC50 classifier
GPkernel 0.902 0.591 SYM
GPextended 0.869 0.542 SYM
GPboost 0.797 0375 SVM
SVM-Pairwise 0.849 0.555 SVM
Mismatch 0.878 0.543 SYM
eMOTIF 0.857 0.551 SVM
LA-kernel 0919 0.686 SVM
PSI-BLAST 0.575 0.175 NA
LST™M 0.943 0.735 LST™M
ProDec-BLSTM 0.969 0.849 LSTM
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handle the long proteins and pay attention to local as
well as global dependencies; 2) ProDec-BLSTM used
bidirectional LSTM layer which is able to include the
dependency information from both N-terminal to C-
terminal and from C-terminal to N-terminal into the
intermediate hidden values; 3) the time distributed
dense layer gives weights to different levels of depend-
ency information to fuse information. 4) Evolutionary
information extracted from PSSMs is incorporated into
the predictor by using pseudo proteins.

Visualizations
The hidden patterns learnt by ProDec-BLSTM can be
interpreted and visualized. We explore the reason why
the proposed ProDec-BLSTM showed higher discrim-
inative power based on the visualization of hidden
patterns.

Given a pseudo protein P’, it can be converted into a
feature vector:

V= [(xl,(xz,...,(xt] (6)

where o, indicates the output of time distributed dense
layer at the ™ time step. The feature vector V is gener-
ated by concatenating all the outputs of time distributed
dense layer and each value of V represents the fused de-
pendency relationships of a subsequence. Thus, V con-
tains global sequence characteristics.

Here, we demonstrate the testing set of the family
b.1.1.1 in SCOP benchmark dataset (Eq. 1), which has
538 positive samples and 543 negative samples, as an
example: the representing vector of each sample are
generated by the trained ProDec-BLSTM model, and
then t-SNE [60] is employed to reduce the their dimen-
sions into two in order to visualize their distributions
(shown in Fig. 3). The ranges of x and y axis are both
normalized. From Fig. 3, we can see that most of the
positive and negative samples are clustered and clearly
apart from each other, indicating that the feature vectors
automatically generated by ProDec-BLSTM are effective
for protein remote homology detection.

Independent test on SCOPe dataset

Moreover, as a demonstration, we also extend the com-
parison with other methods via an updated independent
dataset set constructed based on SCOPe (latest version:
2.06) [61]. To avoid the homology bias, the CD-HIT [62]
is used to remove those proteins from SCOPe that have
more than 95% sequence identity to any protein in the
SCOP benchmark dataset (Eq. 1). Finally, 4679 proteins
in SCOPe are obtained using as the independent dataset
(see Additional file 1). Trained with SCOP benchmark
dataset, ProDec-BLSTM predictor is used to identify
the proteins in the SCOPe independent dataset set. Four
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related methods are compared with ProDec-BLSTM,
including HHblits [16], Hmmer [15], PSI-BLAST [9] and
ProDec-LTR [3, 63]. HHblits and PSI-BLAST are
employed in the top-performing methods in CASP [64]
and ProDec-LTR [3] is a recent method that combines
different alignment-based methods. The results thus ob-
tained are given in Table 2, and their implementations
are listed below. It can be clearly seen from there that
the new predictor outperforms all the existing
approaches for protein remote homology detection.

Conclusion
In this study, we propose a predictor ProDec-BLSTM
based on bidirectional LSTM for protein remote

Table 2 Mean ROC and ROC50 scores of related methods on
the SCOPe independent dataset

Method Mean ROC Mean ROC50
HHblits® 0725 0443
Hmmer® 0556 0.145
PSI-BLAST 0668 0.096
ProtDec-LTR 0.742 0445
ProDec-BLSTM 0.970 0714

“the command line of HHblits is “-e 1 -p 0 -E inf -Z 10000 -B 10000 -b 10000’
PThe parameters of Hmmer are set as default

“The paramters of PSI-BLAST are set as default

%The above three alignment-based methods are combined by ProDec-LTR.
The model is trained with SCOP benchmark dataset (Eq. 1)

homology detection, which can automatically extract the
discriminative features and capture sequence-order ef-
fects. Experimental results showed that ProDec-BLSTM
achieved the top performance comparing with other
existing methods on an SCOP benchmark dataset and a
SCOPe independent dataset. Comparing with hand-
made protein features used by traditional machine learn-
ing methods, the features learnt by ProDec-BLSTM
have more discriminative power.

Such high performance of ProDec-BLSTM benefits
from bidirectional LSTM, and time distributed dense
layer, by which it is able to extract the global and local
sequence order effects. Every intermediate hidden values
of bidirectional LSTM are also incorporated into the
proposed predictor so as to capture context dependency
information of subsequences. The time distributed dense
layer gives weights to different level of dependency rela-
tionships, and fuses the dependency information.

In the future, we will focus on exploring new features
to further improve the performance of ProDec-BLSTM,
such as directly learning from PSSM [65].

Additional files

Additional file 1: The SCOP ID of the independent SCOPe testing
dataset. (PDF 7601 kb)

Additional file 2: The source code and its document of ProDec-BLSTM.
(ZIP 316 kb)
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