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Abstract

Background: Despite the long-anticipated possibility of putting sequence alignment on the same footing as
statistical phylogenetics, theorists have struggled to develop time-dependent evolutionary models for indels that are
as tractable as the analogous models for substitution events.

Main text: This paper discusses progress in the area of insertion-deletion models, in view of recent work by Ezawa
(BMC Bioinformatics 17:304, 2016); (BMC Bioinformatics 17:397, 2016); (BMC Bioinformatics 17:457, 2016) on the
calculation of time-dependent gap length distributions in pairwise alignments, and current approaches for extending
these approaches from ancestor-descendant pairs to phylogenetic trees.

Conclusions: While approximations that use finite-state machines (Pair HMMs and transducers) currently represent
the most practical approach to problems such as sequence alignment and phylogeny, more rigorous approaches that
work directly with the matrix exponential of the underlying continuous-time Markov chain also show promise,
especially in view of recent advances.
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Background
Models of sequence evolution, formulated as continuous-
time discrete-state Markov chains, are central to statis-
tical phylogenetics and bioinformatics. As descriptions
of the process of nucleotide or amino acid substitu-
tion, their earliest uses were to estimate evolutionary
distances [1], parameterize sequence alignment algo-
rithms [2], and construct phylogenetic trees [3]. Variations
on these models, including extra latent variables, have
been used to estimate spatial variation in evolutionary
rates [4, 5]; these patterns of spatial variation have been
used to predict exon structures of protein-coding genes
[6, 7], foldback structure of non-coding RNA genes
[8, 9], regulatory elements [10], ultra-conserved elements
[11], protein secondary structures [12], and transmem-
brane structures [13]. They are widely used to reconstruct
ancestral sequences [14–22], a method that is finding
increasing application in synthetic biology [16, 20–22].
Trees built using substitution models used to classify
species [23], predict protein function [24], inform con-
servation efforts [25], or identify novel pathogens [26]. In
the analysis of rapidly evolving pathogens, these meth-
ods are used to uncover population histories [27], analyze
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transmission dynamics [28], reconstruct key transmission
events [29], and predict future evolutionary trends [30].
There are many other applications; the ones listed above
were selected to give some idea of how influential these
models have been.
Continuous-time Markov chains describe evolution in

a state space �, for example the set of nucleotides
� = {A,C,G,T}. The stochastic process φ(t) at any given
instant of time, t, takes one of the values in�. Let �p(t) be a
vector describing the marginal probability distribution of
the process at a single point in time: �pi(t) = P(φ(t) = i).
The time-evolution of this vector is governed by a master
equation

d
dt

�p(t) = �p(t)R (1)

where, for i, j ∈ � and i �= j, Ri,j is the instantaneous
rate of mutation from state i to state j. For probabilistic
normalization of Eq. 1, it is then required that

Ri,i = −
∑

j∈�,j �=i
Ri,j

The probability distribution of this process at equilib-
rium is given by the vector �π , which must satisfy the
equation

�πR = �0
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The general solution to Eq. 1 can be written �p(t) =
�p(0)M(t) whereM(t) is thematrix exponential

M(t) = exp(Rt) (2)

Entry Mi,j(t) of this matrix is the probability P(φ(t) =
j|φ(0) = i) that, conditional on starting in state i, the
system will after time t be in state j. It follows, by defini-
tion, that this matrix satisfies the Chapman-Kolmogorov
forward equation:

M(t)M(u) = M(t + u) (3)

That is, ifMi,j(t) is the probability that state iwill, after a
finite time interval t, have evolved into state j, andMj,k(u)

is the analogous probability that state j will after time u
evolve into state k, then summing out j has the expected
result:

∑

j∈�

Mi,j(t)Mj,k(u) = Mi,k(t + u) ∀i, k ∈ �

This is one way of stating the defining property of a
Markov chain: its lack of historical memory previous to its
current state. Equation 1 is just an instantaneous version
of this equation, and Eq. 3 is the same equation in matrix
form.
The conditional likelihood for an ancestor-descendant

pair can be converted into a phylogenetic likelihood for a
set of extant taxon states S related by a tree T, as follows.
(I assume for convenience that T is a binary tree, though
relaxing this constraint is straightforward.)
To compute the likelihood requires that one first com-

putes, for every node n in the tree, the probability �Fi(n)

of all observed states at leaf nodes descended from node
n, conditioned on node n being in state i. This is given by
Felsenstein’s pruning recursion:

�F(n)=
{(

M(tnl)�F(l)
)
◦
(
M(tnr)�F(r)

)
if n is an internal node with children l, r

��(sn) if n is a leaf node in state sn

(4)

where tmn denotes the length of the branch from tree node
m to tree node n. I have used the notation ��(j) for the
unit vector in dimension j, and the symbol ◦ to denote the
Hadamard product (also known as the pointwise product),
defined such that for any two vectors �u, �v of the same size:
(�u ◦ �v)i = �ui�vi.
Supposing that node 1 is the root node of the tree, and

that the distribution of states at this root node is given by
�ρ, the likelihood can be written as

P(S|T ,R, �ρ) = �ρ · �F(1) (5)

where �u ·�v denotes the scalar product of �u and �v. It is com-
mon to assume that the root node is at equilibrium, so that
�ρ = �π .

As mentioned above, this mathematical approach is
fundamental to statistical phylogenetics and many appli-
cations in bioinformatics. For small state spaces �, such
as (for example) the 20 amino acids or 61 sense codons,
the matrix exponentialM(t) in Eq. 2 can be solved exactly
and practically by the technique of spectral decomposi-
tion (i.e. finding eigenvalues and eigenvectors). Such an
approach informs the Dayhoff PAM matrix. It was also
solved for certain specific parametric forms of the rate
matrix R by Jukes and Cantor [1], Kimura [31], Felsenstein
[3], andHasegawa et al. [32], among others. This approach
is used by all likelihood-based phylogenetics tools, such
as RevBayes [33], BEAST [34], RAxML [35], HyPhy [36],
PAML [37], PHYLIP [38], TREE-PUZZLE [39], and XRate
[40]. Many more bioinformatics tools use the Dayhoff
PAM matrix or other substitution matrix based on an
underlying master equation of the form Eq. 1.

Homogeneity, stationarity, and reversibility
There exists a deep literature on Markov chains, to which
this brief survey cannot remotely do justice, but several
concepts must be mentioned in order to survey progress
in this area.
A Markov chain is time-homogeneous if the elements

of the rate matrix R in Eq. 1 are themselves independent
of time. If a Markov chain is time-homogeneous and is
known to be in equilibrium at a given time, for example
�p(0) = �π , then (absent any other constraints) it will be in
equilibrium at all times; such a chain is referred to as being
stationary.
The time-scaling of these models is somewhat arbitrary:

if the time parameter t is replaced by a scaled version t/κ ,
while the rate matrix R is replaced by Rκ , then the likeli-
hood in Eq. 2 is unchanged. For some models, the rate is
allowed to vary between sites [4, 5].
A Markov chain is reversible if it satisfies the instanta-

neous detailed balance condition �πiRi,j = �πjRj,i, or its
finite-time equivalent �πiMi,j = �πjMj,i. This amounts to a
symmetry constraint on the parameter space of the chain
(specifically, the matrix S with elements Si,j = √�πi/�πjRi,j
is symmetric) which has several convenient advantages:
it effectively halves the number of parameters that must
be determined, it eases some of the matrix manipulations
(symmetric matrices have real eigenvalues and the algo-
rithms to find them are generally more stable), and it
allows for some convenient manipulations, such as the so-
called pulley principle allowing for arbitrary re-rooting of
the tree [3]. From another angle, however, these supposed
advantages may be viewed as drawbacks: reversibility is
a simplification which ignores some unreversible aspects
of real data, limits the expressiveness of the model, and
makes the root node placement statistically unidentifiable.
Stationarity has similar advantages and drawbacks. If

one assumes the process was started at equilibrium, that is
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one less set of parameters to worry about (since the equi-
librium distribution is implied by the process itself ), but
it also renders the model less expressive and makes some
kinds of inference impossible.
The early literature on substitution models involved

generalizing from rate matrices R characterized only by
a single rate parameter [1], to symmetry-breaking ver-
sions that allowed for different transition and transver-
sion rates [31], non-uniform equilibrium distributions
over nucleotides [3], and combinations of the above [32].
These models are all, however, reversible. A good deal of
subsequent research has gone into the problem, in vari-
ous guises, of generalizing results obtained for reversible,
homogeneous and/or stationary models to the analogous
irreversible, nonhomogeneous and nonstationary models.
For examples, see [30, 41–43].

From individual residues to whole sequences
The question naturally arises: how to extend the model to
describe the evolution of an entire sequence, not just indi-
vidual sites? In such cases, when one talks about M(t)i,j
“the likelihood of an ancestor-descendant pair (i, j)” (or,
more precisely, the probability that—given the system
starts in ancestral state i—it will after time t have evolved
into descendant state j) one must bear in mind that the
states i and j now represent not just individual residues,
but entire sequences.
As long as the allowed mutations are restricted to point

substitutions and their mutation rates are independent of
flanking context, then the extension to whole sequences is
trivially easy: one can simply multiply together probabili-
ties of independent sites.
However, many kinds of mutation violate this

assumption of site independence; most notably context-
dependent substitutions and indels, where the rates
depend on neighboring sites. For these mutations the
natural approach is to extend the state space � to be the
set of all possible sequences over a given alphabet (for
example, the set of all DNA or protein sequences). This
state space is (countably) infinite; Eqs. 1-4 can still be
used on an infinite state space, but solution by brute-force
enumeration of eigenvalues and eigenvectors is no longer
feasible, except in special cases where there is explicit
structure to the rate matrix that allows identification of
the eigensystem by algebraic approaches [44, 45].
It has turned out that whole-sequence evolutionary

models have proved quite challenging for theorists. There
is extensive evidence suggesting that indels, in particu-
lar, can be profoundly informative to phylogenetic studies,
and to applications of phylogenetics in sequence analy-
sis [46–51]. The field of efforts to unify alignment and
phylogeny, and to build a theoretical framework for the
evolutionary analysis of indels, has been dubbed statis-
tical alignment by Hein, one of its pioneers [52]. Recent

publications by Ezawa [53–55] and Rivas and Eddy [56]
have highlighted this problem once again, directly leading
to the present review.

Main text
In this paper I focus only on “local” mutations: mostly
indel events (which may include local duplications), but
also context-dependent substitutions. This is not because
“nonlocal” events (such as rearrangements) are unim-
portant, but rather that they tend to defy phylogenetic
reconstruction due to the rapid proliferation of possible
histories after even a few such events [57].
The discussion here is separated into two parts. In the

first part, I discuss the master equation (Eq. 1) and exact
solutions thereof (Eq. 2), along with various approxima-
tions and their departure from the Chapman-Kolmogorov
ideal (Eq. 3). This is an area in which recent progress
has been reported in this journal. In the second part, I
review the extension from pairwise probability distribu-
tions to phylogenetic likelihoods of multiple sequences,
using analogs of Felsenstein’s pruning recursion (Eq. 4).

Solving the master equation
This section begins with various approaches to finding the
time-dependent probability distribution of gap lengths in
a pairwise alignment, under several evolutionary models.

Exactly solvedmodels on k-mer strings
As an approach tomodels on strings of unbounded length,
one can consider short motifs of k residues. These can still
be considered as finite state-space models; for example,
a k-nucleotide model has 4k possible states. Several such
models have been analyzed, including models on codons
where k = 3 [47, 58], dinucleotides involved in RNA base-
pairs where k = 2 [59–61], and models over sequences of
arbitrary length k [44, 62].
Mostly, these models handle short sequences (motifs)

and do not allow the sequence length to change over time
(so they model only substitutions and not indels). Some of
the later models do allow the sequence length to change
via insertions or deletions [62] though these models have
not yet been analyzed in a way that would allow the com-
putation of alignment likelihoods for sequences of realistic
lengths.

Exactly solvedmodels on strings of unbounded length
It is a remarkable reflection on the extremely challenging
nature of this problem that, to date, the only exactly solved
indel model on strings is the TKF91 model, named after
the authors’ initials and date of publication of this seminal
paper [63]. While there has been progress in developing
approximate models in the 25 years since the publication
of this paper, and in extending it from pairwise to multiple
sequence alignment, it remains the only model for which
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1. the state space � is the set of all sequences (strings)
over a finite alphabet,

2. the state space is ergodically explored by
substitutions and indels (so there is a valid alignment
and evolutionary trajectory between any two
sequences φ(0) and φ(t)),

3. Equation 2 can be calculated exactly (specifically, as a
sum over alignments, where the individual alignment
likelihoods can be written in closed form).

The TKF91 model allows single-residue context-
independent events only. These include (i) single-residue
substitutions, (ii) single-residue insertions (with the
inserted residue drawn from the equilibrium distribution
of the substitution process), and (iii) single-residue dele-
tions (whose rates are independent of the residue being
deleted). The rates of all these mutation events are inde-
pendent of the flanking sequence.
This process is equivalent to a linear birth-death model

with constant immigration [64]. Thorne et al. showed
that an ancestral sequence can be split into indepen-
dently evolving zones, one for each ancestral residue (or
“links”, as they call them). This leads to the very appeal-
ing result that the length distribution for observed gaps is
geometric, which conveniently allows the joint probability
P(φ(0),φ(t)) to be expressed as a paired-sequence Hid-
den Markov Model or “Pair HMM” [65]. The conditional
probability P(φ(t)|φ(0)) can similarly be expressed as a
weighted finite-state transducer [66–68]. Some interest-
ing discussion of why the TKF91model should be solvable
at all can be found in [69] and in [42].
There are several variations on the TKF91 model. The

case where there are no indels at all, only substitutions,
can be viewed as a special case of TKF91, and can of
course be solved exactly, as is well known. Another varia-
tion on the TKF91 model constrains the total indel rate to
be independent of sequence length [70].
In the following section I cover some variants that use

different state spaces.
Exactly solvedmodels on state spaces other than strings
It is difficult to extend TKF91 to more realistic mod-
els wherein indels (or substitutions) can affect multiple
residues at once. In such models, the fate of adjacent
residues is no longer independent, since a single event can
span multiple sites.
As a way around this difficulty, several researchers

have developed evolutionary models where the state is
not a pure DNA or protein sequence, but includes some
extra “hidden” information, such as boundaries, mark-
ers or other latent structure. In some of these models
the sequence of residues is replaced by a sequence of
indivisible fragments, each of which can contain more
than one residue [56, 69, 71]. These includes the TKF92
model [71] which is, essentially, TKF91 with residues

replaced by fragments (so the alphabet itself is the count-
ably infinite set of all sequences over some other, finite
alphabet). Other models approximate indels as a kind of
substitution that temporarily hides a residue, by augment-
ing the DNA or protein alphabet with an additional gap
character [72–74].
These models can be used to calculate some form of

likelihood for a pairwise alignment of two sequences,
but since this likelihood is not derived from an under-
lying instantaneous model of indels, the equations do
not, in general, satisfy the Chapman-Kolmogorov for-
ward Eq. (3). That is, the probability of evolving from i
to k comes out differently depending on whether or not
one conditions on an intermediate sequence j. Clearly,
something about this “seems wrong”: the failure to obey
Eq. 3 illustrates the ad hoc nature of these approaches.
Ezawa [53] describes the Chapman-Kolmogorov prop-
erty (Eq. 3) as evolutionary consistency; it can also be
regarded as being the defining property of any correct
solution to a continuous-time Markov chain. The above-
mentioned approaches may be evolutionarily consistent if
the state space is allowed to include the extra informa-
tion that is introduced to make the model tractable, such
as fragment boundaries. Lèbre and Michel have criticized
other aspects of the Rivas-Eddy 2005 and 2008 models
[73, 74]; in particular, incomplete separation of the indel
and substitution processes [42].
Models which allow for heterogeneity of indel and sub-

stitution rates along the sequence also fall into this cate-
gory of latent variable models. The usual way of allowing
for such spatial variation in substitution models is to
assume a latent rate-scaling parameter associated with
each site [4, 5]. For indel models, this latent information
must be extended to include hidden site boundaries [56].

Exactly solvedmodels on graphs
Another variation on TKF91 is the TKF Structure Tree,
which describes the evolutionary behavior of RNA struc-
tures with stem and loop regions which are subject to
insertion and deletion [75]. Rather than describing the
evolution of a sequence, this model essentially captures
the time-evolution grammar of a tree-like graph whose
individual edges are evolving according to the TKF91
model. Other evolutionarymodels havemade use of graph
grammars, for example to model pseudoknots [76] or
context-dependent indels [77].

Finite-event trajectories
In tackling indel models where the indel events can insert
or delete multiple residues at once, several authors have
used the approximation that indels never overlap, so that
any observed gap corresponds to a single indel event. This
approximation, which is justified if one is considering evo-
lutionary timespans t � 1/(δ	) where δ is the indel rate
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per site and 	 is the gap length, considerably simplifies the
task of calculating gap probabilities [67, 78–83].
At longer timescales, it is necessary to consider

multiple-event trajectories, but (as a simplifying approx-
imation) one can still truncate the trajectory at a finite
number of events. A problem with this approach is that
many different trajectories will generally be consistent
with an observed mutation. Summing over all such trajec-
tories, to compute the probability of observing a partic-
ular configuration after finite time (e.g. the observed gap
length distribution), is a nontrivial problem.
In analyzing the long indel model, a generalization of

TKF91 with arbitrary length distributions for instanta-
neous indel events, Miklós et al. [84] make the claim that
the existence of a conserved residue implies the alignment
probability is factorable at that point (since no indel has
ever crossed the boundary). They use a numerical sum
over indel trajectories to approximate the probability dis-
tribution of observed gap lengths. Although they used
a reversible model, their approach generalizes readily to
irreversible models. This work builds on an earlier model
which allows long insertions, but only single-residue dele-
tions [85]. Recent work by Ezawa has put this finite-event
approximation on a more solid footing by developing a
rigorous algebraic definition of equivalence classes for
event trajectories [53–55].
Solutions obtained using finite-event approximations

will not exactly satisfy Eq. 3. There will be some error in
the probability, and in general the error will be greater
on longer branches, as the main assumption behind the
approximation (that there are no overlapping indels in the
time interval, or that there is a finite limit to the num-
ber of overlapping indels) starts to break down. However,
since these are principled approximations, it should be
possible to form some conclusions as to the severity of the
error, and its dependence on model parameters. Simula-
tion studies have also been of some help in assessing the
error of these approximations.

Taylor series approximations
For context-dependent substitution processes, such
as models that include methylation-induced CpG-
deamination, a clever approach was developed in [44].
Rather than considering a finite-event trajectory, they
develop an explicit Taylor series for the matrix expo-
nential (Eq. 2) and then truncate this Taylor series.
Specifically, the rate matrix for a finite-length sequence is
constructed as a sum of rate matrices operating locally on
the sequence, using the Kronecker sum ⊕ and Kronecker
product ⊗ to concatenate rate matrices. These operators
may be understood as follows, for an alphabet of N sym-
bols: suppose that Mm is the set of all matrices indexed
by m-mers, so that if A ∈ Mm, then A is an Nm × Nm

matrix. Let i, j be m-mers, k, l be n-mers, and ik, jl the

concatenated m + n-mers. If A ∈ Mm and B ∈ Mn then
A ⊕ B and A ⊗ B are both inMm+n and are specified by

(A ⊗ B)ik,jl = Ai,jBk,l (6)
(A ⊕ B)ik,jl = δ(k = l)Ai,j + δ(i = j)Bk,l (7)

where δ(i = j) = 1 if i = j and 0 if i �= j. Furthermore,
suppose On ∈ Mn is the Nk × Nk null matrix contain-
ing only zeroes. Then Om ⊕ B commutes with A ⊕ On,
and exp(A ⊕ B) = exp(A) ⊗ exp(B). The rate matrix R
for a length-L sequence operated on locally by a context-
sensitive rate matrix A ∈ Mm can be written as a sum of
the form

R =
L−m∑

n=0
On ⊕ A ⊕ OL−m−n

Commuting terms in the Taylor series for exp(Rt)
can then be systematically rearranged into a quickly-
converging dynamic programming recursion. This
approach was first used by [44] and further developed
including model-fitting algorithms [86] application to
phylogenetic trees [87] and discussion of the associated
eigensystem [45, 62]. It remains to be seen to what extent
such an approach offers a practical solution for general
indel models, where the instantaneous transitions are
between sequences of differing lengths.

Simulation studies
Such is the difficulty of solving long indel models that sev-
eral authors have performed simulations to investigate the
empirical gap length distributions that are observed after
finite time intervals for various given instantaneous indel-
rate models. These observed gaps can arise from multiple
overlapping indel events, in ways that have so far defied
straightforward algebraic characterization.
In recent work, Rivas and Eddy [56] have shown that if

an underlying model has a simple geometric length distri-
bution over instantaneous indel events, the observed gap
length distribution at finite times (accounting for the pos-
sibility of multiple, overlapping indels) cannot be geomet-
ric. Rivas and Eddy report simulation studies supporting
this result, and go on to propose several models incorpo-
rating hidden information (such as fragment boundaries,
a la TKF92) which have the advantage of being good fits
to HMMs for their finite-time distributions.
It has long been known that the lengths of empirically-

observed indels are more accurately described by a
power-law distribution than a geometric distribution
[46, 47, 88–91] and that alignment algorithms may ben-
efit from using such length distributions, which lead to
generalized convex gap penalties, rather than the compu-
tationally more convenient geometric distribution, which
leads to an affine or linear gap penalty [92, 93]. For
molecular evolution purposes in particular, it is known
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that overreliance on affine gap penalties leads to seri-
ous underestimates of the true lengths of natural indels
[94]. For almost as long, it has been known that using
a mixture of geometric distributions, or (considered in
score space rather than probability space) a piecewise
linear gap penalty, mitigates some of these problems in
sequence alignment [94–96]. Taken together, these results
suggest that simple HMM-like models, which are most
efficient at modeling geometric length distributions, may
be fundamentally limited in their ability to fully describe
indels; that adding more states (yielding length distribu-
tions that arise from sums of geometric random variates,
such as negative binomial distributions, or mixtures of
geometric distributions) can lead to an improvement;
and that generalized HMMs, which can model arbitrary
length distributions at the cost of some computational
efficiency [97], may be most appropriate. For example,
the abovementioned “long indel” model of Miklós et al.
uses a generalized Pair HMM [84], as does the HMM
of [98]. It is even conceivable that some molecular evo-
lution studies in the future will abandon HMMs alto-
gether, although they remain very convenient for many
applications.
The recent work of Ezawa has some parallels, but also

differences, to the work of Rivas and Eddy [53–55]. Ezawa
criticizes over-reliance on HMM-like models, and insists
on a systematic derivation from simple instantaneous
models. He puts the intuition of Miklós et al [84] on a
more formal footing by introducing an explicit notation
for indel trajectories and the concept of “local history
set equivalence classes” for equivalent trajectories. Ezawa
uses this concept to prove that alignment likelihoods for
long-indel and related models are indeed factorable, and
investigates, by numerical computation and analysis (with
confirmation by simulation), the relative contribution of
multiple-event trajectories to gap length distributions.
Ezawa’s results also show that the effects on the observed
indel lengths due to overlapping indels become more
significant as the indels get larger, making the problem
particularly acute for genomic alignments where indels
can be much larger than in proteins.
A number of excellent, realistic sequence simulators

are available including DAWG [99], INDELible [100], and
indel-Seq-Gen [101].

Extending from pairs to trees
Consider now the extension of these results from pair-
wise alignments, such as TKF91 and the “long indel”
model, to multiple alignments (with associated phyloge-
nies). Some of the approaches to this problem use Markov
Chain Monte Carlo (MCMC); some of the approaches
use finite-state automata; and there is also some overlap
between these categories (i.e. MCMC approaches that use
automata).

Approaches based onMCMC sampling
MCMC is the most principled approach to integrat-
ing phylogeny with multiple alignment. In principle an
MCMC algorithm for phylogenetic alignment can yield
the posterior distribution of alignments, trees, and param-
eters for any model whose pairwise distribution can be
computed. This includes long indel models and also,
in principle, other effects such as context-dependent
substitutions.
Of the MCMCmethods reported in the literature, some

just focus on alignment and ancestral sequence recon-
struction [65]; others on simultaneous alignment and
phylogenetic reconstruction [79–81, 83, 102, 103]; some
also include estimation of evolutionary parameters such
as dN/dS [104]; and some (focused on RNA sequences)
attempt prediction of secondary structure [105, 106].
In practise these mostly use HMMs, or dynamic pro-

gramming of some form, in common with the methods
of the following section. It is of course possible to use
HMM-based or other MCMC approaches to propose
candidate reconstructions, and then to accept or reject
those proposals (in the manner of Metropolis-Hastings
or importance sampling) using a more realistic formula-
tion of the indel likelihood. Ezawa’s methods, and others
that build on them or are related to them, may be use-
ful in this context. For example, Ezawa’s formulation was
used to calculate the indel component of the probability
of a fixed multiple sequence alignment (MSA) resulting
from sequence evolution along a fixed tree [53]. He also
developed an algorithm to approximately calculate the
indel component of the MSA probability using all MSA-
compatible parsimonious indel histories [54], and applied
it to some analyses of simulated MSAs [107]. Using such
realistic likelihood calculations as a post-processing “fil-
ter” for coarser, more rapid MCMC approaches that
sample the space of possible reconstructions could be a
promising approach.

Approaches based on automata theory
The dynamic programming recursion for pairwise align-
ment reported for the TKF91 model [63] can be exactly
extended to alignment of multiple sequences given a tree
[108, 109]. This works essentially because the TKF91 joint
distribution over ancestor and descendant sequences can
be represented as a Pair HMM; the multiple-sequence
version is a multi-sequence HMM [65].
This approach can be generalized, using finite-state

transducer theory. Transducers were originally developed
as modular representations of sequence-transforming
operations for use in speech recognition [110]. In bioinfor-
matics, they offer (among other things) a systematic way
of extending HMM-like pairwise alignment likelihoods to
trees [67, 68, 111, 112]. Other applications of transducer
models in bioinformatics have included copy number
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variation in tumors [113], protein family classification
[114], DNA-protein alignment [115] and error-correcting
codes for DNA storage [116].
A finite-state transducer is a state machine that reads

an input tape and writes to an output tape [117]. A prob-
abilistically weighted finite-state transducer is the same,
but its behavior is stochastic [110]. For the purposes of
bioinformatics sequence analysis, a transducer can be
thought of as being just like a Pair HMM; except where
a Pair HMM’s transition and emission probabilities have
been normalized so as to describe joint probabilities, a
transducer’s probabilities are normalized so as to describe
conditional probabilities like the entries of matrix M(t)
(Eq. 2). More specifically, if i and j are sequences, then one
can define the matrix entry Ai,j to be the Forward score
for those two sequences using transducer A. Thus, the
transducer is a compact encoding for a square matrix of
countably infinite rank, indexed by sequence states (rather
than nucleotide or amino acid states).
The utility of transducers arises since for many pur-

poses they can be manipulated analogously to matri-
ces, while being more compact than the corresponding
matrix (as noted above, matrices describing evolution
of arbitrary-length sequences are impractically—or even
infinitely—large). IfA and B are finite transducers encod-
ing (potentially infinite) matrices A and B, then there
is a well-defined operation called transducer composition
yielding a finite transducerAB that represents the matrix
product AB. There are other well-defined transducer
operations corresponding to the various other linear alge-
bra operations used in this paper: the Hadamard product
(◦) corresponds to transducer intersection, the Kronecker
product (⊗) corresponds to transducer concatenation, and
the scalar product (·) and the unit vector ( ��) can also
readily be constructed using transducers. Consequently,
Eq. 4 can be interpreted directly in terms of transducers
[67, 68, 82].
This has several benefits. One is theoretical unifica-

tion: Eq. 4, using the above linear algebra interpretation
of transducer manipulations, turns out to be very similar
to Sankoff ’s algorithm for phylogenetic multiple align-
ment [118]. Thus is a famous algorithm in bioinformatics
unified with a famous algorithm in likelihood phyloge-
netics by using a tool from computational linguistics.
(This excludes the RNA structure-prediction component
of Sankoff ’s algorithm; that can, however, be included
by extending the transducer framework to pushdown
automata [119].) Practically, the phylogenetic transducer
can be used for alignment [79, 81], parameter estimation
[104], and ancestral reconstruction [67], with promis-
ing results for improved accuracy in multiple sequence
alignment [112].
More broadly, one can think of the transducer as

being in a family of methods that combine phylogenetic

trees (modeling the temporal structure of evolution) with
automata theory, grammars, and dynamic programming
on sequences (modeling the spatial structure of evolu-
tion). The TKF Structure Tree, mentioned above, is in this
family too: it can be viewed as a context-free grammar, or
as a transducer with a pushdown stack [75].
The HMM-like nature of TKF91, and the ubiquity

of HMMs and dynamic programming in sequence
analysis, has motivated numerous approaches to indel
analysis based on Pair HMMs [56, 71, 74, 78, 120], as
well as many other applications of phylogenetic HMMs
[6, 7, 12, 121, 122] and phylogenetic grammars
[8, 10, 40, 60, 123, 124]. In most of these models, an align-
ment is assumed fixed and the HMM or grammar used
to partition it; however, in principle, one can combine
the ability of HMMs/grammars to model indels (and thus
impute alignments) with the ability to partition sequences
into differently evolving regions.

Conclusions
The promise of using continuous-time Markov chains
to model indels has been partially realized by automata-
theoretic approaches based on transducers and HMMs.
Recent work by Rivas and Eddy [56] and by Ezawa
[53–55] may be interpreted as both good and bad news for
automata-theoretic approaches.
It appears that closed-form solutions for observed gap

length distributions at finite times, and in particular the
geometric distributions that simple automata are good at
modeling, are still out of reach for realistic indel mod-
els, and indeed (for simple models) have been proven
impossible [56]. Further, simulation results have demon-
strated that geometric distributions are not a good fit to
the observed gap length distributions when the under-
lying indel model has geometrically-distributed lengths
for its instantaneous indel events [56]. If the lengths
of the instantaneous indels follow biologically plausi-
ble power-law distributions, the evolutionary effects due
to overlapping indels become larger as the gaps grow
longer [54].
That is the bad news (at least for automata). The good

news is that the simulation results also suggest that,
for short branches and/or gaps (such that indels rarely
overlap), the error may not be too bad to live with.
Approximate-fit approaches that are common in Pair
HMM modeling and pairwise sequence alignment—such
as using a mixture of geometric distributions to approxi-
mate a gap length distribution (yielding a longer tail than
can be modeled using a pure geometric distribution)—
may help bridge the accuracy gap [96]. Given the power
of automata-theoretic approaches, the best way for-
ward (in the absence of a closed-form solution) may
be to embrace such approximations and live with the
ensuing error.
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Interestingly, the authors of the two recent simula-
tion studies that prompted this commentary come to
different conclusions about the viability of automata-
based dynamic programming approaches. Ezawa [53, 54],
arguing that realism is paramount, advocates deeper
study of the gap length distributions obtained from
simple instantaneous models—while acknowledging that
such gap length distributions may be more difficult
to use in practice than the simple geometric distri-
butions offered by HMM-like models. Rivas and Eddy
[56], clearly targeting applications (particularly those
such as profile HMMs), work backward from HMM-
like models toward evolutionary models with embedded
hidden information. These models may be somewhat
mathematically contrived, but are easier to tailor so
as to model effects such as position-specific conser-
vation, thus trading (in a certain sense) purism for
expressiveness.
Whichever approach is used, these results are unam-

biguously good news for the theoretical study of indel
processes. The potential benefits of modeling alignment
as an aspect of statistical phylogenetics are significant.
One can reasonably hope that the advance of theoretical
work in this area will continue to inform advances in both
bioinformatics and statistical phylogenetics. After all, and
in spite of the Cambrian explosion in bioinformatics sub-
disciplines, sequence alignment and phylogeny truly are
closely related aspects of mathematical biology.
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