
Zagganas et al. BMC Bioinformatics  (2017) 18:399 
DOI 10.1186/s12859-017-1812-8

SOFTWARE Open Access

BUFET: boosting the unbiased miRNA
functional enrichment analysis using bitsets
Konstantinos Zagganas1,2* , Thanasis Vergoulis2, Maria D. Paraskevopoulou3,4, Ioannis S. Vlachos3,4,
Spiros Skiadopoulos1 and Theodore Dalamagas2

Abstract

Background: A group of miRNAs can regulate a biological process by targeting genes involved in the process. The
unbiased miRNA functional enrichment analysis is the most precise in silico approach to predict the biological
processes that may be regulated by a given miRNA group. However, it is computationally intensive and significantly
more expensive than its alternatives.

Results: We introduce BUFET, a new approach to significantly reduce the time required for the execution of the
unbiased miRNA functional enrichment analysis. It derives its strength from the utilization of efficient bitset-based
methods and parallel computation techniques.

Conclusions: BUFET outperforms the state-of-the-art implementation, in regard to computational efficiency, in all
scenarios (both single- and multi-core), being, in some cases, more than one order of magnitude faster.
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Background
microRNAs (miRNAs) are short (∼ 23nt) non-coding
RNA molecules that are considered to be central gene
expression regulators. They act through mRNA degrada-
tion and/or translational suppression of protein coding
transcripts. By binding to specific recognition elements
with perfect or imperfect base complementarity, miRNAs
interact with genes and inhibit their expression. Conse-
quently, they can play a key role in the regulation of
numerous biological processes and, thus, miRNA-induced
up- or down-regulation can be indicative of a diseased
state [1–3]. On the other hand, each miRNA can target
hundreds of different genes [4] and its perturbed expres-
sion can, in turn, affect numerous biological functions.
This makes the analysis of the effects of miRNAs on
biological processes crucial to the understanding of this
post-transcriptional regulation mechanism.
miRNA functional enrichment analysis is the in silico

process which enables researchers to discover potential
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biological functions affected by a group of differentially
expressed miRNAs. The first step of this process is the
identification of all genes targeted by at least one of the
miRNAs in the group. In most cases, these gene sets are
produced by target prediction algorithms like DIANA-
microT [5, 6], miRanda [7] or TargetScan [8]. Then,
gene annotation data (e.g., pathways, functions, etc) for
all known genes are collected. These data are usually
retrieved by the Gene Ontology (GO) Consortium [9] (or
other sources like KEGG [10, 11] and PANTHER [12])
and capture the involvement of genes in several biolog-
ical processes. Finally, a statistical analysis is applied on
the data collected during the previous two steps, to reveal
the annotation categories that are overrepresented in the
genes targeted by the miRNA group. Usually, the algo-
rithm selected for this step is Fisher’s exact test [13, 14],
which calculates p-values based on the hypergeometric
distribution.
However, it has recently been shown [15] that the use

of the aforementioned statistics approach can produce
significant p-values even for biological processes, con-
trolled by groups of randomly selected miRNAs. This
indicates that an underlying bias exists between miR-
NAs, their predicted gene-targets and the structure of the
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annotation, also reflected in the performed enrichment
analyses. Thus, in order to overcome this problem, the
authors of [15] proposed a Monte Carlo test which pro-
duces an empirical p-value. Moreover, as pointed out by
the authors of [16], this approach moves the analysis from
the gene to the miRNA level by defining the biological
process overlap as the proportion of those genes that are
both targeted by the miRNA group of interest and also
involved in the biological process under examination. In
brief, their approach is the following: first, a large number
of randomly assembled miRNA groups having the same
number of miRNAs as the group of interest are selected.
Then, the empirical p-value is defined as the proportion of
those random groups that exhibit a greater biological pro-
cess overlap than the miRNA group under examination.
More details on the benefits of this approach to miRNA
functional enrichment analysis are available in the original
paper [15] by Bleazard et al.
The number of random miRNA groups selected to per-

form the analysis is a parameter that controls the accuracy
of the p-value to be produced. In particular, the higher
the number of random miRNA groups selected, the more
accurate the produced p-value will be. Usually, 1 million
random groups are used to achieve sufficient accuracy
[15]. Unfortunately, using such a large number of groups
results in unreasonably large execution times. For exam-
ple, an execution of the state-of-the-art implementation
[15] for a group of 100 miRNAs as input, using 1 mil-
lion random groups, on a single core of an Intel i7-3820
processor requires up to 17 h of processing time.
In order to alleviate this issue, we introduce BUFET

(Bitset-based Unbiased miRNA Functional Enrichment
Tool). This approach exploits efficient data structures
to significantly reduce the execution time of the unbi-
ased enrichment analysis. BUFET also takes advantage
of parallel computing techniques to achieve additional
performance improvements in multi-core systems. The
contribution of this work can be summarized in the fol-
lowing:

• We studied the computational requirements and
examined the performance bottlenecks of the
unbiased miRNA functional enrichment analysis.

• We investigated the performance of different data
structures, namely hash tables and bitsets, in regards
to their effectiveness in unblocking the identified
bottlenecks.

• We developed BUFET, a tool that utilises the results
of the aforementioned investigation to boost the
speed of the unbiased miRNA functional enrichment
analysis. To achieve an even greater speed boost in
the case of multi-core environments, we exploited
multithreading to implement parallel execution of
the analysis.

• We performed an extensive evaluation of BUFET to
demonstrate its efficiency. BUFET outperforms the
state-of-the-art approach in all scenarios (in many
cases by an order of magnitude).

• We provide BUFET as an open source
implementation, which is freely available on GitHub
(see the “Availability and requirements” section).
BUFET is a powerful tool that provides flexible input
file formats enabling many execution modes (e.g.,
execution using custom miRNA-gene interactions
and gene annotations).

Implementation
The challenge
As mentioned previously, the unbiased miRNA functional
enrichment analysis involves the examination of a large
number of biological processes (or, equivalently, annota-
tion categories) to identify those, which are more likely to
be affected by the gene-targets of a miRNA group. Dur-
ing this type of analysis, both biological processes and
miRNAs are represented as gene sets: each biological pro-
cess is represented by the genes involved in it, while each
miRNA by its gene-targets.
It becomes evident that computing the biologi-

cal process overlap of a miRNA group (see the
“Background” section) involves the calculation of the
intersection between the set of genes targeted by the
miRNA group and the set of genes involved in the
biological process. Moreover, the set of genes targeted
by each miRNA group needs to be calculated “on the
fly” by performing union operations on the gene sets
of each miRNA in the group. Therefore, the unbi-
ased miRNA functional enrichment analysis relies on
performing a very large number of set unions and
intersections. For instance, for a given query miRNA
group of size 10, about 10 million unions and more
than 8 billion intersections are required to produce a
p-value.
The state-of-the-art implementation of the unbiased

miRNA functional enrichment analysis [15] uses hash
tables (more specifically, Python sets1) to represent gene
sets. The advantage of this data structure is that perform-
ing union and intersection operations for small sets is
usually very fast. Both operations are performed by exe-
cuting a variant of the hash-join algorithm [17]. On the
other hand, hash-join becomes very inefficient when
operating on large sets.
Unfortunately, in the case of the unbiased miRNA func-

tional enrichment analysis, all union operations are per-
formed on large gene sets. This is attributed to the fact
that each of these gene sets corresponds to the pre-
dicted targets of a particular miRNA. Since miRNA target
prediction algorithms usually produce hundreds or even
thousands of results (interactions) for a single miRNA,
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it becomes evident that most of the performed union
operations can be quite slow if hash-join is used.
To overcome this problem, the bitset (or bit-vector)

[17], an alternative data structure, which is more suit-
able for the representation of large sets, can be used.
When sets of genes are implemented as bitsets, unions
and intersections between them can be calculated by per-
forming bitwise operations on bit blocks. In particular,
bitwise-or can be used to get the union of two sets,
while bitwise-and to get their intersection. Such oper-
ations are efficient for large sets, since their execution
time is not affected by the size of the set2. Additionally,
the representation of gene sets as bitsets is more effi-
cient, memory-wise, in the case of relatively large sets of
genes (like those produced by miRNA target prediction
algorithms).
The calculation of the targets of each miRNA group

would benefit greatly by the use of bitwise-or,
since, as previously mentioned, it involves a large num-
ber of union operations on large gene sets repre-
sented by dense bitsets. In this case, bitsets also have
a reduced memory footprint compared to hash-tables.
On the other hand, gene sets related to biological
processes, as provided by Gene Ontology annota-
tions [9], usually consist of a small number of genes.
Therefore, hash-join on these sets can be rather
efficient3.
The previous discussion suggests that a hybrid solu-

tion, using bitwise operations for unions and hash-join
for intersections, seems more suitable than both of the
aforementioned approaches. Unfortunately, this hybrid
approach has a major drawback. The gene sets generated
by bitwise-or for all miRNA groups must be provided
as input to the hash-join algorithm for the calcu-
lation of the biological process overlaps. However, the
bitwise-or algorithm produces gene sets represented
as bitsets, while hash-join requires its input in the
form of hash tables. Therefore, a data structure conversion

must be performed, introducing an important execution
overhead that counterbalances any gains in efficiency.

The BUFET approach
Our approach, called BUFET, is demonstrated in Fig. 1.
It combines the best characteristics of bitset- and
hash-table-based methods without suffering from the
aforementioned shortcomings of a hybrid approach. It
takes advantage of the efficiency of bitwise-or in
calculating the union of large sets to produce the
gene sets targeted by particular miRNA groups. These
gene sets are represented as bitsets, called miRNA
group bitsets.
Meanwhile, the biological process overlap of each

miRNA group is calculated as follows: for each gene anno-
tated as part of the biological process, the respective bit
in the miRNA group bitset is examined. If the bit is
set, then the value of a counter is increased by one (its
value is initially zero). Otherwise, the value of the counter
remains intact. After all genes related to the biological
process have been considered, the value of the counter
provides the size of the intersection and, subsequently,
the biological process overlap. Since the genes are used to
probe the miRNA group bitset, we refer to this method as
bit-probing.
Further optimizations were introduced in order to

achieve additional performance improvements. First, bio-
logical processes that have no common genes with the
miRNA group under examination can be excluded from
the analysis (since no interference by the miRNAs in the
group with the process is recorded). Additionally, BUFET
supports full utilization of multi-core computing systems
by supporting parallelization at the biological process
level.
It should be noted that parallel execution is also sup-

ported by the state-of-the-art approach presented in
[15]. However, in contrast to the use of multiprocessing
adopted by this approach to implement parallelization,

Fig. 1 Flowchart summarizing the BUFET approach
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BUFET uses multithreading. The advantage of multi-
threading over multiprocessing is that all processes run-
ning in parallel have access to the same part of the main
memory. This eliminates the need to copy data across
processes, thus reducing the execution time and memory
footprint.
On the other hand, an issue with this approach is that

the bitsets containing the targets of the random miRNA
groups have to be calculated and stored in main memory.
This step is necessary, so that every thread is able to access
the data in order to calculate a p-value. Consequently, this
increases the memory footprint, although, the amount of
memory required does not pose a big challenge for con-
temporary computers.More specifically, none of themany
real-world analysis scenarios examined during our exper-
iments resulted in the allocation of more than 3.5 GB of
RAM to our script.

Table 1 Statistics related to the miRNA-to-gene interactions used

Number of genes/miRNA
Total miRNAs

Minimum Maximum Average Median Std.
Deviation

microT 1 4547 404 206 459 2580

miRanda 11 6977 1309 1096 932 2588

Functionality and source code
BUFET is provided as a free, open source software
licensed under GPL v3 (a download link is pro-
vided in the “Availability and requirements” section).
Its core is implemented in C++ for greater efficiency,
while a Python wrapper script facilitates its execu-
tion and its incorporation in existing bioinformatics
workflows.
The input of the BUFET software consists mainly of two

CSV files: one containing miRNA-to-gene interactions
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Fig. 2 Average execution times (log scale) on a single core with a varying number of miRNAs. (a) microT, 10K random groups. (b) miRanda, 10K
random groups. (c) microT, 100K random groups. (d) miRanda, 100K random groups. (e) microT, 1M random groups. (f) miRanda, 1M random groups
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and another containing associations of biological func-
tions with particular genes. The proper format of these
files is described in the software download page. It should
be noted that BUFET provides flexibility, enabling the
users to upload miRNA-to-gene interactions based on the
prediction algorithm of their choice (e.g., TargetScan [8],
DIANA-microT [5, 6], miRanda [7], etc.) and to use bio-
logical function annotations collected by their preferred
source (e.g., GO [9], KEGG [10, 11], or PANTHER [12]).
Finally, BUFET also performs Benjamini-Hochberg FDR

correction [18]. More specifically, following the method
in [19], we assume that 5% (and 1%) of the produced p-
values (under the 0.05 threshold) are false positives, while
the rest are significant results. P-values significant at FDR
0.05 are marked with “*” while p-values significant at 0.01
are marked with “**” in the output file.

Results
In this section, the efficiency of BUFET is evalu-
ated against that of the state-of-the-art implementation
(EmpiricalGO4), in both single- and multi-core envi-
ronments. First, we examine the effect of the miRNA
group size on the execution times of both imple-
mentations. Next, we investigate their parallel behavior
for a varying number of CPU cores. miRNA-to-gene
interactions were collected from DIANA-microT-CDS
(score threshold=0.8) and miRanda (score threshold=155
and free energy=−20), while GO annotation data were
obtained from Ensembl. Statistics related to miRNA-to-
gene-interactions data used are presented in Table 1. All
experiments were executed on a machine powered by an
Intel Core i7-3820 processor with 8 cores (4 physical) and
64 GB of main memory.

a b

c d

e f

Fig. 3 Average execution times (log scale) on 7 cores with a varying number of miRNAs. amicroT, 10K random groups. bmiRanda, 10K random
groups. cmicroT, 100K random groups. dmiRanda, 100K random groups. emicroT, 1M random groups. fmiRanda, 1M random groups
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Varying the miRNA group size
Figure 2 presents (a) the average execution time of BUFET
and EmpiricalGO and (b) its standard deviation (using
error bars) for each measurement point and for vary-
ing miRNA group sizes (5, 10, 50 and 100 miRNAs) in
a single-core environment. For each miRNA group size,
10 different groups were used as input to both imple-
mentations. Thus, every reported execution time is the
average of 10 executions. The left column corresponds
to the experiment performed using DIANA-microT-CDS
interactions, while the right to the one using miRanda
interactions. We performed each experiment by select-
ing the following, commonly-used settings: 10 thousand
(10K), 100 thousand (100K), and 1 million (1M) ran-
dommiRNA groups. Since the difference in the execution
times between EmpiricalGO and BUFET are very large,

all diagrams are presented in log scale for the y axis to
enhance legibility.
It is clear that the execution time increases as the

number of miRNAs in the group under examination
increases for both approaches (due to the larger number
of union operations that have to be performed). How-
ever, it is evident that the rate of the increase in the
execution time is larger for EmpiricalGO than BUFET.
This can be attributed to the fact that BUFET exploits
the efficiency of bitwise-or in calculating unions on
large gene sets. It also becomes evident that BUFET
scales better than EmpiricalGO and in some cases, it
is faster by at least an order of magnitude. Therefore,
BUFET is a very efficient approach when high accu-
racy is needed for functional analysis of large miRNA
groups.

a b

c d

e f

Fig. 4 Average execution times (log scale) varying the number of cores. amicroT, 10K random groups. bmiRanda, 10K random groups. cmicroT,
100K random groups. dmiRanda, 100K random groups. emicroT, 1M random groups. fmiRanda, 1M random groups
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Figure 3 shows the same experiments in a multi-core
environment (7 cores were used). Note that the main
trends observed in the single-core experiment continue
to occur: increasing the miRNA group size leads to
increased execution times for bothmethods, while BUFET
is significantly more efficient than EmpiricalGO in all
cases. Note that, for the case of 5 miRNAs in low accu-
racy mode, the execution times tend to converge to the
time needed for serial operations (i.e. file reading, output
writing, and FDR correction). Finally, it is worth mention-
ing that, in the case of 100 miRNAs using 7 cores, in high
accuracy mode, BUFET can produce results in under 5
min, while EmpiricalGO needs more than 7 h for the
samel task.
Varying the number of cores
Figure 4 shows the average time required by BUFET and
EmpiricalGO to calculate the empirical p-values for 10
input groups of size 50 by using a varying number of CPU
cores. It is clear that both approaches become faster as the
number of cores increases. However, in every case BUFET
requires significantly less time to execute.

Conclusion
In this paper we dealt with the performance of the
unbiased miRNA functional enrichment analysis. We
showed that the state-of-the-art approach to perform
this type of analysis (EmpiricalGO) is not practical in
terms of computational efficiency, especially for large
miRNA groups when high accuracy is required. To deal
with this problem we introduced BUFET, an alterna-
tive bitset-based approach. Our experiments make evi-
dent that BUFET outperforms the state-of-the-art imple-
mentation in all scenarios (in many cases by orders of
magnitude). Additionally, the better scalability of BUFET
makes it a very appealing solution for the analysis of
large miRNA groups when 1 million random groups are
used for the analysis. Note that, BUFET is provided as
an open source implementation which is freely avail-
able on GitHub (the download URL is provided in the
“Availability and requirements” section).

Availability and requirements
Project name: BUFET
Project home page: https://github.com/diwis/BUFET/
Operating system(s): Linux, MacOSX.
Programming language: C++, Python.
Other requirements: Python interpreter 2.7 or higher,
g++ 4.8 or higher.
License: GNU GPL v.3.
Any restrictions to use by non-academics: None

Endnotes
1 https://docs.python.org/3/tutorial/datastructures.

html

2 In particular, the execution time of each bitwise opera-
tion depends on the number of bits it contains, i.e., on the
cardinality of the set’s domain.

3 Regarding the calculation of the biological process
overlap, an additional optimization is possible for the
hash-join algorithm. In particular, the production of
the output intersection set can be avoided, since only its
size is required. However, a similar optimization is not
feasible for bitwise-and.

4 http://sgjlab.org/empirical-go/
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