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Abstract

Background: Proteins recognize many different aspects of RNA ranging from single stranded regions to discrete
secondary or tertiary structures. High-throughput sequencing (HTS) of in vitro selected populations offers a large scale
method to study RNA-proteins interactions. However, most existing analysis methods require that the binding motifs
are enriched in the population relative to earlier rounds, and that motifs are found in a loop or single stranded region
of the potential RNA secondary structure. Such methods do not generalize to all RNA-protein interaction as some RNA
binding proteins specifically recognize more complex structures such as double stranded RNA.

Results: In this study, we use HT-SELEX derived populations to study the landscape of RNAs that interact with
Geobacillus kaustophilus ribosomal protein S15. Our data show high sequence and structure diversity and proved
intractable to existing methods. Conventional programs identified some sequence motifs, but these are found in less
than 5-10% of the total sequence pool. Therefore, we developed a novel framework to analyze HT-SELEX data. Our
process accounts for both sequence and structure components by abstracting the overall secondary structure into
smaller substructures composed of a single base-pair stack, which allows us to leverage existing approaches already
used in k-mer analysis to identify enriched motifs. By focusing on secondary structure motifs composed of specific
two base-pair stacks, we identified significantly enriched or depleted structure motifs relative to earlier rounds.

Conclusions: Discrete substructures are likely to be important to RNA-protein interactions, but they are difficult to
elucidate. Substructures can help make highly diverse sequence data more tractable. The structure motifs provide
limited accuracy in predicting enrichment suggesting that G. kaustophilus S15 can either recognize many different
secondary structure motifs or some aspects of the interaction are not captured by the analysis. This highlights the
importance of considering secondary and tertiary structure elements and their role in RNA-protein interactions.
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Background
RNA-binding proteins (RBPs) play essential cellular roles
that range from co- and post-transcriptional regulation of
mRNA transcripts [1, 2], to stabilization of macromolec-
ular complexes such as the ribosome [3]. In this genomic
era, the imperative to utilize primary sequence data to
elucidate the relationship between an RBP, its recognition
site, and its function, is only growing [4]. Identifying the
binding sites for RBPs is an important task toward unrav-
eling gene regulatory networks [5]. However, prediction
of RBP interaction sites remains a challenge. Unlike DNA-
binding proteins (DBPs), RBPs may recognize features
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of single-stranded RNA, double-stranded RNA, or even
three-dimensional tertiary structures [6]. Therefore, RNA
structure must be taken into account in assessment of
potential binding-sites. One method of experimentally
identifying the constraints on an DBP or RBP recognition
site is SELEX (Systematic Evolution of Ligands by Expo-
nential Enrichment) [7, 8]. SELEX is an iterative in vitro
selection technique that allows researchers to identify
nucleic acids that interact with a target ligand. Analysis of
the sequences resulting from a SELEX experiment can be
used to confirm the specificity of a binding site, or illumi-
nate how RNA structural plasticity may enable multiple
sequences to present a similar three-dimensional motif to
the protein [9].
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With the advent of next-generation sequencing, high-
throughput sequencing-SELEX (HT-SELEX) has become
an even more powerful approach to explore RNA-protein
interactions. Sequence conservation within the selected
population gives insight into important nucleotides, cir-
cumventing the need for laborious follow-up experiments
to identify key regions of the selected sequences. The
nucleotide differences between closely related sequences
effectively explore local sequence space [10–13], and
highly conserved areas point toward functionally impor-
tant positions. Using such patterns of variation and
conservation, information about the critical sequence
motifs responsible for binding is revealed. Furthermore,
sequencing intermediate rounds of the selection pro-
cess allows ancestral sequences to be determined rather
than inferred, and sequences that enrich over several
SELEX rounds are more likely to be high affinity binders
[14]. In addition, due to the high diversity of sequences
undergoing selection, multiple possible and distinct
binding motifs or structures can be discovered in a
single experiment.
One downside of HT-SELEX approaches is the size and

complexity of data that may be generated, especially from
large randomized nucleotide populations. Typically, the
RNA selection process starts with a pool of molecules
on the order of 1012 − 1014 sequences, which can still
be dwarfed by the total number of possible sequences
(4sequence length). In the ideal circumstance, over the course
of a SELEX experiment, the sequence pool will converge
on a small number of sequences that reflect a shared
potential binding motif. If the entire sequence pool is
sequenced, then these features should stand out as preva-
lent and enriching sequences within the population. In
practice, given the size of the populations, under-sampling
remains a significant hurdle. Thus, often only a sparse
view of the RNA-binding pool is provided [11, 15, 16],
potentially obscuring patterns that might be apparent
from more thorough analysis.
Typical analysis of HT-SELEX data involves the iden-

tification of the RNA-protein binding motif. This analy-
sis is distinct from transcription factor identification in
that there can be multiple potential binding motifs and
these motifs are likely to have a secondary structure con-
text [17–19]. Programs found in the MEME suite [20]
such as MEME, GLAM2 [21], and DREME [22] can be
applied to the HTS data to identify binding motifs. MEME
and DREME are designed to find contiguous sequence
motifs. GLAM2 identifies motifs that can include short-
gaps. However, there are a some of drawbacks to using
these tools. Due to their algorithmic complexity, MEME
and GLAM2 are not equipped to use large magnitudes
of sequence data [21, 23]. DREME’s run time scales lin-
early with the data set size, but this is still not sufficient
to keep pace with larger HTS data sets. Additionally, these

programs ignore any potential secondary structure, which
can hinder their ability to find the putative binding motifs.
To identify sequence-structure motifs, there are pro-

grams such as MEMERIS [17], RNAcontext [18, 24],
AptaMotif [25], MPBind [26], GraphProt [27], RCK [28],
AptaNI [29], and AptaTRACE [30]. MEMERIS specifi-
cally identifies motifs found in the loop regions of the
secondary structure, but like MEME, it is not designed
for HTS data. RNAContext and RCK use sequence and
structure information to find RNA binding motifs, but
they require a large number of both binder and non-
binder motifs in order to determine the motif enrichment
because it is assumed that the binding motif is con-
tiguous and is present in majority of binders and not
in the non-binders. MPbind uses a k-mer approach to
identify contiguous binding motifs by identifying promi-
nent subsequences that are enriched between selection
rounds. GraphProt leverages secondary structure to iden-
tify binding motifs, but it also requires data on binders
and non-binders alike. AptaMotif is designed to analyze
low throughput SELEX data, but it has been extended in
the form of AptaNI, which restricts the motif search to
loop regions of the structure. AptaTRACE is a state-of-
the-art HT-SELEXmotif identification tool that takes into
account both sequence and structure to identify binding
motifs. Overall, many of these programs focus on identi-
fying contiguous motifs while using secondary structure
to restrict the search to single stranded regions.
HT-SELEX analysis techniques have been successfully

applied to identify short sequence motifs responsible for
RNA-protein interactions [31, 32], typically located in
internal loop regions [33]. While this type of analysis
is effective for many RBP binding-motifs, particularly
those that involve recognition of single-stranded regions
of RNA, not all RBPs conform to such recognition pat-
terns [6]. In many cases an RBPmay interact with complex
tertiary structure motifs, and in some cases with multiple
complex structures. Some RNA binding proteins, such as
ADAR or Staufen, specifically recognize double stranded
RNA. These binding proteins target a structure contain-
ing 12 or 16 base-pairs, such as a single stem or co-axially
stacked stems [34, 35].
In Escherichia coli, several ribosomal proteins interact

not only with the rRNA, but also with structured portions
of their own transcripts. These interactions allow stoi-
chiometric production of ribosomal proteins by inhibiting
transcription or translation [36]. While in some cases
the mRNA structures are apparent mimics of the rRNA-
binding sites, in other cases similarity is not obvious [37].
In addition, many of the mRNA structures responsible for
this regulation in E. coli are narrowly distributed to only a
few bacteria [38].
Ribosomal protein S15 is a particularly interesting

example of ribosomal protein regulation. S15 is a
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conserved protein across bacterial phyla, and in some bac-
teria it is auto-regulated at the translational level [39].
However, species within different bacterial phyla use dis-
tinct mRNA structures to accomplish the same regulatory
task [38, 40, 41]. There are at least four distinct mRNA
secondary structures that regulate in response to S15,
each constrained to a single bacterial phyla. Each structure
likely evolved independently, thus mRNA interactions
with homologous S15 proteins are not necessarily con-
served. In contrast, both the S15 protein and its 16S rRNA
binding site are highly conserved among different lineages
of bacteria. While previous work has identified the crit-
ical motifs in the 16S rRNA (a GU/GC within a paired
region and a 3-helix junction) responsible for efficient
S15 binding in E. coli and Thermus thermophilus, various
mRNA structures can bind S15 despite containing some
but not necessarily all of the 16S rRNA binding deter-
minants [42–44]. Furthermore, not all homologous S15
proteins are interchangeable regulators between different
bacterial species, indicating some target specificity [45].
Recently, we identified a set of SELEX derived RNA struc-
tures that bind Geobacillus kaustophillus S15 [46]. The
identified RNAs are distinct from known natural regula-
tors, but several still regulate gene expression in response
to S15. Just as in nature, a high degree of sequence and
structure diversity was found in this study, suggesting that
the natural diversity of RNA regulation is not solely due to
differences between S15 protein homologs.
In this work, we analyze the intermediate and final

rounds of SELEX against G. kaustophilus S15 using high-
throughput sequencing in order to better understand the
diversity of potential RNA structures that interact with
S15. The complex nature of the S15-binding site is a
likely factor contributing to the high sequence diversity
observed in our data. To elucidate any sequence-structure
motifs, we developed an analysis approach that simulta-
neously considers the sequence and structure to identify
a discontinuous double-stranded binding motif. By treat-
ing RNA structure as a set of discrete substructures, we
identify enriched structure elements associated with the
RNA-S15 binding site. In particular, we find many poten-
tial binding motifs that are significantly enriched over the
course of selection. Combining these motifs and experi-
mentally validated binders, we build a model to separate
specific and non-specific S15 binders. Overall, we find
that S15 heavily relies on the structure for recognition of
its target.

Results
Characterization of selected population
We characterized the reads resulting from sequenc-
ing reverse transcribed and amplified products of
SELEX rounds 4, 9, 10, and 11 by examining read
lengths, sequence enrichment, and diversity. There were

32,866,739 total pair-end reads of which 5,584,124 reads
were forward strand and passed quality filters (Table 1)
(See Methods: High-throughput sequencing). Most of the
reads are the expected length of 87 nt (Fig. 1a). The reads
tend to become shorter in rounds 9, 10, and 11 com-
pared to round 4. Additionally, we noticed there was an
increase in fragments of approximately 79 nt (Additional
file 1: Table S1). These shorter fragments are most likely
preferentially amplified during PCR compared to longer
fragments. However, such individuals examined using
filter-binding assays do not bind S15 specifically. We
found that ≈2% of sequences from rounds 10 and 11 were
enriched during the SELEX process (Fig. 1b) indicating
the selection is likely enriching for specifically binding
sequences. Finally, there was significant sequence diver-
sity in the sequence pool. 95.33% of sequences appeared
only once (singleton) and of the sequences that appeared
more than once (multiton), 69.5% were seen fewer than 10
times (Fig. 1c).

Identification of global similarity between clusters
Despite the large number of singleton sequences present
in our data, there may be a large number of similar or
related sequences (similar primary or secondary struc-
ture) present. Therefore, to reduce the complexity of
our data and identify related sequences, we grouped
sequences with high sequence identity together. Due
to the number of sequences, identification of common
sequence or structure using pairwise comparisons is com-
putationally prohibitive. There are several readily avail-
able programs that cluster based on sequence, such as
CD-HIT [47], or cluster based on sequence and struc-
ture, such as RNAclust.pl + LocARNA [48]. However,
most structure clustering tools are not applicable to the
HTS data. RNAclust.pl is designed to cluster < 1000
sequences and LocARNA (and its derivatives LocARNA-
P [49] and SPARSE [50]) are designed to simultane-
ously use sequence and structure to create multiple
sequence alignments from homologous sequences, not
the large and diverse set of sequences we obtained through
SELEX. While CD-HIT only compares sequences, similar
sequences are likely to fold into similar structure. There-
fore, we used CD-HIT, a fast and widely-used program for

Table 1 Total number reads by round before and after filtering

Round Unfiltered Filtered

4 10,978,044 4,150,081

9 10,854,647 407,138

10 5,764,497 481,763

11 5,269,551 545,142

Total 32,866,739 5,584,124
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Fig. 1 a Distribution of read lengths shows most reads are the expected length of 87 nt. b Distribution of sequence enrichment of multiton
sequences in rounds 10 and 11. The enrichment is normalized to the total number of reads in the round. The red line indicates no enrichment
(ratio = 1). cMajority of the sequences in our total sequence pool are singleton sequences

nucleic acid clustering that utilizes heuristics to signifi-
cantly reduce run time.
We established a clustering threshold by examining

sequence similarity to high frequency sequences. Exam-
ining the distribution of sequence distance around high
frequency sequences shows a clear separation at 10% nor-
malized edit distance, which is equivalent to 90% sequence
identity (Fig. 2a). Clusters formed around the most fre-
quent sequences are distinct, as seen by having lower
within-cluster distance than between-cluster distance.
This trend continues to be true for all high frequency
sequences (Additional file 1: Figure S1). Because CD-HIT
run time increases proportionally to the number of clus-
ters (which increases dramatically as the sequence identify
threshold is increased), we reduced the run time by using
an 85% sequence identity as the clustering threshold.
Given the observed sequence diversity across our

clusters, we also assessed whether any similar global
secondary structures were shared between clusters. Clus-
tering similar sequences together reduces the number of
structure prediction operations because a representative
cluster structure can be quickly determined by sampling
and folding a small number of sequences (See Methods:
Intra/inter-cluster ensemble distance). Therefore for these
comparisons, we focus on clusters with > 90% similarity
(Fig.2b). Using this method, we find that sequence clusters
are also effective structure clusters because the intra-
cluster structure distance (median distance of 0.0898,

Additional file 1: Figure S2) is lower compared to the inter-
cluster structure distance (Fig. 3). Additionally, pairwise
comparisons of the clusters shows higher inter-cluster
structure distance, indicating there is no globally similar
structure shared between clusters. While some clusters
appear to have similar structure (Fig. 3b), upon closer
inspection, this similarity is an artifact caused by compar-
ing a limited number of structures from each cluster (See
Additional file 1: Methods, Table S2, Figure S3).

Identification of sequence motifs
The high cluster count made it difficult to extract mean-
ingful sequence or structure patterns in the data. In order
to identify any common short sequence motifs, we started
with sequence based approaches for motif identification
because there are a variety of existing tools (summarized
in Table 2). Many tools for motif identification are found
in the MEME suite (MEME, GLAM2, DREME). In par-
ticular, MEME and GLAM2 are not designed to process
HTS data. To overcome the large number of sequences in
our dataset and differences in the number of sequences
in each round, we repeatedly sampled 105 sequences from
each round for a total of 4 ∗ 105 sequences. This sample
size represents approximately 20% of rounds 9, 10, and 11,
but only 2.5% of round 4. Such sampling allows us to com-
pare a number of different methodologies for analyzing
the data, regardless of whether they are explicitly designed
for large data sets. However, while MEME is powerful and
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Fig. 2 a Histogram of normalized Levenshtein distance from the top
4 high frequency sequences (Seq. ID: 98, 101, 290, 669) shows a clear
cluster cutoff at distance 10%. Within the cluster, there is a decrease
in the frequency of sequences further from the center indicating
sequence clusters containing high frequency sequences are valid.
b Plot of the CD-HIT clustering data represented as cluster size vs
mean percent identity to cluster seed (diffuseness). In red are the
clusters containing high frequency sequences with more than 100
read counts. In blue are clusters containing high frequency sequences
with more than 100 read counts, which have been experimentally
examined for binding to S15 (Table 6). In green are sequences
experimentally tested that are from the clusters that do not contain
high frequency sequences

can identify transcription factor binding sites, in prac-
tice the algorithmic complexity limits the data to < 1000
sequences [23]. GLAM2 is able to identify gapped motifs
and tolerates larger data sets, but it does not find any
significant motifs (E-value = 1) in our data (Additional
file 1: Figure S4). We also applied DREME to find short
k-mers (3 ≤ k ≤ 8), and some of the top motifs with
more than 104 occurrences are significant (Table 3). These
motifs are repeatedly found in multiple resamplings of the

data; however, they are only found in 1.2-5% of the total
sequence pool.
Additionally, we applied other state of the art programs

for identifying bindingmotifs in HT-SELEX data (Table 2).
AptaTRACE returned no significant results with our sam-
pled data (105 sequences per round). Upon increasing the
sample size to 33% of each round, AptaTRACE returned a
set of significantmotifs, the top five of which are shown on
Table 4 (full results shown in Additional file 1: Figure S5).
Notably the top motif is similar to the top motif identified
by DREME (ACTGCT). However, all the seed sequences
are present at < 10% of the final population (seed fre-
quency), and even partially degenerate motif sequences
typically represent < 15% of the population (Additional
file 1: Figure S5). Resampling the data did not substan-
tially alter the top motifs identified or the frequencies
with which they appeared in the data. We subsequently
ran AptaTRACE on our entire data set and obtained a
slightly different set of motifs (Additional file 1: Figure S6).
None of these seed sequences are present at > 3% of the
final population, and all motif frequencies were < 10%.
Intriguingly, AptaTRACE did highlight that many of our
more frequently identified motifs occur in paired regions
as opposed to loop regions (Additional file 1: Figures S5
and S6, K-context traces). This finding suggests that meth-
ods analyzing pairing elements specifically may be more
useful in understanding our data.
Due to our lack of non-binder data, we could not

directly leverage all of the features in RNAcontext or RCK.
To allow application of these tools to our data, we cre-
ated a background data set (See Methods: Background
set construction, BGSamp) to use as non-binder data (sim-
ilar to approaches used in DeepBind [51]). We applied
RCK to our binder and background data set, which iden-
tified motifs located in paired regions (Additional file 1:
Figure S7). For k = 4 and k = 5, the motifs identified appear
to be biased toward sequence that occurs in our non-
constant region (see Methods, Additional file 1: Table S3).
The k = 6 motif identified does not obviously share this
bias. This motif occurs in 0.6% of the final data. Of note,
this motif occurs in a paired region, further suggest-
ing that examining paring elements more closely may be
useful for this particular data set.

Identification of structure motifs
The lack of enriched sequence motifs and global sec-
ondary structure conservation indicates the binding likely
occurs in a substructure of the selected RNA sequences.
The existence of a substructure is further supported by
motifs identified by existing motif finders that appear to
be in paired regions, and only account for a small fraction
of the sequence pool. To identify potentially important
substructures, we developed a novel approach that dif-
fers from existing methods by specifically focusing on
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Fig. 3 a Distribution of inter-cluster ensemble distances from cluster 6062, which contains the most frequent sequence. Clusters selected for
comparison included clusters with >100 distinct sequences, >90% mean identity to the seed. To get a distance distribution when comparing
clusters to cluster 6062, individual sequences of the same length from the given cluster and cluster 6062 were compared in an all-against-all fashion.
As a reference, the median intra-cluster distance for cluster 6062 was 0.0898 (black line) and the first-quartile was 0.0536 (red line). b Representing all
selected cluster pair-wise comparisons distance distributions in a heatmap shows that on average, clusters differ from other clusters by 0.2. In
general, many of the structures are distinct from those of other cluster structures

Table 2 Comparison to existing tools

Software Run Time

MEME N/A

DREME ≈3 hrs

GLAM2 ≈1 week

AptaTrace ≈5 hrs

AptaTrace (33% sampling) ≈21 hrs

AptaTrace (full data) ≈70 hrs

RNAcontext/RCK ≈1 week

NCM ≈10 hrs

Unless noted otherwise, all software were run using a sample size of 4 ∗ 105

sequences

stacking base-pairs. We represent stacked base-pairs as
2_2 nucleotide cyclic motifs (NCM) (SeeMethods: Identi-
fying enriched/depleted secondary structure motifs) [52].
In this representation, each base-pair within a pairing
region is part of two 2_2 NCMs, one with the base-pair
above, and a second with the base-pair below. There-
fore the sequence 5’-AGG-3’ base-paired to 5’-CCU-3’

Table 3 Top DREME motifs with >104 observations

Motif E-Value Percent sequences containing motif(%)

YACTGCT 2.4e-2784 1.2

WTAYGGA 5.6e-1525 1.5

WCCRAG 1.3e-515 5.0

Where R = A or G; Y = C or T; W = A or T
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Table 4 Top AptaTRACE motifs

Motif Seed P-Value Seed Frequency(%)

ACTGCT 2.3e-4 6.55

ATACGG 2.5e-3 4.89

ACCAAG 4.1e-5 3.78

GGTATA 1.1e-3 2.54

AACGAA 4.6e-4 2.46

would contain two NCMs: AU/GC and GC/GC. This rep-
resentation is advantageous because NCMs discretize the
secondary structure into smaller components and they
have been used to great effect in improving RNA tertiary
structure predictions [53].
NCM enrichment is calculated as the ratio of the mean

NCM frequency for later rounds (9, 10, 11) relative to
earlier rounds (4) or background (See Methods: Identi-
fying enriched/depleted secondary structure motifs). As
described for other methods above, 105 sequences were
repeatedly sampled from each round to determine NCM
frequencies. Since this approach depends on structure
predictions, we calculated NCM enrichment using both
the minimum free energy (MFE) and the centroid struc-
ture, which better represents the ensemble of structures.
Both structure representations have associated values
for the free energy of the structure, which is inversely
proportional to the thermodynamic stability (i.e. lower
free energy structures have increased number of base-
pairs). Thus, both representations capture trends such
as increasing stability in later rounds. The NCM enrich-
ment values derived from using theMFE structure and the
centroid structure are moderately correlated (Additional
file 1: Figure S8). Using the centroid structure reduces
the NCM frequency, but the reduced frequency has small
impact on enrichment. Therefore, we carried out the
remaining enrichment analysis using the MFE structure.
To identify significantly enriched NCMs, we also cal-

culated the expected enrichment by comparing the NCM
frequencies of the sampled sequences to background
sequences, either created using uniform base frequencies
(BGuni) or base frequencies based on our total sequence
pool (BGsamp) (See Methods: Background set construc-
tion). Our criteria for enrichment is that the NCM ratio
of round 11 to round 4 must be significantly greater than
the ratio of round 11 to background. Many NCMs are
significantly enriched (AU/GU, AU/UG, CG/GC, CG/GU,
GC/GU, GU/CG, UG/CG, UG/GC, UG/UG), while some
are depleted (AU/CG, AU/GC, CG/AU, GC/AU) when
compared against BGsamp (Fig. 4b). There is significant
overlap of enriched and depleted NCMs when comparing
against BGuni (Additional file 1: Figure S9). Interestingly,
many of the enriched motifs contain a GU wobble pair,

which could be a potential recapitulation of the natu-
ral binding site. Despite the lower percentage of round 4
sequences sampled, the enrichment analysis is robust to
the sampling and identifies similar enriched, depleted, and
unchanged NCMs relative to round 4 (Fig. 4a). GU/UG
and UG/GU appear to be highly enriched and have larger
standard error. However, these NCMs are not significantly
greater than background, and the high variability is due
to low frequency, thus these are considered spuriously
enriched NCMs.
The NCM enrichment in later rounds suggests selec-

tion for particular motifs. By treating clusters as “sequence
families,” we used LASSO logistic regression to identify
NCMs associated with cluster enrichment. Since the anal-
ysis depends the clustering, we re-clustered our sequence
pool multiple times and found the clustering is relatively
stable (Additional file 1: Figure S10). For each repeated
clustering, we carried out LASSO regression and reduced
our NCM predictors to those that appeared in major-
ity of the models with p-value < 0.01. Using this method
on both round 4 to round 11, and round 4 to round
10, we identified positive predictors CG/GU and GU/GC
as well as negative predictors AU/GC and CG/UA that
are found in both models (Table 5). CG/GU was iden-
tified by enrichment analysis as well, further indicating
its importance.
Given the overlap of predictors, we tested whether the

logistic regression model for round 10 enrichment could
predict future cluster enrichment (i.e. round 11 enrich-
ment). Ideally, the same NCMs are selected throughout
the SELEX process. After training on round 10 enrich-
ment data, we tested the model by using cluster enrich-
ment from each of the re-clustered data sets. However,
this model offers a limited prediction accuracy (mean
AUC=0.651), indicating some predictors are not readily
identified (Additional file 1: Figure S11).
In order to ensure the 2_2 NCM was not part of a larger

base-pair stack, we used Spearman correlation to iden-
tify any NCMs that often appear with each other. There
is moderate correlation between some NCMs (ρ > 0.6)
(Additional file 1: Figure S12). However, this correlation
is most likely spurious because repeated analysis with 3_3
NCMs does not show higher enrichment of these NCMs
relative to BGsamp (Additional file 1: Figure S13).

Experimental assessment of S15 binding affinity
In order to ensure our SELEX data provided an accu-
rate reflection of binding sequences, we assayed a variety
of sequences for binding affinity for S15 (Summarized
in Table 6). We find many high frequency sequences
had moderate affinity for S15 ranging from 19-85.6 nM
(Table 6 A–F). Given the high diversity of the sequence
pool, we also tested singleton sequences for binding,
which revealed 6 of 8 singleton sequences also bind S15
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Fig. 4 a Log2 fold change of NCMs averaged over 11 resamplings. The round 11 enrichment trends are consistent with the round 9 and round 10
enrichment. b Log2 fold change of NCMs averaged over 11 resamplings comparing the enrichment of round 11 vs. round 4 and round 11 vs.
background created with sampled base frequency (BGsamp). Error bars represent standard error

Table 5 Representative NCMs that are significantly associated
with cluster enrichment from first clustering

Rounds compared NCM Log odds (95% CI) P-value

11 to 4 AU/GC -3.39 (-4.95 - -1.85) 1.87e-5

CG/GU 8.04 (3.07 - 13.16) 1.75e-3

CG/UA -5.53 (-7.75 - -3.37) 6.86e-7

GU/GC 4.66 (2.08 - 7.27) 4.36e-4

10 to 4 AU/GC -1.89 (-3.37 - -0.44) 0.0112

CG/GC 3.11 (0.523 - 5.74) 0.0194

CG/GU 9.45 (4.08 - 15.00) 6.78e-4

CG/UA -3.18 (-5.36 - -1.13) 2.47e-3

GU/GC 4.51 (1.98 - 7.10) 5.61e-4

UA/UA -5.96 ( -8.67 - -3.31) 1.31e-5

(Table 6 G-N). Previous literature suggests that sequence
enrichment is a better predictor of binding affinity [14].
We find that there is no correlation between the degree of
enrichment and binding affinity (Additional file 1: Figure
S14). Both depleted sequences tested bind S15 with mod-
erate affinity (Table 6 O-P).
We also tested sequences from clusters that are centered

on high frequency sequences. When a sequence repre-
sents a large fraction of the cluster, we hypothesize that
this sequence binds with high affinity while the remaining
sequences “explore” the local sequence space. Fitting with
our hypothesis, many high frequency sequences specifi-
cally bind S15 and are found in high mean pairwise iden-
tity cluster (Table 6 A-F). As a control, sequences from
clusters with low mean pairwise identity not centered on
high frequency sequences were also examined (Table 6
L-O). We find half of these sequences bind specifically,
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Table 6 Summary of experimentally tested sequences and their binding affinity

Seq. Id Cluster Id Kd (nM) Reason

A 98 52739 85 High freq.; High mean pairwise identity (> 90%)

B 101 6062 42 Most freq.; High mean pairwise identity (> 90%)

C 575 2903 62 High freq.; High mean pairwise identity (> 90%)

D 669 1792 25 High freq.; High mean pairwise identity (> 90%)

E 4778 851 19 High freq.; High mean pairwise identity (> 90%)

F 27773 517 2.8 High freq.; High mean pairwise identity (> 90%)

G 46474 63331 99 Singleton; Small cluster (≤ 100 seqs.)

H 355069 1307 123 Singleton; Small cluster (≤ 100 seqs.)

I 244064 4454 62 Singleton; Medium cluster (100 < seqs. < 1000)

J 158254 91212 31 Singleton; Singleton cluster (= 1 seq.)

K 279047 70316 77 Singleton; Singleton cluster (= 1 seq.)

L 4077 68 9.8 Singleton; Large cluster (≥ 1000 seqs.); Low mean pairwise identity cluster (< 90%)

M 170365 2293 Non-specific Singleton; Low mean pairwise identity cluster (< 90%)

N 192209 3606 Non-specific Singleton; Low mean pairwise identity cluster (< 90%)

O 4650 3969 38 Depleted; Medium cluster (100 < seqs. < 1000); low pairwise identity cluster (< 90%)

P 315173 5799 28 Depleted; Previously identified regulator [46]

which suggests high identity clusters are more likely to
contain S15 binders.
We use the enriched/depleted NCMs with our experi-

mental data to build a model to identify potential binders
(See Additional file 1: Methods for details). Due to the
limited number of negative test cases, we use additional
sequences from our background set to build a logistic
regression model. The model suggests using enriched and
depleted NCMs are good predictors of binding (mean
AUC = 0.921) (Additional file 1: Figure S15).

Discussion
The RNA binding sites of many proteins are complex
in terms of both sequence and structure. In this work
we sought to understand the pool of potential RNA-
binding sites for G. kaustophilus ribosomal protein S15
using in vitro selection coupled with high-throughput
sequencing (HT-SELEX). The high-throughput sequenc-
ing revealed a diverse population of sequences with over
95.3% of our sequences appearing only once in the popu-
lation. We were able to cluster our data using a number of
different methods. However, the large number of unique
clusters produced did not share any obvious global struc-
ture or sequence characteristics. Existing strategies that
have been applied to the analysis of other RBPs were
unsuccessful at identifying any features that would explain
a significant portion of our data. Many programs are not
designed for the number or diversity of our sequence
data. AptaTRACE and RCK, which take RNA structure
into account, both return motifs that show a tendency

toward regions involved in base-pairing rather than sin-
gle stranded regions. However, the proportion of the data
explained by any of these motifs is typically quite small.
HT-SELEX experiments often produce diverse sequence

pools, and inmany cases singleton sequences are regarded
as “noise”. However, we examined several individual
sequences from our population to show that both frequent
sequences and those that only appear once in the popula-
tion display specific binding with physiologically relevant
dissociation constants (Table 6). Furthermore, no clear
relationship between frequency, or degree of enrichment
and dissociation constant was identified. This finding sug-
gests that the diversity we observe may not be due to
noise introduced by the selection process, but rather be
a result of the large diversity of sequences with which G.
kaustophilus ribosomal protein S15 may interact.
We developed a novel approach to analyzing HT-SELEX

data for motifs that incorporate RNA structures. Our
approach borrows from three-dimensional structure pre-
diction [53], by considering all potential substructures or
nucleotide cyclic motifs (NCMs) of a certain length. This
approach is further necessitated by the complexity of the
known RNA binding sites for S15 [39, 42, 43]. We repeat-
edly sampled sequences from each round to carry out our
analysis. There are many enriched or depleted 2_2 NCMs
relative to earlier rounds, with many of the enriched
NCMs containing a GU wobble base-pair, which could
be a potential recapitulation of the natural binding motif.
By using LASSO regression, we effectively reduced the
number of NCMs to potential predictors of enrichment.
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Our algorithm is easily parallelized and the run time
is increased proportionally to the number of secondary
structure predictions. The run time falls on the shorter
end of the spectrum compared to existing software, which
can sometimes take a week to finish (Table 2). We have
also demonstrated that the algorithm is robust to struc-
ture representation. Additionally, the NCM data is eas-
ily integrated into models to predict potential binders.
Despite a limited number of validated binders and non-
binders, the model accurately distinguish binders from
background sequences. Surprisingly, our limited model
classifies only 15.7% of the total sequence pool as poten-
tial S15 binders, suggesting many potential non-binders.
Considering the proportion of binders found within our
limited population of verified binder sequences, it appears
that only a subpopulation of binding sequences can be
identified using NCMs alone and that S15 likely can
recognize additional features that are not captured by
this data.

Conclusion
Our analysis of theHT-SELEX data for theG. kaustophilus
S15 suggests that this protein can bind a large diversity of
sequences in vitro and our previous work demonstrated
that half of the RNAs examined allowed regulation [46].
The analysis also suggests that the recognition motif is
located in a combination of structure elements with lit-
tle requirement on the sequence itself. This finding also
illuminates a possible reason for the large sequence and
structure diversity in natural S15 mRNA secondary struc-
tures. The approach we developed to analyze our data is
broadly applicable to many other RBPs that have complex
noncontiguous recognition motifs. By considering RNA
secondary structure elements as building blocks (NCMs),
we bring a novel approach to analyzing in vitro selec-
tion data for RNA-protein interactions that may primarily
rely on specific local features in the context of a larger
secondary structure.

Methods
High-throughput sequencing
We previously identified S15 binders using 11 rounds
of SELEX [46]. We sequenced cDNA pools resulting
from reverse transcription of the selected sequence pools
after rounds 4, 9, 10, and 11. The sequence pools were
sequenced using Illumina short read 100 nucleotide (nt)
paired-end sequencing (Otogenetics Corporation). The
expected length of the aptamer was 87 nt, composed of
30 nt PCR primers (bold), 30 nt variable region, and 27
nt non-constant (italicized) region to give a final form
of 5’- TGCGTAACGTACACT -N30- TCATTCTATAT-
ACTTTGGAGTTTTAAA - ATGTCTCTAAGTACT.
Sequences were filtered to have the correct primers,
contain only standard bases, and match the forward

strand (match the regular expression “TGCGTAACGTA-
CACT[ATGC]+ ATGTCTCTAAGTACT”) with relative
primer positioning such that the final sequence obtained
was 79-100 nt. Sequences were also filtered such that
every nucleotide’s PHRED quality score is ≥ 20. Any
sequences shorter than 79 nt or containing duplicated T7
promoter sequence (5’-TAATACGACTCACTATA) were
removed. These sequences are considered rapid ampli-
fier sequences because they only contain T7, 5’, and 3’
sequences (See Additional file 1: Methods: Rapid ampli-
fiers). The libraries are stored in separate FASTQ files for
each round. The remaining sequences were stored in a
MySQL database for speed and ease of access. For subse-
quent analysis, only the sequence contained between and
including perfect primers was used. When calculating
enrichment, the sequence counts were normalized to the
total number of usable reads in that round.

Clustering
Sequence
In order to determine a cluster threshold, sequences
from rounds 10 and 11 with > 100 total counts
were used as initial cluster centroids to compare to
the remaining sequences. The normalized edit distance
(normalized Levenstein distance) was calculated as the
edit distance(s1 and s2)
max length(s1 and s2) . As a computational optimization, the
regions of the aptamer corresponding to the primers (5’-
TGCGTAACGTACACT and 5’-ATGTCTCTAAGTACT)
were removed for the purposes of sequence compari-
son as these sequences are identical in all of our filtered
sequences. CD-HIT-est [47] was used for nucleotide clus-
tering with the following options: compare positive strand
only (–r 0), mismatch penalty –1, gap penalty –1, gap
extension 0 and cluster threshold of 85% (-c 0.85). The
mismatch penalty and gap open penalty are both the
same value to minimize the effect of single base varia-
tion or deletions in the variable region. The gap extension
is set to 0 because it heavily penalized short stretches
of base differences in the variable region thus creating
many more singleton clusters. The output from CD-HIT
was imported into a MySQL database for speed and ease
of access.

Structure
RNAclust.pl + LocARNA will cluster sequences based on
sequence and structure.We used the default parameters, 8
CPU threads and “–sparse” for the LocARNA option. For
these comparisons, the full expected aptamer sequence
was utilized.

Intra/inter-cluster ensemble distance
As an alternative to clustering sequences based on
sequence identity, we cluster sequences using their
secondary structures by comparing structures using
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ensemble distance. For these comparisons, the entire
expected aptamer sequence including primer sequences
was utilized. We find that similar sequences tend to fold
into similar structures. Therefore, as a run time opti-
mization, we focus on frequent sequences within existing
CD-HIT clusters, which allows us to estimate a cluster
structure and reduces the number of sequences that are
folded. The clusters used for analysis were selected from
the CD-HIT clusters using the following criteria: > 100
sequences and > 90% mean identity to the CD-HIT clus-
ter seed. Secondary structure prediction was done using
the Vienna RNAfold package [54]. The ensemble distance
was calculated by first predicting the secondary structure
ensemble using ‘RNAfold -p’. The ensemble distance is the
mean base-pair distance between all possible structures of
two input sequences [55]:

1
|A|

∑

(i,j)∈A∪B

(
PAij − PBij

)2
(1)

where i < j and Pij is the probability of a nucleotide at
position i paired to a nucleotide at position j and |A| is
the length of structure A. Structures A and B must be the
same length.
Intra-cluster distance was calculated by taking 1000

(or fewer) distinct sequences from each of the clusters
meeting our criteria. Then ensemble distance was calcu-
lated in a pairwise fashion.
Inter-cluster distance was calculated using the top 100

most frequent sequences from each cluster. Structures
in each cluster were compared in a pairwise manner to
structures in the other cluster.

Sequence and structure motif identification
We applied a variety of existing motif finder programs to
our sequence pool: DREME, GLAM2, AptaTRACE, and
RNAcontext/RCK. For all programs, we used the same
sample, which is created by sampling 105 sequences from
each round of selection for a total of 4 ∗ 105 sequences,
unless otherwise noted.

Sequence
The parameters for DREME were motifs of length k such
that 3 ≤ k ≤ 8, no reverse complement, and stop after the
top 10 motifs are identified. GLAM2 parameters: motifs
of length k such that 3 ≤ k ≤ 8, and 50000 iterations.

Sequence and structure
AptaTRACE was run with default parameters (k-mer
length 6, singleton threshold 3), designating the 5’
(TGCGTAACGTACACT) and 3’ (TCATTCTATATAC
TTTGGAGTTTTAAAATGTCTCTAAGTACT) primer
and constant regions, with SFold [56] as the RNA fold-
ing program. We have chosen to run RCK on our data

because it is an newer extension of RNAcontext. RCK
was run with motif length k such that 4 ≤ k ≤ 8. RCK
additionally requires intensities for bound and unbound
sequences as part of its training and test set data. As
input, the sample sequences were considered bound and
had intensity equal to 1. Sequences created from sampled
base distribution (BGsamp) (See Methods: Background set
construction) were used as unbound sequences and had
intensity equal to –1. For all other parameters, we used the
default values.

Background set construction
The background sequence set variable region was cre-
ated using either a uniform (BGuni) or a sampled base
distribution (BGsamp). The sampled base frequency is
determined using the variable regions from the sequence
pool. The variable region was identified byminimizing the
Levenshtein distance between our known non-constant
region sequence (TCATTCTATATACTTTGGAGTTT-
TAAA) and a sliding window of length 20 along the given
input sequence.
Any mutations to the non-constant region was simu-

lated using the “mutation rate” derived from the non-
constant region of round 11 sequences. The mutations
were categorized as point mutation, insertion, or deletion.
The sequence was simulated by choosing the site(s), which
is governed by the Poisson distribution, and type(s) of
mutation based on the overall mutation frequency. Then
the resulting mutation is selected based on the observed
mutational frequency. The final simulated sequence was
generated by concatenating the primers, a simulated vari-
able region (30 bases chosen with uniform or observed
probability) and a simulated non-constant region in the
proper order.

Identifying enriched/depleted secondary structure motifs
The structural motifs we identify are derived from the
2_2 and 3_3 nucleotide cyclic motifs (NCM) [53]. We
modified the naming convention to be more base-pair
centric — N1_N2 <sequence> such that the N1 and N2
designate the length of the 5’ and 3’ strands, respec-
tively. The <sequence> represents the order of stacking
base-pairs starting at the 5’ end.
To calculate NCM enrichment, NCMs are counted by

sampling 105 distinct sequences corresponding to the
entire expected aptamer sequence without replacement
from each round. For each sequence, the MFE or centroid
structure is predicted using Vienna RNAfold [54] and each
possible 2_2 or 3_3 NCM stack is counted. Similar to cal-
culating k-mer frequency, NCM frequency is calculated by
normalizing the NCM count to the total number of NCMs
per sequence and number of sequences sampled. NCM
enrichment/depletion is calculated by the ratio of the
mean NCM frequency between any two rounds. The code
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for calculating NCM enrichment is located at https://
github.com/ship561/hts-exploration.
In order to identify enriched NCMs, we repeatedly

calculate NCM enrichment relative to both round 4
and a background set. The NCM enrichment relative
to background provides an “expected” baseline enrich-
ment value. NCMs are considered significantly enriched
when the average NCM enrichment relative to round
4 is higher than average expected NCM enrichment
(p-value < 0.001). Significance is calculated using the
Wilcoxon rank sum test [57].

LASSO Logistic regression models
Logistic regressions and LASSO were done in the R
project [57]. Only clusters with > 100 sequences were
used, as these clusters are likely to contain sequences
from different rounds. Additionally, only clusters con-
taining sequences from both earlier and later rounds,
and with a sequence frequency ratio from later to ear-
lier rounds exceeding a minimum threshold. Due to the
variation in sequences per round, this minimal thresh-
old varies depending on which rounds are compared.
Cluster enrichment is defined as a cluster that con-
tains a higher frequency of sequences from a later round
(10 or 11) than an earlier round (4 or 9). For two
rounds X and Y (where X>Y), cluster enrichment is
calculated using

Cluster enrichment =
# total sequences in cluster of round X

# total sequences in round X
# total sequences in cluster of round Y

# total sequences in round Y

(2)

For example, a minimal threshold for cluster enrich-
ment between rounds 11 and 4 is calculated by consid-
ering a cluster composed of two sequences — a single
sequence from round 11 and another sequence from
round 4. Thus, for round 11 (r11) sequences to be
considered enriched, the ratios r11:r4 > 7.61 or r11:r9 >
0.7468. For round 10 (r10) sequences to be considered
enriched, the ratios r10:r4 > 8.61 or r10:r9 > 0.8451. For
the training set, a 1:1 ratio of enriched vs depleted clusters
were used. The number of enriched and depleted clusters
for each re-clustering is summarized in Additional file 1:
Table S4.
We re-clustered the sequencesmultiple times using CD-

HIT because it employs a greedy clustering algorithm
that is sensitive to the starting sequence order. For each
CD-HIT re-clustering, NCM predictors are selected auto-
matically by LASSO logistic regression. Predictors are
retained if they appear in 3 out of 5 re-clusters with a
significant p-value < 0.01.

RNA/Protein preparation
The aptamer sequence was synthesized using assembly
PCR from overlapping oligos (from IDT) with the T7-
promoter sequence added within the forward primer
sequence. T7 RNA polymerase [58] was used to tran-
scribe RNA and transcription reactions were purified by
6% denaturing PAGE. Bands were visualized using UV
shadow, excised, and the RNA eluted (in 200 mM NaCl,
1 mM EDTA ph 8, 10 mM Tris-HCl pH 7.5) and ethanol
precipitated. Purified RNA (10 pmol) was 5’-labeled
with 32P-ATP and purified as previously described [59].
Protein expression and purification was conducted as
described previously [40].

Filter binding assay
As done in Slinger et. al 2015, [46] a fixed amount
of 5’32P-labeled RNA (1000 cpm, <1 nM) was rena-
tured for 15 minutes at 42°C, then incubated with
serial dilution of G. kaustophilus S15 in Buffer A (50
mM-Tris/Acetate, pH 7.5, 20 mM Mg-acetate, 270 mM
KCl, 5 mM dithiothreitol, 0.02% bovine serum albu-
min) for 30 minutes at 25°C. Nitrocellulose membrane
(GE Healthcare) was used to collect RNA-S15 complexes
and positively charged nylon membrane (GE Healthcare)
was used to collect unbound RNA under suction in a
filter binding apparatus. Membranes were air-dried 5
minutes and the fraction bound quantified by imaging
membranes on a phosphorimager screen. Radioactivity
counts per sample on each membrane were measured
using GE Healthcare STORM 820 phosphorimager and
ImageQuant. For each sample the fraction bound (Fb)
corresponds to

Fb = counts nitrocellulose
counts nitrocellulose + counts nylon

(3)

Since Fb is known, to determine the Kd and the Hill
coefficient (n), the resulting values were fit to the
equation:

Fb = Min% + Max% − Min%

1 +
(

Kd
[S15]

)n (4)

where [S15] corresponds to the concentration of S15 in
the reaction and Min% and Max% correspond to the
minimum and maximum fraction bound, respectively.
The residuals were minimized using the nonlinear least
squares estimate (nls) in R to find both the Hill coefficient
(n) and the Kd.

https://github.com/ship561/hts-exploration
https://github.com/ship561/hts-exploration
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Additional file

Additional file 1: Supplemental data. The file is in a PDF format. It
contains methods for identifying rapid amplifying sequences and
calculating “belief” in our inter-cluster distance comparisons. It contains
additional Tables S1–S4 showing the percentage of rapid amplifier
sequences per SELEX round (Table S1), the low inter-cluster distance
clusters with their calculated belief (Table S2), the top RCK motif
frequencies categorized by region (Table S3), and the results of the LASSO
regression obtained after re-clustering the data (Table S4). Additional
Figures (S1–S15) showing: pairwise distance between all high frequency
sequences (Figure S1), distribution of intra-cluster structure distance
(Figure S2), distribution of belief to support inter-cluster ensemble
distance (Figure S3), a representative motif from GLAM2 (Figure S4),
representative results from AptaTrace running on a 33% sampling of the
data (Figure S5), results from AptaTrace running on the entire dataset
(unequal number of sequences in each round) (Figure S6), motifs and
contexts identified by RCK (Figure S7), the correlation between using the
MFE and centroid structures to calculate NCM enrichment (Figure S8),
NCM enrichment relative to round 4 and BGuni (Figure S9), CD-HIT cluster
stability (Figure S10), the model performance for classification of enriched
clusters (Figure S11), correlation between 2_2 NCMs, and 3_3 NCM
enrichment relative to background sequences generated using either
uniform or sampled base probabilities (Figures S12 and S13), the
relationship between kd and enrichment (Figure S14), and the model
performance classifying sequences as “binders” or “non-binders” using
enriched/depleted NCMs as features (Figure S15). (PDF 1270 kb)
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