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Abstract

Background: Superenhancers are crucial structural genomic elements determining cell fate, and they are also
involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines
which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin
marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes
automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted
superenhancers.

Results: We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel
processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive
set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE
also implements an ‘epigenomics signal algebra’ that allows the combination of multiple activation and repression
epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers,
which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene
ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the
metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic
pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to
30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows
different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple
replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside
its high performance, NaviSE is able to provide biological insights, predicting cell type specific markers, such as SOX2
and ZIC3 in embryonic stem cells, CDK5R1 and REST in neurons and CD86 and TLR2 in monocytes.

Conclusions: NaviSE is a user-friendly streamlined solution for superenhancer analysis, annotation and navigation,
requiring only basic computer and next generation sequencing knowledge. NaviSE binaries and documentation are
available at: https://sourceforge.net/projects/navise-superenhancer/.
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Background
Superenhancers (SEs) are a novel class of transcription
regulatory DNA regions with unusually strong enrich-
ment for binding of transcriptional coactivators such as
Mediator of RNA polymerase II transcription subunit 1
(MED1), activation histone marks such as H3K27ac, or
cell and tissue-specific transcription factors (TFs) [1]. As
a result, SEs represent large clusters of transcriptional
enhancers that drive the expression of ‘master control’
genes that define cell identity. SEs differ from typical
enhancers (TEs) for enclosing higher TF binding density
and number of TF binding sites (TFBSs), which correlate
with a much higher expression of their target genes [2].
Since SEs determine cell fate and gene expression regu-
lation [3], they are related to altered expression of genes
contributing to diseases such as Alzheimer or systemic
lupus erythematosus [4]. Aberrant DNA methylation pat-
terns in SEs, as well as SE-associated gene sets, have also
been found to be altered in cancer [5–7].
Although protocols for computational prediction of SEs

already exist [4], there is yet no tool that integrates all the
processing stages from the raw data reads generated by the
sequencer, through quality control and reads alignment,
to peak estimation and peak stitching, ending with a fully
annotated and interactive documentation of the results.
Furthermore, although SEs were initially predicted with

MED1 [4] and activation histone marks such as H3K27ac,
which has been proposed as a proxy for their esti-
mation [2], the combination of several activation and
repression epigenomics marks could help sharpen SE
predictions. Therefore, we have designed NaviSE to use
data with a wide range of chromatin status information,
being able to process raw data from Assay for Trans-
posase Accessible Chromatin (ATAC-seq) and DNase
I hypersensitive sites (DHSs) experiments, apart from
the usual ChIP-seq signals. In the case of other sig-
nals such as DNA methylation, NaviSE is prepared to
integrate their information to perform SE predictions
with the only condition that the user provides such data
in bed or bam files, such as the bam files produced by
the Parallel Processing Pipeline software for automatic
analysis of Bisulfite Sequencing data (P3BSseq) [8].
On the other hand, there are no computational tools

neither integrating several epigenomics signals simulta-
neously, nor performing signal algebra. Moreover, CPU
resources and running-time are crucial for the high quan-
tity of data produced by Next Generation Sequencing
(NGS) technologies, hence another of the main demands
in NGS software development is the parallelisation of the
most time-consuming processes.
To meet all these demands, we have developed NaviSE,

a user-friendly tool which automatically processes and
integrates multiple genome-wide NGS epigenomics sig-
nals from various input file formats into an interactive

HTML report, built with annotations about SEs, such as
associated genes, gene ontology (GO), graphs with met-
rics and statistical analysis, integrating all the data into the
Graphical User Interface (GUI) to navigate through all the
results. NaviSE parallelises the most relevant and time-
consuming processes to optimise them, running multiple
analysis in a significantly reduced amount of time. Finally,
NaviSE is developed for users with working knowledge in
informatics.

Implementation
Preprocessing of NGS files
Before the determination of SEs, NaviSE prepares the raw
data, allowing multiple replicates and controls at once.
The main steps for such preprocessing are as follows:

1. Input format file recognition and file processing:
NaviSE recognizes multiple file formats, e.g., .sra,
.fastq, .sam, .bam and .bed, and transforms an
upstream format (.sra, .fastq, .sam) into a .bam file. In
the absence of upstream files, downstream .bed files
are also processed to .bam files.

2. Alignments: Performed by default with bowtie2 [9],
.sam files are processed to .bam files by samtools.
NaviSE also allows read alignment with MOSAIK
[10], STAR [11] and BWA [12] aligners. Furthermore,
users may generate their own .sam or .bam files with
other aligners, and NaviSE will recognize these files
for further processing.

3. Quality control with FastQC: NaviSE performs the
quality analysis of the reads from the .fastq files using
FastQC to create a report including several quality
parameters, such as per base quality, GC content,
k-mers distribution or presence of adapters.

4. Combination of replicates and peak calling with
MACS: If there is more than one replicate or con-
trol, NaviSE will combine all the associated .bam files
into one, and calculate the signal peaks with MACS
(Model-based Analysis for ChIP-Seq) [13]. If con-
trol files are introduced for background correction,
NaviSE configures MACS to use the control signal to
calculate the peaks from the sample. Conversely, if
no control is introduced, NaviSE configures MACS to
use a pre-calculated background.

SE prediction and annotation
Once the data is preprocessed, a SE prediction and rank-
ing is performed. SEs then are further analysed in search
of SE related genes, DNA sequence motifs, GO terms or
statistical estimations.

1. Epigenomics signal algebra: In case more than one
epigenomic signal was used to predict SEs, NaviSE
integrates all the signals to improve the SE prediction.
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The way in which different epigenomic signals are
combined is defined by the names of the signal
data files Sig ∈ {H3K27ac, H3K4me1, H3K4me3,
H3K9me3, H3K27me3, ATAC-seq, DHS,. . . } sepa-
rated by signal operators Ope ∈ {AND, OR, NOT,
XOR, +, - SYM}.

The way these algebra operators have been adapted
to operate over pairs of genomic signals is illustrated
in Fig. 1. To invoke this algebra, NaviSE is called
writing these signal and operators as additional argu-
ments in the command line:

Sig1 Ope1,2 Sig2 Ope2,3 Sig3 Ope3,4 Sig4
where Sigi is the name of the file containing the epige-
nomics data of a type of signal i, and Opei,i+1 is the
pairwise signal operator applied to combine i and i+1
signals.

When performing ‘epigenomics signal algebra’,
NaviSE picks the first pair of signals separated by each
operator starting from the left (Sig1 Ope1,2 Sig2). Once
an operation is processed, its results are combined
with the next signal using the next operator ((Sig1
Ope1,2 Sig2) Ope2,3 Sig3). This process continues from
left to right side recursively until the last signal identi-
fier is reached. To speed up the process, for each pair

Fig. 1 Epigenomics signal algebra. Schemes of the different pairwise
operations implemented in NaviSE. The top two rows depict an
example of the two epigenomic signals to be combined, and the
remaining rows illustrate the signal profile after applying the
respective operator. Simplified Euler-Venn diagrams given in the
rightmost column illustrate the set operations. AND, OR, NOT and
XOR are Boolean operations which do not change the signal pileup;
whereas +, -, and SYM are arithmetic operations which can change
the signal pileup. In the case of - and SYM, negative pileups are
transformed into zeros

of signals NaviSE searches first all their overlapping
regions and performs the signal operator only over
these regions.

2. SE prediction: To predict the SEs in a sample, NaviSE
performs the stitching of MACS peaks which fall
within a threshold distance, using our own imple-
mentation of the algorithm developed by Young’s lab
[2], in which MACS peaks (inferred as enhancers)
are stitched according to a constant distance (12.5 kb
by default) criterion algorithm, in case the distance
between the end of one MACS peak and the start of
the following peak is less than the established thresh-
old, they are stitched as a single peak. Then, NaviSE
ranks the stitched peaks with a score based on the
measured signal level within the stitched region.

NaviSE assigns a score to each stitched enhancer,
considering that a stitched enhancer with a higher
number of bam reads has a higher SE predictive
value. Thus, to build the SE ranking, NaviSE takes
the raw reads from the .bam files, and for each
stitched enhancer it collects all the reads over the
stitched enhancer support. This support is defined
by the DNA sequence lying between the stitched
enhancer start, STITstart , and the stitched enhancer
end, STITend , nucleotide positions. Then, we define
the stitched enhancer count, CountSTIT , as the cumu-
lative sum of the bam reads throughout the stitched
enhancer support:

CountSTIT =
Nreads∑

i=1

STITend∑

j=STITstart

readi(j) (1)

where readi(j) indicates whether a bam read i, from
the set of Nreads, lies at the position j of the stitched
enhancer within the support [STITstart , STITend].
Therefore, readi(j) = 1 if a nucleotide of the bam read
i is mapped to the location j of the stitched enhancer,
and readi(j) = 0 otherwise.
Then, the SE ranking, r, is defined as the sorted list

of CountSTIT in descending order:

r = sort�{CountSTIT } (2)

thus, Eq. 2 assigns position one in the ranking to the
stitched enhancer with the highest CountSTIT , posi-
tion two in the ranking to the stitched enhancer with
second highest CountSTIT , etc. until we reach the
stitched enhancer with the lowest CountSTIT .
The next step is the determination of the SE thresh-

old (θSE), the position of the ranking for which the
stitched enhancers whose rank is below θSE will be
considered as SEs, and TEs otherwise. To determine
θSE , we scale both CountSTIT and r between 0 and 1.
Then, we determine θSE as the position of r whose
slope is nearest to 45°.
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3. SE gene assignment: Once the SE locations are deter-
mined, each SE is assigned a gene by proxim-
ity with the closest transcription start site (TSS).
NaviSE also includes information about genes over-
lapping the SE or genes proximal to each SE.

4. Subpeak annotation: The SEs and TEs subpeaks
have been shown to act synergistically within the
SE despite being individual and independent struc-
tures [14]. To provide detailed information about the
SE subpeaks structure and location, NaviSE performs
a structural annotation of the subpeaks that repre-
sent each SE. The annotation contains the following
parameters:

• Number of subpeaks, loci and TSS locations.
• Association to TSSs: Due to the TSS specific

regulation role, a SE inside a TSS might not exert
the role of SE itself. Thus, to understand the
regulatory role of the SEs, it is important to
resolve their association to TSSs. This analysis is
portrayed by two related values: (i) the
Percentage OUTS, which is the percentage of
subpeaks outside the range of the user-defined
distance within the TSS, and (ii) the Enhancer
Type, a classification of the SE according to
Percentage OUTS. The categories assigned to
Enhancer Type are labeled as Pure if all the
subpeaks are outside the TSS, Only TSS if all the
subpeaks lay within the TSS, and Mixed if there
are both types of subpeaks.

5. Automatic generation of SE peak distribution profiles:
To visualize the SE peak distribution we have imple-
mented in NaviSE our own Genome Viewer Tool
(GVT). With this tool, two snapshots at near and
far distances for each SE are portrayed, which are
shown in the SE table window of the final report.
NaviSE dynamically calculates the optimal range for
each snapshot, based on the width of the SE. With
near shot the user is able to determine the morphol-
ogy of the SE, and with far the user is able to locate
the SE in its genomics surroundings. In each snapshot
both the location of the SE and the enhancer peaks
determined by MACS are shown.

6. HOMER motif finding: SEs enclose high number
of TFBSs [2]. Therefore, identifying such TFBSs is
important for SE annotation. To find motifs of reg-
ulatory elements (mainly TFs) that are specifically
enriched in the loci of SEs, relative to the loci of
TEs, NaviSE uses the Hypergeometric Optimization
of Motif Enrichment (HOMER). As a result, NaviSE
generates in the final report a HOMER table, which
includes motifs enriched in SEs, and a list of de novo

motifs for which their respective binding elements are
predicted by HOMER.

7. Gene Ontology Enrichment Analysis (GOEA): To pre-
dict the functionality of the SEs, based on the closest
gene of each SE determined by HOMER, NaviSE uses
goatools [15].

8. Pathways and protein-protein interaction annotation:
To obtain annotation of TFs and pathways related
to SEs, NaviSE uses Enrichr [16]. To obtain protein-
protein interaction (PPI) networks of SEs, NaviSE
uses the database of PPIs String [17]. Results from
Enrichr and String are processed and integrated into
the final report to be navigated through NaviSE GUI
for an easier interpretation for the user.

9. NaviSE GUI: To navigate throughout all the results,
we have implemented an interactive chromosomal
plot (Fig. 2) that represents the SE location in a
karyotype; alongside with graphs that depict statis-
tical values and properties related to SEs (shown in
“Results” section), as well as information related to
GOEA or Enrichr.

Chromosomal plots are designed to include hot-
spots with links to the elements of the SE table from
the final report, which are activated when the user
navigates with the mouse over the gene names on the
chromosomal plot. To enhance the usability of this
feature, NaviSE generates three types of chromosomal
plots:

• Enrichment plot: it shows the loci location and
the chromosome enrichment or depletion.

• Rank plot: it shows loci coloured according to
their rank in the SE Table. Several percentiles
are represented based on the rank of the SE, and
SEs falling within a percentile will be coloured
correspondingly.

• Closeness plot: it represents the proximity
between SEs, according to which SEs will be
coloured. This plot is highly useful to discern
clusters of SEs that look overlapped. For the
ordered list
{SE1, SE2, · · · , SEa−1, SEa, SEa+1, · · · , SEc−1, SEc},
of c SEs within a chromosome, for which each
SEk support is defined by its start (SEk,start) and
end (SEk,end) loci positions, the closeness of a
SEk is its distance C(SEk) to the closest SE,
determined by the following expression:

C(SEk) =

⎧
⎪⎪⎨

⎪⎪⎩

SE2,start − SE1,end if k = 1
SEc,start − SEc−1,end if k = c
min(SEa+1,start − SEa,end ,
Ea,start − SEa−1,end) otherwise

(3)
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Fig. 2 Chromosomal plot. Partial snapshot of the chromosomal plot of SEs predicted with H3K27ac histone mark in ESCs. Hot-spots and line colours
represent distances between two SEs (red to violet represents smaller to bigger distances), and�/ �� and�/ �� represent chromosome
enrichment or depletion in genes with statistical significance p of 0.05 and 0.01, respectively

In all these chromosomal plots a probability p deter-
mining whether a chromosome is enriched (marked
with � for p < 0.05 and�� for p < 0.01) or depleted
(marked with � for p < 0.05 and �� for p < 0.01)
with SEs is calculated by a binomial approximation
of the hypergeometric distribution (h(k;K , n,N) →
b(k;K , z) ; z = n

N ) [18], where N is the number
of genes in the whole genome, K is the number of
SEs in all chromosomes, n is the number of genes in
that chromosome, and k is the number of SEs in that
chromosome.

10. Gene Set Enrichment Analysis (GSEA): To obtain
additional functional annotation of SEs, NaviSE per-
forms the GSEA [19] from SE-associated genes, using
gene sets from the Molecular Signatures Database
(MSigDB).

Statistics of the comparison between TE and SE
Although both SEs and TEs derive from MACS peaks,
they structurally differ for having higher peak density. To
illustrate the differences between SEs and TEs, NaviSE
shows in the final report a collection of metrics and plots
depicting the differences between them. Among the most
important plots are:

1. Ranking of SEs by the order of SE score: It is the plot
of CountSTIT , given by Eq. 1 vs r, given by Eq. 2. It
typically shows a hockey stick shape, with the inflec-
tion point marking the boundary between SEs and
TEs, θSE .

2. INSs and OUTs: It shows statistics about the percent-
ages of SEs and TEs that lay within a TSS or not. This
might be interesting if a sample contains an elevated
percentage of SEs within TSS, as some of these SEs
might be misinterpreted as promoter signals.

3. SE vs TE length distribution: It shows the distribution
of SE and TE length and pileup in a double histogram
and a scatter plot. The histogram lying on the X-axis
of the scatter corresponds to the length of SEs and
TEs; and the histogram on the Y-axis corresponds to
the pileup. This graph is complementary to the rank-
ing of SEs by SE score, to shed light on the population
of SEs and TEs.

4. SE vs TE subpeak length distribution: This graph con-
tains the same elements than the SE vs TE length
distribution graph, although showing the distribution
of enhancers inferred by MACS.

5. Number of subpeaks (for number of bins N = 10 and
N = 20): It shows the distribution of subpeaks each
SE or TE has.
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Generation of the NaviSE report
The final step of NaviSE is the generation of an HTML
report, in which all the results from the analysis are gath-
ered and presented within several windows, each of which
contains interactive links both to external website which
provide the user with further information about the SEs,
as well as to other internal HTML pages created by NaviSE
within the report. The content of this report is discussed
in detail in the “Results” section.

Parallelisation implementation
The algorithm of parallelisation developed in NaviSE con-
stitutes a significant improvement of performance in the
analysis of NGS samples compared to non-parallelised
pipelines. NaviSE determines the optimal number of pro-
cesses, k, compatible with the computer resources as
Luu et al. do in [8]. Such resources are the parallel process-
ing capability of the computer measured as the number
of cores, C, and the total main memory, M, in Gigabytes
(GBs). NaviSE optimizes automatically, for each process-
ing task i, the number of threads, ki, in which the task i
will be parallelised by the expression:

ki = min (C,Cu, �M/mi�, li) (4)

where Cu is the maximum number of cores reserved by
the user to run NaviSE, mi is the memory, measured in
GBs, needed to run one process in task i, � � is the floor
operator and li is the cardinal of Di = {d1, d2, · · · , dm}
which is the set of chunks of distributed data elements to
be processed in task i. If li > ki, the first ki chunks are
distributed to ki threads. The distribution of information
(number of chromosomes for stitching, SE peak distribu-
tion profiles for GVT, number of gene sets for GSEA) to be
parallelised is based on a cyclic algorithm, implemented
in Python, with the following outline: For the ordered
set Si = {s1, s2, · · · , sn} of information elements, the set
Pi = {1, · · · , ki} of processes, and for the set Di of data
(chromosomes, positions on a list, gene sets) to be dis-
tributed across processors, we define Dpi as the chunk of
data of the task i that is assigned to each processor p:

Dpi = {dj | ∀d ∈ Di, p ∈ Pi, j ∈ {1, · · · , li}, j mod ki = p}
(5)

where mod is the module operator. Once the chunk Dpi is
constructed, the subset of information elements SDpi ⊂ Si
will be defined depending on the task i which is being
parallelised. The list of parallelised tasks in NaviSE is
i = {STIT,GVT,GSEA,HOMER}. In the case of paral-
lelisation of SE prediction by stitching (STIT), the set of
peak coordinates fromMACS (SSTIT) is divided into kSTIT
files, calculated with Eq. 4, with mSTIT = 3 GBs. Here,
DSTIT = {1, 2, 3, · · · ,X,Y } chromosomes, Dp,STIT rep-
resents the sets of chromosomes that will be processed

in each p ∈ P calculated by Eq. 5, SDp,STIT is the chunk
of s ∈ SSTIT peaks which share the same chromosome
from each set of chromosomes from Dp,STIT. For a better
understanding of the process, an example is developed in
Fig. 3.
In the case of SE signal profile generation with GVT,

SGVT ≡ DGVT, is the set of SE loci. HenceDp,GVT contains
all the loci that fulfill Eq. 5, based on kGVT calculated with
Eq. 4 withmGVT = 2 GBs.
In the case of GSEA parallelisation, DGSEA is the set

of combinations (GSEA signatures × GSEA cutoffs) and
SGSEA is the set genes associated to SEs and TEs up to the
corresponding GSEA cutoff. Therefore, Dp,GSEA contains
all the combinations that fulfil the Eq. 5, based on kGSEA
calculated with Eq. 4 withmGSEA = 2 GBs.
The parallelisation of all these tasks has been imple-

mented with the multiprocessing module of Python. In
the case of HOMER parallelisation, we took advantage of
the capabilities already implemented in HOMER, with the
number of processes kHOMER, optimized by Eq. 4, with
mHOMER = 2 GBs.

Results
To illustrate the performance of NaviSE, we have selected
H3K27ac histone mark whose raw signal data has been
downloaded from the GEO database [20] for three cell
types: human Embryonic Stem Cells (ESC) (GSM663427,
with control GSM605335), monocytes (MON) (GSM-
1003559 with control GSM1003475) and neurons (NEU)
(GSM2072642, with control GSM2072639). For other
analysis, we also used H3K4me1 (GSM409307) and
H3K4me3 (GSM409308) from ESCs.

HTML report generation
The output of NaviSE for each experiment is a collection
of HTML linked pages whosemain page contains dynamic
graphical elements, namely, a blue horizontal ribbon with
links to all the HTML pages from the report, detailed
below; a grey sidebar by which the user can access the dif-
ferent subsections; and a window in which the results are
displayed.
Themain window contains basic information about the

analysis and different chromosomal plots, defined in the
point 9 of “SE prediction and annotation” section, rep-
resented in the chromosomal plot snapshot of Fig. 2.
The chromosomal plot includes links to the SEs in SE
Table window of the final report, which includes general
information about each SE (genomic location, number of
subpeaks, SE score), alongside with a snapshot of the SE
genomic signal profile, included for visual evaluation of
the SE quality, together with the quantitative SE score. The
SE Table columns referring to gene names and genomic
location include, respectively, a link to GeneCards site [21]
and UCSC Genome Browser [22], as shown in Fig. 4.
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Fig. 3 Scheme of parallelization of stitching. 1 Determination of the number of processes (kSTIT) based on Eq. 4 for a case in which the number of
available cores (C) is 10, the maximum number of cores reserved by the user (Cu) is 7, the memory main of the computer (M) is 64 GB, the memory
allocated to stitching (mSTIT) is 3 GB and the cardinal (lSTIT) of the set of chromosomes (DSTIT = {d1 = 1, d2 = 2, · · · , d22 = 22, d23 = X , d24 = Y}) is
24. The resulting number of allocated cores calculated by Eq. 4 is kSTIT = Cu = 7. 2 Construction of data chunks is calculated by Eq. 5. Since kSTIT = 7,
the set of chromosomes, DSTIT, is divided into 7 subsets or chunks: D1,STIT = {d1, d8, d15, d22}; D2,STIT = {d2, d9, d16, d23}; · · · ; D6,STIT = {d6, d13, d20}
and D7,STIT = {d7, d14, d21}. 3 Assignment of information elements. In the case of stitching, assigned elements are MACS peaks (inferred as
enhancers). After the assignment of the subsets D1,STIT, D2,STIT, etc., the set of MACS peaks, SSTIT = {s1, s2, · · · } is divided into 7 subsets of elements,
SD1,STIT = {s1, s6, s8, · · · }, SD2,STIT = {s2, s10, s14, · · · }, · · · , SD7,STIT = {s5, s9, s12, · · · }, based on the chromosome of each row. Finally, all the subsets of
elements are simultaneously processed by NaviSE, combined into one file, and the SE ranks are calculated

Statistics window implements a series of graphs which
allow the user to obtain information related to the SEs in
the sample. Some of those graphs are analysed thoroughly
in the corresponding Analysis of different cell lineages
“Results” section.
GOEA window includes the results from the GOEA.

At first, a barplot shows the significant terms from GO
categories (biological process, cellular component and
molecular function) which, upon clicking, will lead to a
Directed Acyclic Graph (DAG) of the GO terms
associated with the significant term, each of which
contains the related genes associated to that term.
Below the barplot, there is a table that leads to the
DAG for the corresponding GO term, which includes
values such as enrichment ratio of the predicted cell pop-
ulation, and the False Discovery Rate (FDR) for each
term.

Similarly, the GSEA window (Fig. 5) contains several
graphs depicting the GSEA profile of the significance of
the analysis, for each signature (group of gene sets) and
threshold. Clicking on a graph leads to its correspond-
ing information element on a table below, which contains
several related values, such as the significant GSEA term,
related SE genes, and statistical values linked to the GSEA
term such as Enrichment Score (ES), Normalized Enrich-
ment Score (NES), FDR and p-values provided by GSEA,
which are further described in Additional file 1.
HOMER window shows the results from the motif anal-

ysis by the HOMER tool, which includes two ranked
tables, one for known motifs and another one for de novo
motifs. ‘Known motifs’ table contains a LOGO image for
each motif and the name of the TF or binding protein
using such binding motif. It also includes the percentage
of SE and TE sequences that has such motif, and a p-value



Ascensión et al. BMC Bioinformatics  (2017) 18:296 Page 8 of 18

Fig. 4 NaviSE GUI. All NaviSE windows contain a navigation bar on the top with links to all the results windows. On the left side there is a sidemenu
bar with links to subsections of the active window. a Themain window of NaviSE depicting the chromosomal plot in which the positions of all
predicted SEs are mapped into a karyotype. Each SE in this window is a hot-spot with a link to the SE table. b Amongst other features, SE table
contains the ranking of SEs, the names in the SE table linked to GeneCards (c), the chromosomal locations linked to UCSC Genome Browser (d), the
SE score, the number of subpeaks, and, in the last column, the SE signal profile drawn with our GVT module

that measures the statistical significance of the associa-
tion of the SE with such motif. The ‘de novo’ table includes
motifs predicted by HOMER to bind elements differen-
tially in SEs and TEs. Upon clicking on each element in the
‘de novo’ table, NaviSE redirects to a HOMER-generated
page that includes more information about the motif.

Finally, StringDB and Enrichr windows show, respec-
tively, PPI networks from SEs at different confidence
values; and results from Enrichr website including TFs
related to SEs, cell or tissue specification or metabolic
pathways linked to the SE population. Each subsection
includes a barplot of the significant terms which link to
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Fig. 5 GSEA NaviSE GUI. aWindow with interactive links to the corresponding GSEA terms in the GSEA table. b Table with the ranking of GSEA terms;
each GSEA term, linked to GSEA website (c); statistical values such as Enrichment Score (ES), Normalized Enrichment Score (NES), FDR and p-values
provided by GSEA; list of associated genes, linked to GeneCards with SE ranking value (in parentheses) linked to SE tablewindow, described in Fig. 4b

the elements in a specific table. This window is described
in detail in Additional file 1.

Process parallelisation
The parallelisation of NaviSE is fundamental to save time
during the data processing, more so when the analysis
is performed simultaneously with numerous cell types or
marks. The computing time optimization achieved upon
NaviSE parallelisation is shown in Fig. 6a.
Most time-consuming processes show a considerable

decrease in running time: in SE prediction up to a 30%
of the original time, in gene annotation up to 10%, and in
GVT up to 8.5%. TF prediction by HOMER, and GSEA,
are also parallelised, although, interestingly, their opti-
mal processing time achieved is obtained using between 4
and 7 processors, probably due to limits in main memory
usage or difficulties of the Python-operating system inter-
face for managing the optimal access to all the CPUs. In
short, the overall amount of time is reduced up to a 40%
between 1 and 19 processors, and the optimal difference
is achieved at 15 processors, with a reduction up to 30%.
Hence, NaviSE shows a considerable reduction of pro-

cessing time even with small processing capability, below
6 CPUs, which may allow conducting research with mid-
range computers. As for the non-parallelisable processes,
they involve very fast computing tasks that do not require
parallelisation or in which the algorithm shown in Eq. 5

cannot be efficiently implemented (such as reading files,
alignment of reads or processing of some tables).

Comparison of SE predictions among different software
As previouslymentioned, NaviSE performs the whole pro-
cessing from raw data files to comprehensive annotations
of SEs. However, there are alternative software packages
that can perform the SE prediction task as well. Here, we
compare NaviSE SE predictions with those obtained with
ROSE and HOMER, in ESCs epigenomics data.
The stitching calculation that we have implemented

in NaviSE is much faster than the ones implemented in
ROSE and in HOMER. For example, when running in 19
CPUs, the stitching of NaviSE takes 278 seconds, whereas
the stitching of ROSE takes 10,860 s (39 times slower than
NaviSE) and the stitching of HOMER 588 seconds (2.1
times slower than NaviSE) (Fig. 6a).
It has to be taken into account that NaviSE does not only

annotate the SE peaks but also the subpeaks. This feature
provides NaviSE with an important annotation feature to
understand the SE structure that HOMER cannot provide.
To test the similarity between the SE predictions pro-

duced by the different software, we have used ESC, MON
andNEU cell types. AlthoughNaviSE, ROSE andHOMER
predict different number of SEs, they share a signifi-
cant number of predictions (see Euler-Venn diagrams in
Fig. 6b). To analyse deeply the similarities among these
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Fig. 6 NaviSE peformance comparisons. a NaviSE CPU running time for different numbers of CPUs. Heatmap of the processing time for each NaviSE
process for different numbers of CPUs, writen on top. Tasks parallelised by NaviSE are highlighted in bold typeface. For the SE prediction and gene
annotation, running times of ROSE and HOMER on 19 CPUs are also provided. b SE prediction similarities among different software. For each cell
type and histone mark, the Euler-Venn diagram with the number of commonly predicted SEs is represented on top and the comparisons among
the SE ranking generated by the different software at the bottom. The rank of each SE predicted by NaviSE is colour-codified (bluer colours indicate
higher positions in the rank and redder colours lower positions). Each NaviSE SE is mapped onto HOMER and ROSE SE ranking tracks in the position
predicted by HOMER and ROSE for such SE, with the colour codification corresponding to the ranking predicted by NaviSE. SEs predicted by other
software that are not predicted by NaviSE appear in white. Grey boxes mark the indexes for which a rank in a predictor has exhausted its number of
predicted SEs in comparison to the maximum rank predicted by the three software {HOMER, ROSE, NaviSE}
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predictions we have designed a graphical representation
that allows us to track the ranking of each SE predicted
by each software in comparison with the ranking pre-
dicted by NaviSE. This representation shows that the rank
of the score of the SEs is very similar among all of the
predictors (ranking bars in Fig. 6b). A detailed explana-
tion of prediction divergences between different software,
as well as between epigenomic combinations, is provided
with an example with ESCs at “NaviSE epigenomics sig-
nal algebra is able to predict SEs with sharper signals”
“Results” section.

SE prediction of different cell lineages
To assess the capabilities and performance of NaviSE,
we have run several real datasets from different species
(human and mouse), histone marks (H3K27ac, H3K4me3
and H3K4me1), and cell types (ESC, MON and NEU),
using the hg38 human genome version.

Main page, SE table, and Statistics
Using the same default parameters with H3K27ac his-
tone mark, the NaviSE analysis for the different cell lines
yielded a wide range of SEs (nESC : 664, nNEU : 1073,
nMON : 1235). The signals of the most important SEs are
shown in the Fig. 7 and the main statistics for each cell
type are depicted in the Fig. 8.
The distribution of subpeaks varies considerably

between SEs and TEs. TE subpeak distribution follows a
Zipfian-like distribution in all the analysed cell lines, that
is, most of the samples contain only 1 subpeak, and the
number of samples that contain higher amount of sub-
peaks goes down at a rate of∼50% of the previous number
of subpeaks; whereas the SE distributionmight follow a χ2

distribution or a normal distribution. In the case of ESCs,
the maximum of subpeaks is between 5 and 7, whereas in
NEU andMON the distribution is uniform between 6 and

14 subpeaks, with a considerable amount of SEs having
more than 20 subpeaks.
The differences in length distribution between TEs and

SEs are apparent in all samples. Interestingly, TEs usu-
ally show a bi or trimodal distribution with maxima at
∼100, ∼1000 or ∼10,000 nt in all the analysed cell types,
whereas SEs show a monomodal normal-like distribu-
tion with means around 25,000 - 50,000 nt. On the other
hand, subpeak distribution shows no significant differ-
ences between SEs and TEs, both in length and pileup.

HOMER analysis
The results of the most relevant TFs revealed by HOMER
are shown in Table 1. Although all three cell lines showed
shared TFs such as TCF3, each cell type contained a
set of cell-specific TFs. For instance, ESC contained
NKX2-2 and NKX2-5, involved in heart and nervous
development; NEU contained RXR, involved in neural
development, NR5A2, involved in embryonic develop-
ment and, interestingly, RUNX1, thought to be involved
in hematopoiesis. Finally, MON contained GATA2 and
GATA1, the first closely related to hematopoiesis and the
second involved in the switch of fetal hemoglobin to adult
hemoglobin.

GOEA and GSEA results
GOEA and GSEA are represented in Figs. 9 and 10 respec-
tively. Both results are related, as the signatures used for
GSEA contain sets of genes related to GO sets. Both
analysis show correlation of functions to each cell type.
For ESC, the most relevant GO terms are related to

protein expression (positive regulation of transcription),
rearrangement of cellular morphology (focal adhesion,
lamellipodium) or pluripotency (somatic stem cell pop-
ulation maintenance). As for GSEA, significant terms
are related to master TFs of ESCs, such as NANOG,

Fig. 7 SE ChIP-seq peak distribution. Box plot of peak distribution for each SE obtained with our GVT module, for some representative SE
predictions. Each column represents SEs from each cell type. Black lines below the signal represent the SE supports at each sample, and bars in
alternating colours below SE bar show the supports of the SE subpeak composition
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Fig. 8 NaviSE GUI statistics. Diagrams of statistical parameters for each cell type, arranged in rows. SE ranking (Eq. 2) by ChIP-seq signal (left column)
with themost relevant SEs of each cell type and their corresponding ranking, SE distribution of the number of subpeaks of the SEs (center column) and
SE pileup vs length scatter plots in log10 scale with the respective distributions of SE pileups in ordinates and SE lengths in abscissas (right column)

or cytoskeletal reorganization. Among the predominant
genes, most of them repeated in several functional terms,
we remark ROR1 (which modulates neurite growth and
is highly expressed during early embryonic development
[23]), ZIC3/5 (involved in the formation of right/left axis
during development, and direct activator ofNANOG pro-
moter in ESC [24]) or SOX2 (one of the Yamanaka’s repro-
graming TFs, used for the induction of pluripotency, as
well as a core pluripotency factor in ESC [25]).
Regarding NEU, the most relevant GO terms are related

to neural development (ephrin signaling, Wnt signaling

pathway, dendritic spine, axon guidance). As for GSEA,
three relevant terms are generation of neurons, neuron
differentiation, and neurite development. Three highly
ranked genes in these GSEAs are CDK5R1 (neuron-
specific activator of cyclin-dependent kinase 5, required
for proper development of the central nervous system,
also found essential for oligodendrocyte maturation and
myelination [26]), BAIAP2 (brain-specific angiogenesis
inhibitor binding protein, might be related to neural
growth-cone guidance, dendritic spine development and
NMDA receptor regulation [27]) and PBX1 (regulates
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Table 1 The most relevant TFs, and their binding motifs for all cell types obtained from HOMER analysis. p-values are presented in their
integer logarithmic form (pP-val ≡ − log10 P-val)

ESC NEU MON

TF Motif pP-val TF Motif pP-val TF Motif pP-val

NKX3-2 121 TCF3 142 TCF3 142

NKX2-2 83 TBX21 132 TEAD2 105

NKX2-5 77 RXR 124 NPAS2 90

ESRRA 75 RUNX1 124 GATA2 85

TBX5 75 NR5A2 122 GATA1 83

differentiation and survival of certain neurons, and is
impaired in Parkinson’s disease [28, 29]).
Regarding MON, the most relevant GO terms are

related to specific functions of monocytes involved in
immune response (phagocytosis, T cell receptor signaling

pathway, MyD88-dependent toll-like receptor signaling
pathway, lipopolysaccharide-mediated signaling path-
way). As for GSEA, three relevant terms are T cell
receptor signaling pathway, reactome immune system and
immune system process. Genes shared by several GO

Fig. 9 NaviSE GUI GOEA significant terms. Bar plots for each cell type depicting the most relevant and statistically significant terms for GOEA of the
genes associated with SE predicted for H3K27ac. Red - cellular component, blue - biological process, green - molecular function
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Fig. 10 NaviSE GUI GSEA most significant terms. GSEA profiles depicting three significant GSEA sets, from MSigDB, for each cell type for genes
associated with SE predicted for H3K27ac. Each graph contains the typical GSEA profile alongside its positive matches in the bar below

terms are NOTCH2 (related to hematopoiesis), CD14
(one of the main markers of monocytes), TLR2 (Toll-
like receptor 2, which plays a fundamental role in
pathogen recognition and activation of innate immu-
nity [30]), MAPK13 (is activated by proinflammatory
cytokines and cellular stress [31]) or LYN (might be
involved in the regulation of mast cell degranulation, and
erythroid differentiation [32, 33]). Interestingly, NOTCH1
gene, which is essential for hematopoiesis [34], does
not appear in the list of SEs predicted by NaviSE for
this dataset.

Enrichr analysis
Weperformed an Enrichr analysis in order to search genes
involved in cellular processes related to each cell type.
Most of the found genes, if not mentioned previously,
appeared in GSEA and GOEA as well.
For ESC, the Enrichr Reactome presents several terms

such as transcriptional regulation of pluripotent stem cells;
and POU5F1, SOX2, NANOG genes related to prolif-
eration, widely related to embryogenesis. Predominant
genes are FGF2 (implicated in a multitude of physiologic

and pathologic processes, including limb development,
angiogenesis, wound healing, and tumour growth [35]),
SOX2 or NANOG (TF belonging to Homeobox proteins,
critically involved with self-renewal of undifferentiated
ESCs, which is also one of Thomson’s reprogramming fac-
tors [36]). ENCODE and Chromatin Enrichment Analysis
(ChEA) TFs includes TFs related to pluripotency (TCF3,
NANOG, SOX2, POU5F1 and KLF4 as the most relevant)
which share several genes, such as ZMYDN8, or DIDO1
(involved in apoptosis, autophagy, and meiosis). Interest-
ingly, and as described by Hnisz et al. [4], we found that
the SEs predicted by NaviSE are capable of disclosing
a crosstalk between TFs (for instance, all the aforemen-
tioned TFs interact with SOX2 and NANOG, according to
ENCODE).
As for NEU, Reactome includes significant terms such

as axon guidance or semaphorin interactions, with genes
such as TRIO or CDK5R1; which also appear as genes
associated with several TFs such as REST (transcrip-
tional repressor that represses neuron-specific genes,
such as type II sodium channel gene [37, 38]), deter-
mined by ENCODE or TRANSFAC. A gene predicted
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to associate with REST is SOX1, a known neuronal
marker.
Regarding MON, Reactome presents several terms such

as immune system, innate immune system, hemostasis or
toll-like receptor 2 cascade, widely related to monocytes,
whose associated genes are TLR2, FOS (implicated as reg-
ulator of cell proliferation, differentiation, and transfor-
mation, associated with B lymphocyte differentiation and
involved in lypopolisaccharide and low density lipopro-
tein response [39–41]) or CD86, expressed by antigen-
presenting cells. Binding of this protein to CD28 antigen
is a co-stimulatory signal for activation of the T-cell.
TRANSFAC and ENCODE include genes associated with
TFs like GATA1, GATA2, SPI1 or RUNX1, among which
are IKZF1 or JARID2. Enrichr also determined markers
for monocytes or lymphoid cells, such as RIN3, CXCR4,
TREM1 or ETV6.

NaviSE epigenomics signal algebra is able to predict SEs
with sharper signals
To evaluate to which extent the use of the epigenomics
algebra improves the SE predictions, we have selected
combinations of activation and repression epigenetic sig-
nals and compared SE predictions of HOMER, ROSE
and NaviSE in ESCs. We denote the set formed by a
SE software predictor {HOMER, ROSE, NaviSE}, and
the set of SEs and TEs derived from an algebra of sin-
gle or combined epigenetic signals {H3K27ac, H3K4me1,
H3K4me3, H3K27ac NOT H3K4me3, H3K27ac NOT
H3K27me3, H3K27ac + H3K4me1 - H3K4me3, H3K27ac
+ H3K4me1 - H3K27me3} as STITpred−algebra. To quantify
the results of the different STITpred−algebra, we collected
a set of ESC core pluripotency markers from the litera-
ture [42] and built a metric of the global goodness of the
STITpred−algebra based on the SE ranking generated for
each STITpred−algebra over the set of ESCmarkers. As each
STITpred−algebra contains a different number of SEs (thus,
producing ranks of different length), to make the different
SE ranks comparable, we designed a transformation to re-
scale each SE rank, r, given by Eq. 2 into a scaled rank s(r)
as follows:

s(r) = r∣∣STITpred−algebra
∣∣ · 100 (6)

where
∣∣STITpred−algebra

∣∣ is the number of SEs predicted
by each STITpred−algebra. Thus, when we apply Eq. 6 to
scale the rank r, it produces a s(r) in the range [0, 100] if
the epigenomics signal algebra is predicted as a SE, and
s(r) > 100 if the signal algebra is predicted as a TE or is
not predicted at all. Better 1 STITpred−algebra assigns lower
s(r)s to the SEs associated to ESC gene markers.
To quantify the global performance of each

STITpred−algebra, we calculated the average s of s(r)
over the list of all ESC markers. Therefore, the best

STITpred−algebra will produce the lowest s. We depict
the s(r) for the list of ESC gene markers and the list of
STITpred−algebra in the heatmap of Fig. 11a.
We observe three main patterns of behaviour, a group

I of genes (from MED14 until MYH9) that has asso-
ciated a majority of SEs predicted by almost all the
STITpred−algebra, some of them not by HOMER, a group
II (from TPD52 until LRRC2) that has associated TEs
predicted by ROSE and NaviSE STITpred−algebra but not
by HOMER, and a group III (from RBM14 until KLF2)
that has associated lower ranked TEs from some of the
combined algebras of NaviSE.
Interestingly, no STITpred−algebra predicts SEs associated

with the master regulator of pluripotency POU5F1/OCT4
(they appear as TEs with H3K4me3 and H3K27ac +
H3K4me1 - H3K27me3 from NaviSE), suggesting that
POU5F1 has a subtle epigenomic regulation that hinders
the discovery for upstream POU5F1 regulators, as it has
been observed in the computational attempts with uncon-
strained discovery algorithms to find ab initio motifs
regulating the POU5F1 promoter [43].
The plot in Fig. 11b depicts the normalised metric

of global performance s of each STITpred−algebra, where
the lowest values are associated to the best perfor-
mance. We observe that HOMER-based predictors show
the worse performance, NaviSE single epigenomic sig-
nal SE predictions are better than those of HOMER and
ROSE, and NaviSE H3K27ac + H3K4me1 - H3K4me3
algebra is better than any other single epigenomic sig-
nal SE predictions, thus showing the advantage of using
the NaviSE epigenomic signal algebra to perform SE pre-
dictions.
To illustrate how the profiles of the combined epige-

netic signal algebras are developed, we selected the best
performing algebra (H3K27ac+H3K4me1-H3K4me3) and
depicted its resulting combination and component signals
profiles H3K27ac, H3K27me1, H3K4me3 for NANOG,
(Fig. 11c) and FOXO1 (Fig. 11d). In both cases, the dele-
tion of the H3K4me3 promoter signal upstream and over
the first exon and intron shortens the SE support to focus
the SE support upstream of these genes.
Therefore, although there might not be a ‘gold standard’

on what a real SE is, we can conclude that the SE pre-
dictions of NaviSE are better than other predictors’, with
the added advantage to be fast obtained, fully automatized
and comprehensively annotated.

Conclusions
We designed NaviSE to perform automatic parallelised
SE prediction from genome-wide epigenetic signals, or an
algebra of them, due to an optimization that reduces the
necessity of inputting most of the parameters, providing a
comprehensive annotation of SEs. NaviSE SE annotation
runs from the motifs of TFBSs enriched in SEs through
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Fig. 11 Performance of the epigenomics algebra on ESC gene markers. a Heatmap of the scaled ranking s(r) calculated by Eq. 6 for the SEs predicted
by different STITpred−algebra for ESC gene markers. The scaled ranking is colour coded in log10 scale, in red for good ranked (low ranking values) SEs, in
yellow (from 2.0 onwards) for good ranked TEs, in green and blue for bad ranked TEs, and in grey for TEs without signal prediction. b Global goodness
of each STITpred−algebra over the whole set of ESC gene markers; normalised to the predictor of highest average (HOMER H3K4me3). Epigenomic
algebra and single epigenomic signal box plot of peak distribution, depicted by our GVT module, for the SE associated to NANOG (c) and FOXO1 (d).
The bottom row contains the combination of epigenomic signals, and the rows above contain the original single signals. Black lines below the signal
represent the SE supports at each sample, and bars in alternating colours below SE bar show the supports of the SE subpeak composition



Ascensión et al. BMC Bioinformatics  (2017) 18:296 Page 17 of 18

functional analysis (GOEA, GSEA and enrichedmetabolic
pathways) to PPI networks to a broad tissue prediction,
thus, covering a wide range of valuable information. Such
integrated annotation is of paramount importance due
to the regulatory nature of the SEs, which have been
described as key players in the determination of cell fate
and in the involvement in the mechanisms of disease.
Simultaneously, NaviSE performs all these tasks optimiz-
ing the use of the computer resources, identifying the
available cores and main memory, and takes maximum
advantage of them in function of the task requirements.
Furthermore, the automatic recognition of multiple file

formats and the capability of working with replicates and
controls, alongside with the possibility of integrating onto
other pipelines or running multiple samples with multiple
replicates and signal algebras at once with a simple script
in Python, makes NaviSE a foremost tool for an efficient
study of SEs. Due to all these capabilities, NaviSE is a time-
saving and user-friendly tool for SE analysis.
To validate the biological performance of NaviSE, we

applied it to predict the SEs on real data sets of several
cell types with a different level of differentiation and com-
mitment, and predicted in all cases SE-associated genes
in agreement with the expected cell-specific markers. In
the case of ESCs, NaviSE predicted SEs on the ESC mark-
ersNANOG and SOX2, in the case of neurons it predicted
the SOX1 and CDK5R1 neuron markers, and in the case
of monocytes, predicted the CD86 and CXCR4monocyte
markers.
The Additional file 1 provides a complete guide to the

software installation and use instructions.

Availability and requirements
NaviSE. Project name:NaviSE. NaviSE is freely available at
https://sourceforge.net/projects/navise-superenhancer/.
Operating system: Linux 64bit (Ubuntu 11.04).
Programming language: Python 3.5. License: GNUGPL.

Additional file

Additional file 1: Supplementary Information. Manual for installation, use
and running examples of NaviSE. (pdf 33792 kb)
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