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Abstract

Background: The canonical code, although prevailing in complex genomes, is not universal. It was shown the
canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it
evolved towards its current form.
The error minimization theory considers the minimization of point mutation adverse effect as the main selection
factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes,
which helps to obtain information about the optimization level of the canonical code in its evolution.
A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of
possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical
code, the more efficient or optimal is that code.
The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical
genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high
dimensional spaces considered.

Results: The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is
not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away
from the areas of higher fitness in the landscape.

Conclusions: Given the non-presence of deep local minima in the landscape, although the code could evolve and
different forces could shape its structure, the fitness landscape nature considered in the error minimization theory
does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep
minimum of the huge fitness landscape.
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Background
The canonical or standard genetic code is redundant since
the 64 possible codons encode only 21 labels, the 20 amino
acids present in proteins and the “stop” signal that defines
the end of the protein translation process. The canoni-
cal code, although prevailing in complex genomes, is not
universal. The existence of other different codes, like the
one of mitochondrial DNA, altered the “frozen accident”,
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as coined by Crick [1], so extensive research has been
performed in order to analyze the reasons behind the
establishment of the canonical genetic code.
There are three main theories about the genetic code

organization and development, which could have influ-
enced the canonical code organization. The stereochem-
ical theory states that the stereochemical interactions
between bases and amino acids influenced the primordial
code, probably in the RNA World or earlier [2, 3]. Thus,
the physicochemical affinity between amino acids and the
cognate codons determined the codon assignments [4].
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The second one is the coevolution theory [5], whichmain-
tains that at an early stage of the genetic code develop-
ment few precursor amino acids were encoded. The other
amino acids (product amino acids) developed biosynthet-
ically from such precursor amino acids and these initial
amino acids passed part or their whole codon domain
to their biosynthetically produced amino acids. Finally,
the error minimization theory or physicochemical the-
ory considers the minimization of point mutation adverse
effects as the main selection factor in the evolution of the
code [4, 6, 7].
According to this last theory, the genetic code struc-

ture evolved to maximize its robustness, that is, to
minimize the consequences of code mutations on the
function of the encoded proteins [4]. In favor of this
theory is the fact that similar codons encode amino
acids with similar chemical properties: the codons that
share two bases tend to code amino acids with similar
hydrophobicity.
In this last alternative, a huge number of alternative

“genetic codes” are possible. The number of possible alter-
native codes is 1.4·1070 [8], when each amino acid is coded
by 6 codons at maximun (like the canonical code case). If
only permutations of the amino acids encoded in the 20
codon sets of the canonical code are allowed, there are 20!
(2.43 · 1018) possible codes. This alternative, which main-
tains the canonical codon set structure, is the most used
in the studies regarding the error minimization theory.
Finally, more than 1.51 · 1084 codes can be defined, when
no restrictions in the associations between the 64 codons
and the 21 meanings are considered [9].
In this error minimization theory, the efficiency or opti-

mality of a code is defined taking into consideration the
possible errors or mutations in the codon letters. Typi-
cally, all the point mutations in the codons are applied
to quantify the change between the encoded amino acids
before and after each point mutation. That change is mea-
sured taking into account an amino acid property, the
polar requirement property being the one most used.
Once such changes are averaged over all the possible
mutations, the lower that error value of a code the more
efficient or optimal is the corresponding code, since it
means smaller phenotypic changes in the encoded pro-
teins when mutations happen.
Moreover, two different analyses were considered to

assess the optimality or adaptability of the canonical
genetic code. In the first one, named “statistical analysis”,
many randomly generated codes are defined and then the
probability of more efficient random codes with respect to
the canonical one is quantified. The lower this probabil-
ity the more optimized is the canonical code. According
the authors that follow this analysis [2, 10–12], the pat-
tern of codon assignments of the canonical code appears
nearly optimal.

For example, in this statistical approach, Freeland and
Hurst [10] used alternative codes with the same codon set
block structure of the canonical code. In an ample sam-
ple of 1,000,000 possible alternative codes only 114 codes
were more efficient than the canonical code (the crite-
ria for defining such hypothetical codes are summarized
in the “Methods” section, together with the measure to
quantify code optimality). This low number of random
better codes allows the authors to state that the canoni-
cal genetic code evolved under the selection of the error
minimization.Moreover, when the authors weighted tran-
sition mutations differently from transversion mutations,
only 1 in every million randomly alternative codes was
better than the canonical genetic code, as the article title
states [10].
Extensions of these initial works include the analyses

by Gilis et al. [13], where the authors considered the role
of amino-acid frequencies in the efficiency of the canon-
ical genetic code, and the work by Torabi et al. [14] who
have experimented with the role of aminoacyl-tRNA syn-
thetases in decreasing the effects of mistranslations in the
code evolution. Along this line, Zhu et al. [15] also took
into consideration the codon usage of individual species
in the code optimization for error minimization and Mar-
quez et al. [16] checked whether organisms optimize the
genetic code at the same time that the codon usage.
The second approach to assess code efficiency is the

“engineering approach” [17, 18]. First, the most efficient
code is found, typically by a computational searchmethod.
Afterwards, the error value of the canonical code is com-
pared with the average error value of randomly generated
codes and the error value of the best obtained code. The
relative position of the canonical code error value with
respect to the others provides a measure of the optimiza-
tion level of the canonical code. The results with this
approach show that the canonical code is not so close
to the optimal as the statistical approach claims. The
authors in [17, 19] have discussed and debated these two
alternatives.
For example, in this engineering approach, according to

Di Giulio [20], the canonical genetic code achieved 72.7%
minimization of polarity distance when comparing the
error value of the canonical code with the error values
of random codes defined with the same codon set struc-
ture of the canonical one and with the value of the best
possible code (The same methodology explained in the
“Methods” section was used to assess the adaptability level
of a possible code). The best code (necessary in the com-
parison) was obtained by Di Giulio [20] using simulated
annealing. Novozhilov et al. [21], in order to investigate
the optimization of codes for the maximum attainable
robustness, used also a greedy minimization algorithm for
searching better alternative codes. Their search method
employed swaps of four-codon or two-codon series, in
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alternative codes defined with the same block structure
and the same degeneracy degree of the canonical code.
According to the authors’ results, the canonical code is
much closer to its local fitness minimum than the major-
ity of the random codes with similar robustness to the
canonical one.
Following other alternatives, Gardini et al. [22] focused

their analysis on searching clues for the canonical code
robustness. Given the dependence of protein function on
the tridimensional structure conformation, they took into
consideration the function of amino acids in their spe-
cific structural environment, analyzing the role of each
amino acid in inner or outer regions of the protein struc-
ture. In their work [22], the Protein Data Bank ample
information was used through a structural bioinformatics
approach to search for unambiguous clues of the ratio-
nale of the canonical genetic code in assigning from one
to six different codons for the different amino acids. For
example, Leu and Arg offer a clear clue, since both appear
in the canonical code with six assigned codons, there-
fore with a high protection from translational errors, and
those also appear as the most abundant amino acids in
protein-protein and protein-nucleic acid interactions.
Our work is focused on the error minimization theory.

Previously, we have used a Genetic Algorithm (GA), as a
search method for finding better adapted codes than the
canonical one [23]. The GA provides a global search in the
fitness landscape associated with the adaptability of pos-
sible hypothetical codes, allowing to obtain clues about
the difficulty to obtain better optimized codes. More-
over, we also employed a model of alternative codes which
reflects the known codon reassignments [24]. In line with
the engineering approach, our results with simulated evo-
lution revealed that the canonical code is far from the
best possible optimized codes. Extending our previous
work [23], Oliveira et al. [25] also proposed a multi-
objective approach since two or more objectives were
simultaneously optimized. They used as objectives code
robustness against mutations, considering the changes in
the polar requirement of amino acids (objective 1), and
code robustness with respect to the hydropathy index
or molecular volume changes under mutations of pos-
sible hypothetical codes (objective 2). The comparison
between the evolution with only one objective and the
use of a multiobjective evolutionary algorithm shown that
the multiobjective alternative obtains optimized solutions
closer to the canonical genetic code. Moreover, Oliveira
and Tinós [26] proposed a function which uses entropy
with the aim to increase the variability in the number
of codons assigned to amino acids. That is, the effects
against mutations of a code should be minimized while
its entropy should be maximized. With this considera-
tion, their results also indicate that the canonical genetic
code is slightly better optimized with respect to not using

the entropy term. Also, Blażej et al. [27], inspired by
our work with the adapted GA [23], analyzed the effec-
tiveness of using various combinations of mutation and
crossover probabilities under three models of the genetic
code, assuming different restrictions on its structure.
In evolutionary computing, the so-called “fitness shar-

ing technique” [28] is a “niching” method that allows the
evolutionary algorithm search to be simultaneous per-
formed in different areas (niches) corresponding to differ-
ent local (or global) optima, that is, the technique permits
the identification and localization of multiple optima in
the search space. It should be noted that the optimization
of the code adaptability turns into a minimization prob-
lem, where the “code fitness” or adaptability is inversely
related to the error cost of a code (the more robust a code
is against base mutations, the larger the fitness and the
lower the error cost, “Methods” section). In the present
work, the fitness sharing technique is introduced into the
evolutionary algorithm, which allows the extent to which
the canonical genetic code is in an area corresponding to
a deep local minimum to be easily determined, even in the
high dimensional spaces considered.
It is clearly not difficult to discern whether the canonical

code is in a local minimum regarding the fitness landscape
associated with the code adaptability. It is only neces-
sary to consider the adaptability level in its neighborhood,
that is, inspecting the fitness landscape in its close neigh-
borhood. For example, Novozhilov et al. found that “The
standard genetic code appears to be a point on an evo-
lutionary trajectory from a random point (code) about
half the way to the summit of the local peak” [21]. The
fitness landscape is clearly rugged [21], but the question
to answer in this paper is the following: is the standard
genetic code in an area corresponding to a deep and sep-
arated local peak in the vast fitness landscape? Moreover,
another related aspect is about the possible multimodal
nature of the fitness landscape. That is, does the land-
scape, even with its rugged nature with many non-deep
peaks, present localized areas of high fitness (adaptability)
separated by low fitness barriers?
The answers to the questions are relevant since many

previous works and authors discussed the possibility of
the location of the standard genetic code in a local min-
imum (or close to it), regarding error cost, to explain its
non-optimum adaptability. That information about the
general surface of the fitness landscape could provide
clues about the difficulty of the possible evolution of the
canonical genetic code. Since an exhaustive search of the
landscape is not possible, evolutionary computing was
used to search in the promising areas of the fitness land-
scape, incorporating the aforementioned useful technique
in evolutionary algorithms (fitness sharing) in order to
obtain clues about the multimodal nature of the fitness
landscape and the relative depth of its peaks.
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In the rest of the paper the “Methods” section details
the definitions of the alternative codes, their encoding
in the GA population, the GA operators, the fitness def-
inition in the landscape of such alternative codes, the
fitness sharing technique as well as the measures used to
quantify the canonical genetic code adaptability level. The
“Results” section expounds the experiment results when
the fitness sharing technique is introduced in the GA.
Finally, the last sections present a discussion of the results
and final conclusions.

Methods
Generation of variant genetic codes
Two possibilities of hypothetical codes were considered.
The first possibility reflects the current genetic code
translation table and is the most used in previous works
[10, 12, 13].When hypothetical codes were generated, two
restrictions were considered:
1. The codon space (64 codons) was divided into 21

nonoverlapping sets of codons observed in the
standard genetic code, each set comprising all
codons specifying a particular amino acid in the
standard code. Twenty sets correspond to the amino
acids and one set to the 3 stop codons.

2. Each alternative code is formed by randomly
assigning each of the 20 amino acids to one of these
sets. The three stop codons remain invariant in
position for all the alternative codes. Moreover, these
three codons are the same stop codons of the
standard genetic code (UAA, UAG and UGA).

This conservative restriction, which maintains the pat-
tern of synonymous coding found with the standard
genetic code, controls, as indicated by Freeland [29], pos-
sible biochemical restrictions on code variation and the
level of redundancy inherent in the canonical code [11];
or, as stated by Novozhilov et al. [21], “The premise
behind this choice is that the block structure of the
code is a direct, mechanistic consequence of the mode
of interaction between the ribosome, mRNA, and the
cognate tRNA”.
Although these authors (Novozhilov et al. [21]) indicate

that codes with different block structures are not unvi-
able or impossible “but they are likely to be substantially
less fit than those with the canonical block structure”, we
used a second possibility with the definition of hypothet-
ical codes with only one restriction: three codons for the
stop signal are only imposed. The aim of the introduction
of this last possibility, also used by Di Giulio et al. [18], is
a comparison between the restrictive and non-restrictive
hypothetical codes in terms of optimal values that can be
obtained and in terms of location of the canonical genetic
code in the fitness landscape associated with these two
genetic code models.

Genetic algorithm adapted to the problem
Evolutionary computing was used for searching for opti-
mal codes. A classical GA [30] with ad hoc operators for
our problem was implemented [23]. The genetic popu-
lation encodes possible hypothetical codes, whereas the
fitness function is associated with the robustness against
base mutations in each code. These aspects are detailed in
the following subsections.

Encoding
Each individual of the genetic population must encode a
hypothetical code. In our solution, in the case of non-
restrictive codes, each individual has 64 positions, which
correspond to the 64 codons, and each position encodes
the particular amino acid associated with the codon (or
the stop signal). As in [18], the stop signal is defined by
three codons in each possible code.
In the case of restrictive codes, each individual has 20

positions, which correspond to the 20 codon sets, and
each position encodes the particular amino acid associ-
ated with the codon set. In the encoding of a possible code,
there is not a genotype position for the stop signal, since,
as mentioned previously, the same codon set of the stan-
dard genetic code was used in all the individuals to define
the stop signal.
With the non-restrictive codes, the individuals of the

initial population correspond with random assignments
of amino acids and the stop signal to the 64 codons,
ensuring that all individuals encode, at least in one
position, the 20 amino acids, in addition that three
codons encode the stop signal. In the case of restric-
tive codes, the initial individuals are defined by random
assignments between the 20 amino acids and the 20
codon sets.

Genetic operators
In the case of non-restrictive codes, a mutation opera-
tor and a swap operator were used. A mutation changes
the amino acid encoded in each of the 64 positions, with
a mutation probability, to a different one. The mutation
does not operate if the amino acid to mutate is the only
one in the whole code. These mutations simulate the pos-
sible errors in the transcription process from DNA to
RNA and in the translation process when incorrect trans-
fer RNAs join a given codon of the messenger RNA.
From our application point of view, it is the operator that
varies the number of codons associated with a particular
amino acid.
The other genetic operator is a swap operator which

interchanges the contents of two genotypic positions, that
is, once two positions are randomly selected, the amino
acids (or stop signal) codified by the two respective codons
are swapped. The bottom part of Fig. 1 shows the basic
functioning of these operators.
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Fig. 1 Genetic operators. Upper part: Encoding of a genetic code and functioning of the swap operator with the restrictive codes. Bottom part: Swap
operator (left) and mutation operator (right) used with the unrestrictive codes

The two operators guarantee that the 20 amino acids
are always represented in the individuals. Other operators,
such as the classical crossover operator, do not guarantee
this important restriction.
In the restrictive codes case, as commented previously,

each individual has 20 positions encoding the particular
amino acid associated with a codon set present in the
canonical code. As also mentioned, a fixed number of
three codons are used for the stop label, which are the
same used in the canonical code.
The GA only uses a swap operator with the restrictive

hypothetical codes. As in the previous case, the opera-
tor interchanges the contents of two randomly selected
positions (codon sets). The upper part of Fig. 1 shows the
encoding of a given code and how this operator works.
Finally, as the selection operator, the tournament selec-

tion was used with both hypothetical codes. The opera-
tor selects the best individual in a window of randomly
selected individuals from the population. Hence, the size
of the window determines the required selective pressure.
Moreover, elitism of the best individual was used; that is,
this individual is retained in the next generation without
changes.

Fitness function and optimalitymeasure
The measure applied, for example, by Haig and Hurst [12]
and Freeland and Hurst [10] to quantify the relative effi-
ciency of any given code was used as fitness function. The
measure calculates the mean squared (MS) change in an
amino acid property resulting from all possible changes to
each base of all the codons within a given code. Any one
change is calculated as the squared difference between
the property value of the amino acid coded by the origi-
nal codon and the value of the amino acid coded by the
new (mutated) codon. The final error is an average of
the effects of all the substitutions over the whole code.
Therefore, the error � (MS) is defined as:

�2 =
∑

i,j wi,j
(
Xi − Xj

)2

∑
i,j Nij

(1)

where Nij is the number of times the i − th amino acid
changes into the j − th amino acid, and Xi is the value of
the amino acid property of the i − th amino acid. wi,j is
a weight associated with each possible mutation in each
letter, which is set as 1 in the simple MS measure when
an equal transition/transversion bias is considered. The
changes from and to “stop” codons are ignored, while syn-
onymous changes (the mutated codon encodes the same
amino acid) are included in the calculation. Thus, the GA
works with a minimization problem, where the MS mea-
sure is the objective to minimize by the GA operators.
Therefore, as commented in the introduction, the adapt-
ability or code fitness is inversely related to this error
cost measure, since the lower the MS value the better the
adaptability.
Like most authors, we have used the polar requirement

as the amino acid property. The property can be consid-
ered as a measure of hydrophobicity and it was introduced
by Carl Woese as a measure for the polarity of an amino
acid, which is defined as a partitioning coefficient of an
amino acid in a water/pyrimidine system [31].
Moreover, the previous equation can take into account

the relative frequencies of transition/transversions muta-
tions as well as mistranslations in the different bases. As
stated by Freeland [29], the unequal chemical similarity
of the 4 nucleotides to one another means that transi-
tion errors (substitution of a purine base into another
purine, or a pyrimidine into another pyrimidine, i.e.,
C ↔ T and A ↔ G) occur more frequently than
transversions (interchange of pyrimidines and purines,
i.e. C,T ↔ A,G).
To quantify the relative frequencies of mutations, we

employed the rules from [10] used to consider the empir-
ical data, which are summarized as:
1. Mistranslation of the second base is much less

frequent than the other two positions, and
mistranslation of the first base is less frequent than
the third base position.

2. The mistranslations at the second base appear to be
almost-exclusively transitional in nature.
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3. At the first base, mistranslations appear to be fairly
heavily biased toward transitional errors.

4. At the third codon position, there is very little
transition bias.

Table 1 summarizes the quantification of mistranslation
used to weigh the relative efficiency of the three bases.
The weights wi,j in Eq. 1 correspond with the particular
weights in Table 1. Therefore, the MS calculation takes
into account those rules and, following the same terminol-
ogy of Freeland and Hurst [10], we term the MS variant as
tMS. For example, the MS value of the canonical code is
5.19 whereas its tMS value is 2.63.
As commented previously, the “engineering approach”

compares the standard genetic code with the best possi-
ble alternative. The approach uses a “percentage distance
minimization” (p.d.m.), which determines code optimal-
ity on a linear scale, as it is calculated as the percentage
in which the canonical genetic code is in relation to the
randomized mean code and the most optimized code. It is
therefore defined as:

p.d.m. = �mean − �code
�mean − �low

· 100 (2)

where �mean is the average error value, obtained by aver-
aging over many random codes, and �low is the best (or
approximated) � value.
The measure can be interpreted as the optimization

level reached during genetic code evolution [20]. For
example, as previously indicated, Di Giulio et al. [18]
reported a p.d.m. value of 72.7% in the case of codes with
only amino acid permutations in the 20 sets of codons
(restrictive codes), using a simulated annealing technique
for obtaining the value of the best possible code, whereas
we reported a p.d.m. value of 71% [23], using a GA for
searching for the best possible code.

Fitness sharing
Fitness sharing is a classical technique in evolutionary
computing for dividing the population into different sub-
groups according to the similarity of the individuals. In
this present work this technique is incorporated into
the GA. This fitness sharing concept was introduced by
Holland [32] and extended, for example, by Goldberg and
Richarson [28]. The shared fitness for the ith individual is
defined as:

Table 1 Quantification of translational errors to measure the
relative efficiency of a code (tMS)

Combined weighting First base Second base Third base

For transitions 1 0.5 1

For transversions 0.5 0.1 1

fshared(i) = foriginal(i)
∑N

j=1 sh
(
dij

) (3)

where the sharing function is calculated as:

sh(dij) =
{
1 −

(
dij

σshare

)α

if dij < σshare

0 otherwise
(4)

being dij the distance between individuals i and j, σshare
the sharing radius, N the population size and α a constant
called the sharing level.
In this application, the distance dij is measured by taking

into account the difference in polar requirement between
the amino acids encoded in the same positions by code
i and code j of the population. It is defined as the root
squared deviation between both codes:

dij =
√

∑L
k=1

(
Xik − Xjk

)2

Max_RSD
(5)

where Max_RSD is the maximum root squared devia-
tion between two possible codes, taking into account the
largest and lowest polar requirement values of amino acids
(13 in Asp and 4.8 in Cys). The index k refers to a geno-
type position and L stands for the length of the genotypes
in the individuals (20 for restrictive codes and 64 for unre-
strictive codes). This ensures that distances are always
in the range [0,1]. This procedure is the same in both
hypothetical codes, except that in the case of unrestric-
tive codes the genotype positions where one of the codes
encodes a stop signal are ignored (as in Eq. 1). Note that
this definition of distance gives more information about
the closeness of two codes than a simple calculation of
how many different amino acids are encoded in the same
position in the two codes. For example, in this last case,
a simple swap of two amino acids in a code (distance 2
regarding different encoded amino acids) can correspond
to different distances regarding Eq. 5, depending on the
polar requirement values of the swapped amino acids.
Finally, if the application requires the minimization of

the fitness (as in our case with MS), instead of its max-
imization, the formula in Eq. 3 turns to be a multipli-
cation between the two terms (fshared(i) = foriginal(i) ·
∑N

j=1 sh
(
dij

)
). Therefore, the fitness sharing technique

increases the objective to minimize (MS value) in densely
populated regions.
This way, fitness sharing modifies the search landscape

by reducing the payoff in densely populated regions. The
main drawback of the technique is its complexity, O(N2),
because of the calculation of inter-distances. On the con-
trary, the important property is that fitness sharing tends
to encourage searches in unexplored regions of the space
and favors the formation of stable subpopulations [33].
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Figure 2 shows an example with a multimodal function
commonly used as benchmark in evolutionary comput-
ing. This function [33], defined on [0,1], consists of five
unequally spaced peaks of nonuniform height. Maxima
are located at approximate x values of 0.080, 0.247, 0.451,
0.681 and 0.934. A classical genetic algorithm was run to
obtain the value that maximizes that function. A simple
mutation operator (the encoded parameter x changes to
a random close value) and a tournament selection were
used. The population size was 100 and the probability of

Fig. 2 GA final population distribution to maximize a multimodal
function. The function has unequally spaced peaks of nonuniform
height. Final population, at generation 100, in 3 cases: aWithout
fitness sharing. b Using fitness sharing with σshare = 0.01, where the
population is clustered around most of the peaks of the multimodal
function. c Using fitness sharing with σshare = 0.1, where the
population is clustered around the different peaks of the multimodal
function

mutation 0.25, running the GA across 100 generations.
Without fitness sharing (Fig. 2a), the population tends
to progressively move to the highest peak, even with the
low selective pressure applied (a tournament size of 3%).
However, with the introduction of fitness sharing (α=1 in
Eq. 4), now the population tends to converge at the niches
of high fitness, as shown in Fig. 2b and Fig. 2c. Now the
individuals are distributed in the peaks with a number
that depends on the relative fitness of each peak. Using a
higher σshare (Fig. 2c, σshare=0.1) the population tends to
be more expanded, so it is more difficult to leave a local
maximumwith respect to the use of a lower σshare (Fig. 2b,
σshare=0.01).
Figure 3 shows another example with a simple function

and the same GA setup. The objective is to obtain the only
minimum of the parabola. This is obviously a toy exam-
ple, but the interest is to show in this function the effect
of the introduction of fitness sharing that will be useful
for our application. The upper part (Fig. 3a) shows the
straightforward convergence of the population towards
the global minimum without the use of fitness sharing.
However, the introduction of fitness sharing (α=1) tends
to uniformly distribute the population around the mini-
mum (Fig. 3b), with a distribution that depends on the
sharing radius (σshare). For example, with the largest shar-
ing radius (σshare = 0.1) in Fig. 3c, the population tends
to be distributed in the whole range considered for the
encoded parameter x ([-1,1]).
That is, the interest of the fitness sharing technique

is to search in all the promising areas with high fitness
found in the landscape, performing a better exploration
of the search space. However, the introduction of the
technique also has other consequence, because it pro-
vides clues about the fitness landscape. In the first chosen
example (multimodal function), the distribution of the
population reveals the multimodal nature of the fitness
landscape, indicating the existence of several local max-
ima. In the second chosen example, the population is not
clustered around local minima, and therefore the popula-
tion is uniformly distributed around the global minimum
and according to the sharing radius. Note that this infor-
mation would not be obtained without the introduction of
fitness sharing. These considerations are therefore going
to be taken into account in the analysis of the (high dimen-
sional) fitness landscape when searching for hypothetical
codes with optimized adaptability.

Results
Evolutionary algorithm setup
The implemented GA, with the incorporation of fitness
sharing, was tested by searching for optimized codes,
using the two code models explained in the previous
section. The GA parameters for the different experi-
ments are: population size of 1000 individuals, mutation
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Fig. 3 GA final population distribution to minimize the function
1+x2. Final population, at generation 100, in 3 cases: aWithout fitness
sharing. Most of the individuals are close to the optimal value. b Using
fitness sharing with σshare = 0.01, with the population expanded
around the minimum. c Using fitness sharing with σshare = 0.1, with
the population more expanded around the minimum

probability of 0.01 and a swap probability of 0.5. As
explained, the restrictive model only uses the swap opera-
tor to interchange the 20 amino acids among the 20 codon
sets. On the contrary, both operators are used with the
non-restrictive model, where the mutation allows chang-
ing the number of codons assigned to an amino acid.
Tournament selection with a tournament size of 3% of the
population was used, which provides a low selective pres-
sure. These genetic parameters are the same as those used

in our previous work [23], selected to provide an appro-
priate balance between exploration and exploitation in the
GA search.
Regarding fitness sharing, the value of parameter α

(Eq. 4) was set to 1 as it is sufficient to generate the possi-
ble clustering of the population into different niches. The
sharing radius (σshare) was varied to observe its effect on
the evolution of possible codes, whereas dij was calculated
using Eq. 5 (“Methods” section), which considers the root
squared deviation between code i and code j of the pop-
ulation, taking into account the polar requirement of the
amino acids encoded in each genotype position.

Evolution of restrictive codes
In a first experiment, the evolutionary algorithm was used
to search for optimized codes, using the model of restric-
tive codes. Figure 4 shows the fitness (MS) evolution
through 100 generations of the genetic algorithm. Figure 4
includes the evolution without fitness sharing and with
two values for the parameter sharing radius (σshare = 0.01
and σshare = 0.1). The graphs in Fig. 4 are an average
of 10 independent runs of the GA, beginning with differ-
ent random initial populations. It is not easy to determine
the appropriate values to use for the parameter σshare,
since it requires a previous knowledge about the landscape
surface to easily obtain the possible clustering of the popu-
lation into niches in a multimodal fitness landscape. Since
we have no such a priori knowledge, we experimented
with different values for the parameter σshare, starting with
a low value (σshare = 0.01) and also using a larger value
(σshare = 0.1) of an order of magnitude.
The evolution without fitness sharing shows that it is

easy to discover better adapted codes than the canoni-
cal one. In about 50 generations, an average best value of
MS = 3.50 is obtained (by averaging the best values of the

Fig. 4MS evolution through generations with the restrictive codes.
All graphs are an average of 10 independent GA runs, without fitness
sharing and fitness sharing with two values for the parameter σshare
(sharing radius). The graph includes the canonical code MS value for
comparison (horizontal line)
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10 independent runs). The p.d.m. value is 71%, taking into
account the MS value of the canonical code (MS = 5.19),
the average value of the random codes at the initial gener-
ation of the GA and the best value in all the GA runs [23].
Even the average fitness of the population is lower with
respect to the MS value of the canonical code. This shows
that it is very easy for the GA to discover better adapted
codes with respect to the canonical code, which denotes
that the canonical code can be adapted but it is clearly far
from the best possible adapted code.
When fitness sharing is considered in the GA evolu-

tion with a low sharing radius (σshare = 0.01), the fitness
progression is similar but more continuous. The reason
is that fitness sharing tends to maintain the individuals at
least with a distance of 0.01 between them, so it is more
difficult for many individuals to correspond to the same
solution, as can occur without the use of fitness shar-
ing, even with the low selective pressure applied. With a
larger sharing radius (σshare = 0.1), the evolution of bet-
ter codes is logically more difficult, although best values
than the canonical code are obtained. The average fitness
is now greater with respect to the canonical code and it
is slightly variable through the evolutionary generations.
This is because when several individuals fall in the same
vicinity (easier with large values of σshare), their fitness is
penalized, and therefore in the next generation other indi-
viduals can be selected, which generates the variability in
the average fitness. Table 2 summarizes the basic statistic
information about the evolutions of Fig. 4, which shows
the greater variability of the final results with larger values
of the parameter σshare.
Nevertheless, these previous graphs of evolution of the

fitness do not provide information regarding the fitness
landscape in the surroundings of the canonical genetic
code. We want to discern whether the canonical code is
in an area corresponding to a deep local optimum in the
huge search space. Figure 5 helps to visualize this.
The columns in Fig. 5 correspond with a run of the GA

with three cases: In column (a) the GA was run with-
out fitness sharing whereas in columns (b) and (c) the

Table 2 Summary of statistics regarding Fig. 4. The values are an
average of 10 independent runs of the GA

Average Standard
final value deviation

Without fitness sharing Best fitness 3.50 0.01

Average fitness 3.88 0.04

Fitness sharing, σshare = 0.01 Best fitness 3.50 0.01

Average fitness 4.07 0.04

Fitness sharing, σshare = 0.1 Best fitness 3.89 0.12

Average fitness 5.41 0.07

GA was run with fitness sharing with σshare = 0.01 and
σshare = 0.1 respectively. In Fig. 5 the x-axis represents
the distance of each encoded code in the population to
the canonical code, whereas the y-axis corresponds to the
MS value of each code. Therefore, Fig. 5 shows this cor-
respondence between the MS value of each code and its
corresponding distance to the canonical code in different
generations of the GA.
It should be noted that if many individuals fell in the

same local minimum, their distances to the canonical code
would be similar as well as their MS values, that is, a clus-
ter should be appreciated in the graph. The graphs show
that the distances of the different codes of the population
with respect to the canonical code vary, in most cases and
after the initial generation, in the whole range between
0.4 and 0.55, which denotes that the hypothetical codes,
more optimized than the canonical code in progressive
generations, are far from the canonical code. This fact
also indicates that the canonical code is not in an area
corresponding to a deep local minimum, since all the indi-
viduals are far from it, without any individual close to it, as
would occur if the canonical code was close to a deep local
minimum (as explained in the “Methods” section, “Fitness
sharing” subsection). The analyses with different values of
σshare, with a sweep of σshare in an ample range, between
0.001 and 0.5 (not shown in the Figures), indicate the same
conclusions.
It would be useful that an individual of the GA fell

close to the canonical code, since it would also provide
knowledge regarding whether the canonical code is in
an area corresponding to a deep local peak. Since this is
very difficult with the limited number of individuals of
the population, in these GA runs, the canonical code was
introduced in the initial population. This allows to test
whether the canonical code can “survive” in the evolution-
ary progress towards optimized codes. Thus, in the initial
generation (with random codes except the canonical one),
there is a point that corresponds to the canonical code
with distance 0 andMS = 5.19 (with larger size in Fig. 5).
The other random codes present different MS values,
most of them with larger values than the canonical MS
value. Nevertheless, at generation 25, the canonical code
has disappeared from the population (in all GA runs),
indicating that it is not competitive with other hypothet-
ical codes with better MS values at that generation. This
can be obvious without fitness sharing. However, with fit-
ness sharing, if the canonical code was in an area close
to a local minimum, it would be difficult for this code
to disappear from the population, as explained previously
(“Methods” section. Fitness sharing), since some individu-
als would remain in a niche that would correspond to that
area where the canonical genetic code is located. The fact
that the canonical code disappears, even with a large shar-
ing radius, is a second piece of evidence that indicates that
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Fig. 5MS value of the genetic population codes vs. their distances to the canonical code. The same graph is shown in different generations of a GA
run, in 3 cases with the restrictive codes: a without fitness sharing, b fitness sharing with σshare = 0.01 and c fitness sharing with σshare = 0.1. The
canonical code was introduced in the initial population in the 3 cases (point with larger size). The green dashed line represents the MS value of the
canonical genetic code

the canonical code is not in an area corresponding to a
deep local minimum.
To illustrate possible evolved codes and their dis-

tances, three alternative codes were selected from the final
evolved ones in Fig. 5c (red points in the final popula-
tion). Two of those codes correspond with the nearest
code (code 1) and the furthest code (code 2) with respect to
the canonical code (distances 0.31 and 0.55). The third one
(code 3) is the code that has the best (minimum) MS value
in that GA run of Fig. 5c. Figure 6 shows the codes with
the assignments of amino acids to the different codons.
In addition, each amino acid is represented with a gray
level corresponding to its polar requirement: the brighter
the gray level the higher the polar requirement. The stop
signal is represented in white. Moreover, Fig. 6 includes
the canonical code, which helps to visualize the distance
between those codes and the canonical one. For example,
the differences in polar requirement (gray level) between
the amino acids in the same codon positions between the
canonical code and code 1 are lower with respect to the
other cases, and code 2 and code 3 have assignments of
amino acids with similar polar requirement in the same
positions. Therefore, the distance (Eq. 5) between code
2 and code 3 is low. However, code 3 has the minimum

MS value since it has amino acid assignments with sim-
ilar polar requirement where possible mutations in the
codon letters change the amino acids. For instance, code 3
locates amino acids with very similar polar requirement in
its third column (Tyr-5.4, Leu-4.9, Phe-5.0, Trp-5.2, Cys-
4.8, Ile-4.9), since a mutation in the third codon letter can
imply a change between such encoded amino acids.
Finally, the previous graphs show the distances of the

encoded codes with respect to a “reference point” (the
canonical code), but do not show how the different codes
are far away from each other. It would also be interest-
ing to know whether the final population is clustered
around a small neighborhood of the search space or it is
spread in the high dimensional landscape. For this, the
inter-distances of individuals of the final population were
calculated, and a histogram of these distances is plotted
in Fig. 7. Inter-distances close to 0 mean the possibil-
ity of a cluster (niche) of the population around a local
optimum. In Fig. 7 the x-axis is sampled in intervals of
0.01, that is, each of the 100 intervals in the x-axis spec-
ifies the number of inter-distances of the population in
that interval. Although the distances are normalized in the
interval [0,1] (Eq. 5), it is difficult to obtain inter-distances
larger than 0.6, because it would imply large changes in
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Fig. 6 Selected evolved codes. Three codes were selected from the final population in Fig. 5.c. Code 1: nearest code to the canonical code. Code 2:
furthest code to the canonical code. Code 3: best code. The canonical code is included for comparison. dCode1,Code2 = 0.40, dCode1,Code3 = 0.41,
dCode2,Code3 = 0.18,MScode1 = 5.66,MScode2 = 5.49,MScode3 = 3.93

the polar requirement of the encoded amino acids of the
codes, and many amino acids have a similar value of polar
requirement.
Figure 7 shows that the codes are further away from

each other as the sharing radius becomes larger. With-
out fitness sharing (Fig. 7a), the individuals are closer to
the best solution. In fact, at the final generation, many
individuals correspond to the same solution (in this case
the individuals with inter-distance 0). With the incor-
poration of fitness sharing and with the lower sharing
radius (Fig. 7b, σshare = 0.01) the population is slightly
more expanded through the fitness landscape, with most
of the inter-distances between 0.02 and 0.32. The main
difference with respect to the case without fitness shar-
ing is that now it is more difficult that two individuals
correspond to the best obtained solution. Note that the
histogram shows a low height in the first interval [0,0.01)
of the x-axis; however, this does not imply that the inter-
distances correspond to equal individuals. Moreover, if
it is taken into account that using fitness sharing with

σshare = 0.01, the average quality of the population (4.07,
Table 2 when several GA runs are averaged) is close to
the value without fitness sharing (3.88, Table 2), and even
when the individuals are far away from each other, it
means that there are many distant areas of the fitness
landscape with better adapted codes than the canonical
one. With a larger sharing radius (Fig. 7c, σshare = 0.1),
the expansion of the population in different and distant
areas is more pronounced, as indicated now by the greater
inter-distances, where most of them are in a continu-
ous range between 0.14 and 0.46. It should also be noted
that these inter-distances between the evolved codes are
lower than the distances of those codes to the canon-
ical one. It means that the canonical code is far from
the area where most of the evolved codes are located.
Therefore, the fitness landscape seems more like a vast
space with a broad transition area to the optimum, in the
sense that the results resemble the search of the global
minimum in the parabola example of Fig. 3. The differ-
ence is that now the space surface can be rugged with
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Fig. 7 Histogram of code inter-distances of the GA final population
using the restrictive codes. The histogram corresponds to the final
population (generation 100) in a GA run with three cases: a without
fitness sharing, b fitness sharing with σshare = 0.01 and c fitness
sharing with σshare = 0.1

many non-deep (in comparison with the depth of the best
solutions) local peaks.

Evolution of non-restrictive codes
We repeated the analysis with the model of unrestrictive
codes. The number of possible codes is now close to 1084
[9] with respect to the previous case (2.43 · 1018 possi-
ble restrictive codes). The huge increase in the possible
codes will allow to check whether the same conclusions
are obtainedwith respect to the previous case. Oncemore,
Fig. 8 shows the evolution across 100 generations of the
GA with the same setup as in the previous case, except
that now both genetic operators (swap and mutation) are

Fig. 8MS evolution through generations with the unrestrictive
codes. All graphs are an average of 10 independent GA runs, without
fitness sharing and fitness sharing with two values for the parameter
σshare (sharing radius). The horizontal line shows the canonical code
MS value

used. The evolution graphs correspond again to an aver-
age of 10 independent runs of the GA with different initial
populations.
The same conclusions can be obtained with respect to

the restrictive codes case. Now all the evolutions are more
continuous, given the larger possibilities of codes and
landscape areas to explore. The evolution without fitness
sharing obtains a possible best code that is more opti-
mized with respect to the use of restrictive codes. This is
because the GA has more possibilities to search for adap-
tive codes against base mutations. Taking into account the
average MS value of random codes and the best value of
the GA runs, the p.d.m. value is 67% [23], meaning that the
canonical code is less optimized (considering unrestrictive
codes) with respect to the previous case (p.d.m. value 71%
with restrictive codes). This is logical, since the restric-
tive codes impose constraints to obtain optimized codes.
Table 3 summarizes the statistic information regarding
the evolutions of Fig. 8, which shows a slight increase in
the variability of the final results with larger values of the
parameter σshare.

Table 3 Summary of statistics regarding Fig. 8. The values are an
average of 10 independent runs of the GA

Average Standard
final value deviation

Without fitness sharing Best fitness 1.97 0.02

Average fitness 2.16 0.03

Fitness sharing, σshare = 0.01 Best fitness 2.07 0.05

Average fitness 2.25 0.05

Fitness sharing, σshare = 0.1 Best fitness 3.11 0.25

Average fitness 3.80 0.25
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In the analysis of a variety of the best non-restrictive
codes, the amino acids that appear in most of the codons
have an intermediate value of polar requirement. This
helps to minimize the MS error, when most of the muta-
tion changes are among the intermediate values. It is the
same idea expressed by Di Giulio [18], when the author
used a simulating annealing algorithm to find optimized
non-restrictive codes. As the author stated “by maximiz-
ing the number of synonymous changes in the code, it is
reasonable to suppose that the objective function value
is taken towards the absolute minimum” [18]. For exam-
ple, the author obtained a best code with 42 synonymous
codons to one amino acid, one codon to the remaining
nineteen amino acids, in addition to the three codons for
the termination meaning. However, in our case, the global
search of the genetic algorithm finds optimized codes
with a more balanced number of codes per amino acid,
where only the amino acids with extreme values of polar
requirement are associated with only one codon.
Figure 9 illustrates, in different generations of the evo-

lutionary algorithm, the MS value of each code (y-axis)
vs. the distance of each encoded code in the popula-
tion to the canonical code (x-axis). The canonical genetic
code was inserted in the initial population. Throughout

the evolutionary process, the whole population is moving
towards better values of adaptability (lower MS values). In
fact, in the three cases considered, without fitness shar-
ing (Fig. 9a) and with fitness sharing with two sharing
radius (Fig. 9b and c), the average value of the popula-
tion has a better value than the MS value of the canonical
code (5.19), as previously seen also in Fig. 8. As in the
previous case with restrictive codes, the canonical code
does not survive in the first generations of the evolution-
ary process, even with the use of fitness sharing. This fact,
together with the large distances of the optimized solu-
tions at final generations with respect to the canonical
code, are evidences for supporting the finding that, using
the unrestrictive codes, the canonical code is clearly not
located in a broad and deep peak; that is, the canonical
code is not in a niche or promising area where some of the
solutions of the genetic population could be refining their
search. Again, the analyses with different values of σshare,
in an ample range between 0.001 and 0.5, present the same
evidence, so these are not shown in the Figures.
The same previous analysis considering the inter-

distances of the final population was performed in order
to detect how far such final optimized solutions are, that
is, how many areas are being simultaneously searched

Fig. 9MS value of the genetic population codes vs. their distances to the canonical code. The same graph is shown in different generations of a GA
run, in 3 cases with the unrestrictive codes: a without fitness sharing, b fitness sharing with σshare = 0.01 and c fitness sharing with σshare = 0.1. The
canonical code was introduced in the initial population in the 3 cases (point with larger size). The green dashed line represents the MS value of the
canonical genetic code
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even when the evolutionary process is ended. Note that
the inter-distances can have greater values with respect
to the previous case with restrictive codes, since the dif-
ferences between the extreme values of the polar require-
ment can occur more times with the unrestrictive codes
(the same amino acids with those extreme values can
be encoded by many codons). Figure 10 shows that the
codes are further away from each other as the sharing
radius becomes larger. In Fig. 10a, without fitness shar-
ing, some individuals correspond with the best solution
(inter-distance 0). When fitness sharing is used, there
are very few solutions corresponding with the best code.
Figure 10b, using a low sharing radius (σshare = 0.01),

Fig. 10 Histogram of code inter-distances of the GA final population
using the unrestrictive codes. The histogram corresponds to the final
population (generation 100) in a GA run with three cases: a without
fitness sharing, b fitness sharing with σshare = 0.01 and c fitness
sharing with σshare = 0.1

shows that the inter-distances are slightly larger, there-
fore the individuals are further away from each other with
respect to the case without fitness sharing, that is, the final
population is more expanded through the fitness land-
scape. With a larger sharing radius (Fig. 10c, σshare = 0.1),
the expansion of the population through the fitness land-
scape is clearly more pronounced, as can be seen with
the high increase of the inter-distances, most of them
being between 0.27 and 0.69. Even with the expansion of
the population in distant areas of the fitness landscape,
the average quality is better than that of the canoni-
cal code (Fig. 8). Consequently, the conclusion is again
that the fitness landscape does not present a multimodal
nature, since there is no niching or clustering effect of the
population in promising areas.

Introduction of transition/transversion and translational
biases
Previous works [10, 23] have demonstrated that the
canonical code has better adaptability levels when the
code fitness takes into account the different probabil-
ities of transition and transversion mutations, together
with the mistranslation of mRNA, which implies differ-
ent probabilities of mutations in the three codon bases.
For example, using tMS (“Methods” section), in [23], with
the restrictive codes case, the p.d.m is 84%. The com-
parison of this value with respect to the use of MS as
fitness (p.d.m=71%)means that the canonical genetic code
is better adapted when the tMS calculation is taken into
account. Consequently, a test was conducted to check
whether these considerations in the tMS error measure
imply a change in the fitness surface nature.
Figure 11 summarizes the results with the restrictive

codes. It includes the analysis of tMS versus distances
to the canonical genetic code, only at the final genera-
tion of the GA runs, in addition to the histograms of
inter-distances of the final population from the evolu-
tionary algorithm. As in the previous cases, a GA run
without fitness sharing (Fig. 11a) and with fitness sharing
(Figures 11b and 11c) were considered, and the canoni-
cal code was introduced in the initial population in the
different GA runs.
The comparison with the previous cases using MS as

objective to minimize (Figs. 5 and 7) shows that the inter-
distances are quite similar when tMS is used. For example,
the comparison between the histograms in Figs. 11 and
7 shows how the inter-distances are similar using tMS in
the three cases (with and without fitness sharing) without
significant variations. However, the distances of each code
with respect to the canonical code are now lower. Using
tMS these distances to the canonical code are between
0.16 and 0.5, with a larger interval with greater values
of σshare. In the case of using MS, these distances were
between 0.3 and 0.55 (Fig. 5), also with greater intervals
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Fig. 11 Histogram of code inter-distances of the final population and
using the restrictive codes with tMS. The insets show the tMS value of
the hypothetical codes of the genetic population vs. their distances
to the canonical code. The green dashed line represents the tMS value
of the canonical genetic code. Each subfigure corresponds with the
histograms of inter-distances of the final populations. The graphs
correspond to the final population (generation 100) of a GA run in 3
cases: a without fitness sharing, b fitness sharing with σshare = 0.01
and c fitness sharing with σshare = 0.1

with larger values of σshare. This means that the incorpo-
ration of tMS implies that the optimized codes are closer
to the canonical code, showing again better adaptability of
the canonical code considering tMS. However, even with
the improvement of adaptability when considering tMS,
the final solutions are far from the canonical code while
the population is extended across an ample area of the fit-
ness landscape, and without any presence of clear niches
in the landscape.

Figure 12 illustrates the same analysis with the unrestri-
tive codes. The histograms of Figs. 12 (tMS) and 10 (MS)
are again very similar. However, there is a clear difference
in the comparison of the distances of the individuals of
the final population with respect to the canonical code
(insets of Figs. 12 and 9). With tMS, the distances are
between 0.4 and 0.8, whereas with MS those distances are
approximately between 0.65 and 0.85, in both cases (tMS
and MS) with a tendency of larger intervals with larger

Fig. 12 Histogram of code inter-distances of the final population and
using the unrestrictive codes with tMS. The insets show the tMS value
of the hypothetical codes of the genetic population vs. their
distances to the canonical code. The green dashed line represents the
tMS value of the canonical genetic code. Each subfigure corresponds
with the histograms of inter-distances of the final populations. The
graphs correspond to the final population (generation 100) of a GA
run in 3 cases: a without fitness sharing, b fitness sharing with
σshare = 0.01 and c fitness sharing with σshare = 0.1
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values of σshare. Thus, although the final codes are simi-
larly extended in the search space using tMS or MS, the
codes of the final population are closer to the canonical
code using tMS, which is a further evidence of the better
optimization of the code considering tMS.

Discussion
An adapted genetic algorithm for searching for possible
alternative genetic codes better adapted than the canon-
ical code was used in this work. The results of the GA
clearly indicate that there are many alternative codes
with a better adaptability than the canonical one, being
the canonical code relatively far from the best possible
adapted one. However, another question to explore is
whether the canonical code is in an area corresponding or
not to a deep local minimum in relation to the vast fitness
landscape, which has been continuously discussed in pre-
vious works. This is the issue that has been explored in
this work.
As indicated in the Introduction, this is not the same as

discerning whether the canonical code is in a local peak
(or close to it) regarding its immediate neighborhood.
As stated by Novozhilov et al. “The fitness landscape of
code evolution appears to be extremely rugged, contain-
ing numerous peaks with a broad distribution of heights,
and the standard code is relatively unremarkable, being
located on the slope of a moderate height peak” [21] (in
their case, the authors weighted differently transition and
transversion biases in the codon bases). Instead, our aim
was to discern about the nature of the vast fitness land-
scape, inspecting whether it is a multimodal landscape
with clear niches, with separated and deep broad MS
peaks, together with the location of the canonical code in
such a huge landscape.
As explained, due to the huge dimensionality of the

search landscape, the incorporation of the fitness sharing
technique in the evolutionary algorithm helps to deter-
mine and visualize whether the alternative codes, as well
as the canonical code, are in an area corresponding to a
deep local minimum.
The limitations of the fitness sharing technique are well-

known, and basically entail that: i) Setting the dissimilarity
threshold (sharing radius) requires a priori knowledge
of how far apart the optima are and ii) The complexity
per generation is O(N2) as a consequence of the dis-
tance calculations. Even with the complexity drawback,
the technique was used because it helps to visualize the
fitness landscape (the possible multimodal nature of the
landscape). In order to overcome the first limitation, an
analysis with different sharing radii was performed.
In the discussion about the location of the canonical

code, the general idea is to consider that the canoni-
cal code was trapped in a local minimum. For example,
according to Crick “there is no reason to believe, however,

that the present code is the best possible [...]. Instead, it
may be frozen at a local minimum which it has reached
by a rather random path” [1]. Or, as Knight et al. state
“although search algorithms can sample billions of dif-
ferent codes, evolution is unlikely to have had similar
opportunity given the extreme cost of changing an already
functional code, and so we might either expect the code to
be trapped at a local, rather than global, optimum” [34].
The engineering approach for obtaining better adapted

codes was used in our work, since a computational
search method was employed for obtaining possible bet-
ter adapted codes than the canonical one. On the other
hand, in the statistical approach, its main idea is that the
standard code minimizes hydrophobicity errors far more
than can be explained by chance. We are not in disagree-
ment with this idea since the code is more optimized with
respect to random codes, but at the same time our analysis
indicates that the code is clearly far from possible opti-
mal codes. Some authors within the statistical approach,
such as Freeland [29], have argued against the engineer-
ing approach bases because the criticisms about the fact
that the canonical code is far from optimal “overlook the
fact that we know very little about the connectivity or
accessibility of local and global optima for patterns of
codon assignment”. Nevertheless, the present study helps
to visualize the possible formation of local minima in the
fitness landscape, indicating that the canonical genetic
code is not in an area of a broad and deep local minimum,
since it is not captured in a niche with the fitness sharing
technique.
Note that our objective was not to explain the possible

evolutionary paths to the canonical code. Our objective
was only to locate the canonical genetic code in the
fitness landscape when possible hypothetical codes are
considered, from an scenario of hypothetical codes with-
out restrictions in the assignments to the consideration
of restrictive hypothetical codes with the same codon set
structure as the canonical genetic code. Moreover, the
fitness landscape depends also on the definition of the fit-
ness function, that is, how the adaptability level of a code
is measured. We considered the basic property, the polar
requirement of amino acids, the most used one in previ-
ous studies, in order to define the fitness landscape, since
it is the main property for the folding of a protein and
consequently to define its protein function. In this sense,
Freeland is correct in the criticism “The evolutionary
similarity of amino acids (meaning their substitutability
within proteins) is unlikely to be perfectly represented
by a single physiochemical measure (e.g. polar require-
ment) or indeed by any simple combination of two or
three such indices” [29]. This analysis with other amino
acid properties has been performed in several previous
works [12, 23, 25, 35]. For example, when different amino
acid properties (hydropathy index, isoelectric point and
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molecular volume, the same as those used by Haig and
Hurst [12]) were employed, the results in [23] indicated
that polar requirement is the property that provides the
most significant evidence of error minimization. Thus, we
have included only the most meaningful analysis with the
polar requirement property.

Conclusions
The conclusions obtained in this study can be briefly
summarized as follows:
1. The canonical code is better optimized with respect

to random codes, when the effects of mutations are taken
into account within the error minimization theory. How-
ever, the GA search indicates that the canonical code is far
from the best possible codes.
2. When the fitness sharing technique is introduced in

the GA search, it indicates that there are no clear niches in
the vast fitness landscape, that is, localized areas of high
fitness (low MS) separated by barriers of low fitness (high
MS values). This is not in contradiction with the rugged
nature of the fitness landscape. For example, Novozhilov
et al. stated that a huge number of taller fitness peaks (with
respect to the peak in which the canonical code is situated)
exist in the landscape [21]. On the contrary, the results
in this study denote that there are many connected areas
(not clearly separated) with higher fitness than the canon-
ical code, as inferred from the results of the distances of
the optimized codes with respect to the canonical code
and the inter-distances between the optimized codes of
the GA final populations. That is, the fitness landscape
is rugged but does not have a multimodal nature with
clear and deep niches separated by fitness barriers. This
explains why any search algorithm easily discovers better
adapted codes than the canonical one.
Even when the canonical code shows better adaptability

levels when the code fitness takes into account different
weights for transition and transversion errors in the differ-
ent codon bases, together with the mistranslational error
weights in the three codon bases [10, 23], the same conclu-
sion about the multimodal nature of the fitness landscape
is obtained when such biases are considered.
3. The canonical code is clearly far away from those

areas of higher fitness in the landscape. Given the non-
presence of deep local minima in the landscape, although
the code could evolve and different forces could shape its
structure, the fitness landscape nature considered in the
minimization theory does not explain why the canonical
code ended its evolution in a location which is not an
area of a localized deep MS minimum of the huge fitness
landscape.
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