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Abstract

Background: MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these
co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease
associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the
development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional
level and for the study of multi-purpose microRNA therapeutics.

Methods and results: We designed a computational method to detect multi-disease associated co-functional
microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite
network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA
associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The
prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed
kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated
co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a
novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA
pairs as well as on non-cancer disease-related microRNA pairs.

Conclusions: With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that
the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the
development of cancers is more complex and have more unique properties than those of non-cancer diseases.
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Background

MicroRNAs (miRNAs), a class of small non-coding RNA
of ~22 nucleotides, are significant regulation molecules
for diverse cellular processes such as cell development,
proliferation and differentiation [1-7]. Pairs of miRNAs
can work cooperatively to regulate an individual gene or
a cohort of genes that participate in similar processes
[8, 9]. This cooperativity (or co-function) is a frequent
regulation mechanism of miRNAs for an enhanced tar-
get repression which has exhibited distinctive and fine-
tuned target gene expression patterns [10]. Investigation
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on miRNA cooperativity can systematically understand
miRNA functions [11] to detect their potential disease
links [12].

Using miRNAs as diagnostic and therapeutic targets,
miRNA therapeutics is a promising research area that
designs sophisticated strategies to restore or inhibit
miRNA expression for the treatment of cancer and other
diseases. For example, a therapy with the vector-encoded
pair miR-15a and miR-16-1 has been proposed for the
treatment of chronic lymphocytic leukaemia (CLL) [13];
The microRNA cluster miR-216a/217 was reported to
target genes PTEN and SMAD?7 to induce the epithelial-
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mesenchymal transition, which can promote the drug
resistance and recurrence of liver cancer [14]. Such co-
functional miRNA pairs are more suitable as drug targets
instead of using individual ones. Large scale detection of
novel co-functional miRNA pairs is an important pre-step
to identify proper miRNA pairs as more effective drug tar-
gets. Currently, abundant disease-gene association infor-
mation are stored in Online Mendelian Inheritance In
Man (OMIM) [15] and Comparative Toxicogenomics
Database(CTD) [16]; disease-miRNA associations are
recorded in miR2Disease [17] and HMDD [18]; and
miRNA-target regulations are recorded in miRecord [19]
and miRTarBase [20]. Linking and integrating these
databases, it can be inferred which diseases are correlated
with the same genes or with the same miRNAs, and which
miRNAs have the same target disease genes. Our hypothe-
sis is that some of the miRNAs can regulate their common
targets cooperatively and have roles in the development of
a series of diseases.

The focus of this work is on the detection and
prioritization of multi-disease associated co-functional
miRNA pairs. A multi-disease associated co-functional
miRNA pair is a pair of miRNAs whose common
target genes are associated with a series of diseases.
Here, the definition of co-function for the miRNA
pairs is broader than the definition of cooperativity
as proposed in [21, 22]. Figure 1 shows an exam-
ple of multi-disease associated co-functional miRNA
pairs detected from a disease-gene-miRNA (DGR) tri-
partite network. From this example, we can see that
multi-disease associated co-functional miRNA pairs may
hold a vast mechanism underlying multiple disease
development, similarly like the basic cellular functions
maintained by housekeeping genes. More importantly,
these miRNAs can be considered as the common drug
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targets of these diseases for the design and development
of multi-purpose drugs.

MiRNA co-function mechanisms have attracted inten-
sive research recently [9, 11, 12, 23, 24], with the focus
on the analysis of miRNA-target networks or on the
analysis of disease-miRNA associations for a specific
disease. Our work advances the current research with
two steps: (i) We reconstruct a DGR tripartite network
through the integration of existing databases with our
newly predicted disease-miRNA associations, and (ii) we
propose a novel scoring method to prioritize the poten-
tial multi-disease associated co-functional miRNA pairs.
Since the relationships between the exact miRNAs and
diseases are largely unknown, computational methods
are required to make prediction of disease-related miR-
NAs for constructing the disease-miRNA network in the
DGR tripartite. For example, network-based or semi-
supervised prediction methods [25-27], or the meth-
ods via support vector machines [28, 29] can be used
among some other prediction methods [30-32]. The key
idea in the similarity assessment adopted by most of
these methods is that: similar RNAs (functionally sim-
ilar) are always associated with similar diseases (phe-
notypically similar, genotypically similar or semantically
similar). During the training of the existing prediction
methods, the disease-miRNA pairs without known rela-
tionships are thought to be ranked at bad positions or
are regarded as negative samples directly. As some (prob-
ably many) of the unknown disease-miRNA pairs in the
training data are true in fact, the false positive rates by
the literature methods are high in the prediction of dis-
ease related miRNAs. On the other hand, the use of
negative samples by the literature methods is straightfor-
ward without consideration of gene expression properties
of miRNAs.

diseases

(@)

Fig. 1 An example: From a DGR tripartite network to a co-functional miRNA pair. The network in panel a contains known associations between the
genes g1, g2, g3, g4, and g5, the diseases d1, d2, d3, and d4, and the miRNAs R1, R2, R3, and R4. In this example, miRNAs R2 and R3 are both
associated with all the four diseases. However, the other three miRNAs are each associated with only one of these diseases. All these four diseases
are associated with two common genes g4 and g5. Meanwhile, both of g4 and g5 are the targets of miRNAs R2 and R3. It is believed that
R2-R3-g4-g5 in panel b may form a functional module that associated with the development of all the four diseases

common target genes
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To improve the prediction performance, we propose
a new method to make predictions of disease-related
miRNAs. Two new ideas are explored. One is the
construction of a set of reliable negative samples of
disease-miRNA association through miRNA expression
comparison between control and diseased subjects. The
second idea is the use of precomputed kernel matrix for
support vector machines, which can avoid the step to tune
the parameters of the kernel functions. The area under
the ROC curve(AUC) performance of our method is much
superior to the literature methods on bench-marking data
sets. Our case studies have demonstrated that our pre-
diction method can also work well even when a disease
has no currently known disease-related miRNAs. Com-
bining our predicted disease-miRNA associations with
those literature-maintained associations between dis-
eases, miRNAs and genes, we construct a more complete
DGR tripartite network to detect and prioritize multi-
disease associated co-functional miRNA pairs. Given a
miRNA pair, our scoring method cfscore considers the
function relationship between the two miRNAs, the co-
dysexpression of the two miRNAs in the disease tissues
and the relationship between the common target genes
and the associated diseases of these miRNAs. We are also
interested in finding the exact targets dysregulated by
the co-functional miRNA pair during the diseases’ devel-
opment. We call them the co-functional targets of the
co-functional miRNA pair. The flowchart of our work is
described in Fig. 2.
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This method was tested on the cancer and non-cancer
disease related DGR tripartite networks. The top 50 multi-
disease associated co-functional miRNA pairs were con-
centrated for deep analysis. We found that most of them
were from the same miRNA families or miRNA clusters.
The comparison of the co-functional pairs from the two
DGR networks suggests that the dysregulation mecha-
nisms of miRNAs in the cancers are more complex. It
has also been shown that the analysis of multi-disease
associated co-functional miRNAs can help understand the
regulation mechanisms of miRNAs in the development of
different diseases and thus can provide new knowledge for
the diagnosis or treatment of the diseases.

Results

Multi-disease associated co-functional miRNA pairs and
their common dysfunctional target genes

Two cancer-gene-miRNA tripartite networks were con-
structed to investigate the performance of our method
for detecting and ranking multi-cancer associated co-
functional miRNA pairs. As a pre-processing step, we
merged the miRCancer database [33] with miR2Disease
[17] and HMDD [18], and collected 3655 cancer-miRNA
associations between 83 cancers and 503 miRNAs. Con-
necting these miRNAs and diseases to their associated
genes, the first cancer-gene-miRNA tripartite network
was constructed. Then, all the 3655 cancer-miRNA asso-
ciations (as positive samples) and a balanced set of 3655
negative samples of cancer-miRNA association in this
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Fig. 2 The flowchart of our prediction and scoring method. Our work includes the parts such as material collection, similarity computing,
association prediction, network reconstruction, scoring and prioritization of the co-function miRNA pairs and result output
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tripartite network were used together to train our predic-
tion model for inferring new cancer-miRNA associations.
The prediction model was applied to all the un-connected
disease-miRNA pairs between the 83 cancers and 503
miRNAs to predict whether some of them have associa-
tions or not. When a pair was predicted to have an asso-
ciation between a cancer and a miRNA, a probability was
also estimated. A total of 3000 top-ranked associations
were added to the first cancer-gene-miRNA tripartite net-
work to form the second cancer-gene-miRNA tripartite
network (i.e., a reconstructed network by adding the pre-
dicted cancer-miRNA associations). Those associations
can be found in the Additional file 1.

On average, the 503 miRNAs are associated with 7 or
13 cancers for the first and the reconstructed network
respectively; and there are 2532 and 5634 miRNA pairs in
these two networks that have a ¢fScore larger than 0 and
that are associated with at least 10 cancers. There are very
few literature proving the miRNA pairs can co-function
in the development of more than 10 different diseases.
To understand whether these miRNA pairs co-function
in the development of some of the diseases, we manually
searched and examined relevant literature to confirm that
the individual miRNAs in the pairs can function cooper-
atively to regulate the same targets. Of the top-ranked 50
miRNA pairs from our reconstructed network, 40 pairs
can be validated to be co-functional pairs by the litera-
ture, in comparison with 35 of the top 50 pairs from the
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first tripartite network. This implies that the addition of
the predicted disease-miRNA associations into the tri-
partite network is useful and effective for the study of
co-functional miRNA pairs. Here, we can just confirm
these pairs of miRNAs are co-functional miRNA pairs
but not multi-disease associated co-functional ones. We
could not find any literature that discusses the relationship
between miRNAs and a series of diseases.

Details of the 50 miRNA pairs are shown in Fig. 3, where
on the label of every edge, the first number represents
the ranking position of the miRNA pair. If the rank num-
ber is followed by one or more gene names, it represents
that the miRNA pair is a co-functional pair and has val-
idated common targets. The number at the end of the
label is the number of diseases that may associate with
this co-functional pair. These multi-cancer associated co-
functional miRNA pairs are mostly from the same clusters
or families such as from the let-7 family (let-7a~7e and
miR-98) and the miR-17~92 cluster (miR-17-3p, miR-17-
5p, miR-18a, miR-19a, miR-19b, miR-20a and miR-92). It
has been known that clustered miRNAs or those miRNAs
from the same family are evolved from a common ances-
tor and can target functionally related genes [34]. Thus,
it can be easily understood that miRNAs from the same
cluster or family have similar functions and can always
function cooperatively. However, not all those miRNAs in
the same families or clusters can co-function with each
other as their target genes are not completely overlapped.

miR-15b-5p

miR-

let-7e-5p

miR-200a-3p miR-103a-3p  miR-27a-3p

miR-19a-3p
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Fig. 3 The 50 top-ranked co-functional miRNA pairs from the reconstructed cancer-miRNA-gene network. The labels along the edges illustrate the
co-function information of the miRNAs. The first number of each label is the rank of the corresponding pair according to our prioritization method.
The following gene symbols are the validated common targets during the co-functioning of the pair of miRNAs. The last number shows the
potential diseases that related to this co-function pair
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Moreover, some miRNAs that belong to different families
or clusters can be co-functional miRNAs. For example,
the 17th-ranked pair miR-497-5p-miR-424-5p is a co-
functional miRNA pair. However, as recorded by miRBase,
miR-424-5p is a member of mir-322 gene family while
miR-497-5p stems from the mir-497 family. The pair is
also not clustered.

The 5th-ranked pair, miR-15b and miR-195, both belong
to the miR-15 family, and both of them can target gene
BCL2, an important apoptosis inhibitor. This pair of
miRNAs can also work together with another miRNA
(miR-16) in regulation [35]. We hypothesize that this
co-functional pair may dysregulate their targets coopera-
tively, leading to the development of 38 different cancers
such as prostate cancer (DOID:10283), prostate carci-
noma (DOID:10286), stomach cancer (DOID:10534), and
breast cancer (DOID:1612). The top three potential com-
mon targets of this miRNA pair are genes BCL2 (entrez
id:596), CDKN1A (entrez id:1026), and CCND1(entrez
id:595). We have verified that these three genes are indi-
vidually related to most of (68%, 68% or 66%) the 38
cancers. Furthermore, these three genes are all involved
in four KEGG [36] pathways: hsa05215: Prostate can-
cer (p-value=1.5E-4), hsa05206: MicroRNAs in cancer
(p-value=1.7E-3), hsa04151: PI3K-Akt signaling pathway
(p-value=2.5E-3) and hsa05200: Pathways in cancer (p-
value=3.2E-3) as revealed by the DAVID functional anno-
tation tool [37, 38]. Moreover, the three genes all have the
functions of the cellular response to DNA damage stim-
ulus (GO:0006974, p-value=1.4E-4) and response to drug
(G0O:0042493, p-value=4.0E-4), which are important func-
tions for the normal cells. Based on these analysis and
evidences, it is suggested that the pair of miR-15b and
miR-195 may contribute to the development of all the 38
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different types of cancers via a similar regulation mech-
anism. More details of the discovered miRNA pairs and
references are listed in Additional file 2.

We were also interested in the problem of whether
the co-functional phenomenon for the non-cancer dis-
ease related miRNAs is the same as those of cancers.
Thus, we constructed a non-cancer disease related DGR
tripartite network containing 1625 non-cancer disease-
miRNA associations between 334 miRNAs and 174 dis-
eases extracted from the three existing databases and also
containing 1625 predicted associations (Additional file 1).
There were just 13 multi-non-cancer-disease associated
co-functional miRNA pairs having a cfscore bigger than
0 and associating with no less than 10 different dis-
eases. Again, we manually examined these candidate
co-functional miRNA pairs. We found that 11 of them
can be validated with strong evidence from literature
(Additional file 2). Furthermore, 5 of the 13 pairs overlap
with the cancer related top 50 miRNA pairs. This indicates
that the co-functional mechanism exists not only for the
cancer related miRNAs but also for non-cancer disease
related miRNAs.

An in-depth analysis of the 5 overlapping co-functional
miRNA pairs

To further understand the regulation mechanism of the
co-functional miRNA pairs, we particularly focused on
the common targets of the 5 overlapping co-functional
pairs (Table 1). The first two columns list the two individ-
ual miRNAs in the co-functional miRNA pairs, the third
column shows the ranks of those co-functional miRNA
pairs. In the forth column, the number of diseases that
may relate to the miRNA pairs are displayed, and the last
column lists the co-functional targets of these miRNA

Table 1 The co-functional miRNA pairs and their potential co-functional targets for both cancers and non-cancer diseases

Cancer related co-functional miRNA pairs

Co-functional targets

BCL2; CDKN1A; CCND1; VEGFA; MTHFR; IFNG; FGF2; FGFR4; SMAD7; CHEK1
TP53; CCND1; BCL2; CDKN1TA; MDM2; VEGFA; MYC; HIFTA; CXCLS8; SOD2
BCL2; MDM2; VEGFA; CASP8; MMP2; PTEN; AKT2; SPARG; VHL; DNMT3B
BCL2; MDM2; VEGFA; CASP8; MMP2; PTEN; AKT2; SPARG; VHL; DNMT3B
BCL2; MDM2; VEGFA; CASP8; MMP2; PTEN; VHL; AKT2; SPARC; CCNA2

Non-cancer diseases related co-functional miRNA pairs

mMIiRNAT1 mMiRNA2 Rank Cancer numbers
miR-15a-5p miR-15b-5p 8 37
miR-17-5p miR-20a-5p 1 50
miR-29a-3p miR-29b-3p 19 27
miR-29a-3p miR-29¢-3p 10 27
miR-29b-3p miR-29¢-3p 13 29
miRNAT miRNA2 Rank Disease numbers
miR-15a-5p miR-15b-5p 5 10
miR-17-5p miR-20a-5p 2 17
miR-29a-3p miR-29b-3p 1 20
miR-29a-3p miR-29¢-3p 4 13
miR-29b-3p miR-29¢-3p 3 14

Co-functional targets

IFNG; MTHFR; RARB; BCL2; CSNK1E; JARID2; PDCD1; ALDH3B1; APP; CDC25A
CXCL8; SOD2; BCL2; ESR2; TP53; VEGFA; F3; ITGA2; PTGER4; CCL5

MMP2; VEGFA; COL3AT; BCL2; FGB; CASPS8; FGA; S100B; SPARC; TGFB3
MMP2; COL3A1; VEGFA; AKT2; CASPS8; FGB; MDM?2; SGK1; TET2; BCL2

MMP2; COL3AT; VEGFA; AKT2; CASP8; FGB; MDM2; MMP15; SGK1; MMP24
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pairs which are related to multiple diseases. Here, a target
gene is ranked higher if it relates to more diseases. It can
be seen that even though there are common co-functional
miRNA pairs between cancers and non-cancer diseases,
the co-functional targets of these miRNA pairs are differ-
ent from each other. For example, for the two miRNA pairs
that both are members of the miR-15 family (miR-15a/b),
the top three possible co-functional targets for the non-
cancer diseases are IFNG, MTHFR, RARB, while for can-
cers are BCL2, CDKN1A and CCND1. Meanwhile, there
are a lot of genes repeatedly relate to various miRNA pairs
such as the last three miRNA pairs from Table 1. Thus
these miRNA pairs may function cooperatively and can
form a co-functional module. This co-functional module
is related to both of multi-cancers and multi-non-cancer
diseases.

To reveal the detailed regulation mode of these miRNAs
associating with multiple cancers and non-cancer dis-
eases, we conducted a deep case analysis. In Fig. 4, the top
ten common target genes of each co-functional pair were
combined to be a gene set. The DAVID functional annota-
tion tool [37, 38] was applied to analyze these gene sets of
the co-functional pairs in the module miR-29a-miR-29b-
miR-29¢, where the threshold of the pathway enrichment
analysis [36] was set as p-value<0.05 (not the adjusted p-
value, the following p-values are all not adjusted ones).
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The labels on the edges from the diseases to the genes
are the probabilities of genes to be the co-functional tar-
gets of the miRNA co-function module. For example, the
edge from the diseases to the gene VEGFA has the label
of “C 77% N 23%” This label means that the co-function
module may dysregulate the gene VEGFA to contribute to
the development of the 26 cancers (C) with the probabil-
ity of 77%. This gene may also be the common target of
the co-functional module during the dysregulation in the
development of those 13 non-cancer disease (N) with the
probability of 23%. The labels along with the edges con-
necting the genes and the pathways indicate that the genes
from the target gene sets of the diseases (i.e., cancers (C)
or non-cancer diseases (N)) associated co-function mod-
ule can be mapped to the corresponding pathways. For
instance, there are three edges connecting the genes with
the pathway ‘hsa05219: Bladder cancer’ together with the
labels of “C N VEGFA’, “C N MMP2” and “C MDM?2".
The labels mean the genes VEGFA, MMP2 and MDM2
from the target gene set of the cancers (C) associated
co-function module can be mapped to the Bladder can-
cer pathway. For the non-cancer diseases (N), only two
genes (VEGFA and MMP2) can be mapped to this path-
way. Those genes that cannot map to any pathways or
those diseases that are not associated with all of the three
co-functional pairs are ignored in the figure. The cancer
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Fig. 4 The miR-29a-miR-29b-miR-29c co-function module, their targets and the enrichment analysis of the KEGG pathways. The triangles are the
potential common target genes of the miR-29a/b/c co-functional module. Those small squares are the genes enriched pathways. Those disease
names in the big squares are the co-functional module related diseases according to our prioritization method
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related gene sets can be mapped to many different path-
ways, we just show the top ten pathways according to their
p-values.

It is uncovered that the co-functional module mainly
dysregulates the ‘hsa05219: Bladder cancer’ and the
‘hsa05200: Pathways in cancer’ to contribute to the devel-
opment of the 13 non-cancer diseases. The module
also regulates eight other pathways (hsa05205, hsa04510,
hsa04066, hsa04151, hsa04150, hsa04210, hsa05161 and
hsa05215) to involve in the development of the 26 can-
cers. The cancer developments are more complex with
more common genes involved. This observation is con-
sistent with the hypothesis that similar diseases may be
related to similar miRNAs and genes. The top three
non-cancer disease genes regulated by the co-functional
module and mapped to the pathways are MMP2, VEGFA
and CASP8, while for the cancers are BCL2, MDM2
and VEGFA. With the gene ontology enrichment anal-
ysis, we found that the former three genes have the
function of angiogenesis (GO:0001525, p-value=1.8E-4),
macrophage differentiation (GO:0030225, p-value=2.1E-
3), negative regulation of cysteine-type endopeptidase
activity involved in apoptotic process (GO:0043154, p-
value=9.0E-3) and response to hypoxia(GO:0001666, p-
value=2.2E-2). The latter three genes can play roles of
cellular response to hypoxia (GO:0071456, p-value=5.2E-
5), response to iron ion (GO:0010039, p-value=2.4E-3),
ovarian follicle development (GO:0001541, p-value=5.8E-
3) and the other related functions. The co-functional
module can regulate two same pathways during the devel-
opment of both the cancers and non-cancer diseases. The
possible common targets also have the similar function
such as response to hypoxia. These indicate that the miR-
29a/b/c regulation module may contribute to the disease
development partly via similar dysregulation mechanism.
On the other side, the co-functional module may prefer
to function by dysregulating the same genes in the devel-
opment of various cancers rather than those non-cancer
diseases. During the carcinogenesis of 26 kinds of can-
cers, averagely more than 70% of those cancers relate to
the dysfunction of the above three genes (BCL2, MDM2
and VEGFA). For the three non-cancer diseases related
genes (MMP2, VEGFA and CASPS), the percentage is just
around 30%. Those cancers related genes are more likely
to involve in the same pathways which indicates the close
relationships between their functions. This is mainly due
to the fact that cancers are more similar to each other than
those non-cancer diseases.

Interestingly, there are a number of literature which
have reported the co-function of the miR-29 family mem-
bers in the development of the cancers such as non-
small-cell lung cancer [39], renal cell carcinoma [40],
breast cancer [41], ovarian cancer [42] and others types
of cancers [43]. Furthermore, the MYC-mediated miR-29
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repression mechanism for the therapy of aggressive B-
cell malignancies (B-cell malignancies is the synonym of
chronic lymphocytic leukemia according to Medical Sub-
ject Headings (MeSH) [44]) by applying the HDAC3 and
EZH2 as therapeutic targets [45] was reported. Another
report in 2015 also discussed the adoption of miR-29s
(miR-29a/b/c) as candidate epi-therapeutics for curing
hematologic malignancies [46]. According to our find-
ings and literature, we can claim that it is reasonable to
consider miR-29a/b/c as potential drug targets for the
treatment of multiple cancers.

The predicted miRNAs that are related to breast and
prostate cancer: case studies

In this section, we report details of the predicted miRNAs
which are likely related to breast cancer and prostate can-
cer. Breast cancer is the leading type of cancer in women,
accounting for 25% of all women cancer patients [47].
Prostate cancer is the second most common type of can-
cer and the fifth leading cause of cancer-related death
in men [47]. We have taken the following three steps
for this case study: (1) the prediction model was trained
on the RLSMDA data set of disease-miRNA associations
[26] which contains 1184 disease-miRNA associations;
(2) the prediction model was applied to make predic-
tions for those disease-miRNA pairs whose relationships
were unknown in this data set; (3) the positively predicted
disease-miRNA pairs were evaluated using the latest ver-
sion of databases such as miRCancer [33], miR2Disease
[17] and HMDD [18], which stores newer disease-miRNA
associations than the RLSMDA data set does. In fact, the
RLSMDA data set stores only 78 and 34 miRNAs associ-
ated with breast cancer and prostate cancer respectively.
However, the latest version of the three databases stores
227 and 152 miRNAs which have been found related to
breast and prostate cancer. Thus, our predicted results can
be fairly verified by the literature ground truth. As some of
the predicted disease-miRNA associations were not cov-
ered by the three databases, we also searched other web
sources to confirm the prediction results.

We constructed 100 prediction models (for mak-
ing reliable predictions), each time using all the 1184
disease-miRNA pairs as the positive samples and a set
of randomly selected 1184 negative samples from the
negative_expression data set (a data set of 4638 nega-
tive samples based on the analysis of expression data). If
a unknown cancer-miRNA relationship is positively pre-
dicted by all the 100 models, then a strong association
exists between the cancer and the miRNA. The associa-
tion probabilities derived by the 100 models is averaged
to indicate the strong association. Figure 5 shows the 30
top-ranked positively predicted miRNAs related to breast
and prostate cancer in terms of the average probabili-
ties of the 100 models for the miRNAs. The edges at the
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Fig. 5 The top 30 predicted breast cancer-miRNA and prostate cancer-miRNA associations and the verification resources. The part a shows the

predicted breast cancer related miRNAs and the part b gives the predict prostate cancer related miRNAs. The labels of the edges illustrate the rank
of the predicted associations and the confirming types. The characters “*”, “#" or “$" stand for that the corresponding associations can be confirmed
by the records in miR2Disease , HMDD or miRCancer respectively. The character “@" means that the association can be confirmed by other articles. A

co-functional pair miR-195-5p-miR-15b-5p is highlighted

(a) part represent the breast cancer-miRNA associations
while the edges at the (b) part show the prostate cancer-
miRNA associations. The labels on these edges represent
the ranking positions and evidence type of the predic-
tion results. The characters “*", “#" or “$" stand for that
the corresponding associations can be confirmed by the
records in the miR2Disease database, the HMDD database
or the miRCancer database respectively. The character
“@" means that the association can be confirmed by other
articles. Otherwise, the predicted associations could not
be confirmed to our best knowledge. Overall, 58 of the 60
predicted disease-miRNA relationships can be verified by
the newer databases or by other literature work.

Figure 6a shows the percentages of the predicted
disease-miRNA associations that can be verified when the
number of top-ranked miRNAs varies from 10 to 150. The
x-axis is the number of predictions (x 10) while the y-axis
is the percentages of the verified predictions. For the first

10 to 50 predicted miRNAs associated with breast cancer
or prostate cancer, 100 and 96% of them can be verified
by the three newer databases or literature. The percent-
ages drop to 98 and 88% when we assess on the first 100
predicted associations. This indicates that a more reliable
predicted disease associated miRNAs can be ranked at a
higher position by our method.

A novel association predicted by our method is about
hsa-miR-15b (mapped as hsa-miR-15b-5p by miRBase)
and breast cancer. Hsa-miR-15b is ranked as the 5th
leading breast cancer related miRNA. This miRNA is an
epidermal growth factor induced miRNA, and its asso-
ciation with breast cancer has not been recorded by any
existing databases. However, a new discovery in 2015
can verify that there is an inverse correlation between
the high expression of miRNA-15b and the low expres-
sion of its target gene MTSS1 in the tissues of breast
cancer patients with the aggressive basal subtype [48].
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The growth factor-inducible miRNAs can mediate the
mechanisms underlying the progression of breast cancer.
Another novel association predicted by our method is
about hsa-miR-29c (mapped as hsa-miR-29¢-3p by miR-
Base) and prostate cancer. This association is also ranked
at the 5th position among the predicted prostate can-
cer related miRNAs, but it has not been recorded by
any existing databases. A recent report claimed that miR-
29c together with other five miRNAs such as miR-29a,
miR-29b, miR-26a, miR-26b and miR-218 can control the
expression of metastasis-promoting LOXL2 gene during
the development of prostate cancer [49].

For the association miR-20b-prostate cancer which can-
not be verified, Moltzahn et al. [50] had reported an
upregulation of miR-20b in prostate cancer patients com-
paring with the healthy samples. However, this upreg-
ulation was not statistically significant at the follow-up
PCR experiments. With our prediction, there may be an
association between miR-20b and prostate cancer.

For some diseases, there have no currently known asso-
ciations with any miRNAs. To test whether our predic-
tion algorithm is still applicable for such situations, we
conducted another experiment. In the experiment, we
removed all the known miRNA associations with breast
cancer or prostate cancer from the RLSMDA data set. The
objective was to see whether our model can correctly pre-
dict these purposely removed and currently known breast
cancer-miRNA or prostate cancer-miRNA associations.
The prediction results are shown in Figure 6b. Our model
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has a superior performance for predicting disease-miRNA
associations even when there is no known association for
these two cancers. Of the top 50 predicted disease-miRNA
associations, all the predicted breast cancer-miRNA asso-
ciations can be confirmed by the existing databases or
literature, while 96% of the top 50 predicted prostate
cancer-miRNA associations can be confirmed. The con-
firmation rates for the top-100 predicted associations can
still maintain at a very high level. Moreover, the breast
cancer-hsa-miR-15b-5p and the prostate cancer-hsa-miR-
29¢-3p can still be predicted and ranked highly. More
details of the predicted and verified disease-miRNA pairs
can be found in Additional file 2: Table S3—-S6. The code
in the Additional file 3 which implements our prediction
algorithm has a default setting to output no more than 100
miRNAs for a given disease.

Performance comparison: prediction of disease-miRNA
relationships by different methods

A number of methods have been proposed to make pre-
dictions of unknown disease-miRNA relationships. We
compared the performance of our prediction method
with three state-of-the-art methods: RLSMDA [26], the
method proposed by Xu et al. [28], and Jiang’s method
[29]. RLSMDA is a semi-supervised method that does not
need any negative samples. Xu’s method is a supervised
approach and it collects the negative samples according to
tissue-specific and expression properties of the miRNAs.
Jiang’s method is also a supervised method. It has utilized
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Fig. 6 The percentages of the predicted disease-miRNA associations that can be verified. Panel a introduces the prediction performance of the
model with the known cancer (breast and prostate cancer) related miRNAs. Panel b shows the prediction performance after the removal of the
existing associations. The x-axis is the number of predictions (x 10) while the y-axis is the percentages of the verified predictions
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a set of 270 negative samples randomly selected from the
un-connected disease-miRNA pairs of a miRNA-disease
bipartite network.

We first optimized our prediction model with two
experiments such as selecting optimal precomputed ker-
nel matrix and determining the best size of the negative
samples comparing to positive ones during the train-
ing of our model. The results illustrate that our model
can achieve best performance with the following settings:
applying the squared root type of precomputed kernel
matrix, setting the weight parameter @ = 0.8 and select-
ing the same size of negative samples as positive samples.
In addition, we did the permutation test [29] which has
proved that the performance of our prediction model was
not produced occasionally but contains biological signif-
icance. The performances of our model with negative
samples selected from our collected negative sample set
or from all the un-connected pairs were compared. Selec-
tion of negative samples from our negative sample set has
been proved to be a better choice. More detail of these
procedures and the results can be found in the contents
and Additional file 2: Figure S1-S3.

The source codes of these above three literature meth-
ods were not available. We implemented the RLSMDA
algorithm, but not the complicated Xu'’s or Jiang’s method.
It is not possible for us to compare various methods with
a independent test set. For a fair comparison, their data
sets and performance metrics (specificity, recall(or sensi-
tivity), precision, accuracy and AUC) were exactly used by
our method. More details of the implementation and data
sets are described in Additional file 2, the positive samples
are listed in Additional file 4.

The specificity, recall, accuracy and AUC performances
are benchmarked in Table 2 (those values of Xu’s method
and Jiang’s method were obtained from their published
papers). The ROC curve of our method is depicted
in Fig. 7 in comparison with the curve of the RLSMDA
method under the same data set and the same leave-
one-out cross-validation (LOOCYV). The ROC curves for
the comparison of our methods with all the three meth-
ods are also showed in Additional file 2: Figure S4-S6.
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Our prediction model achieves much better AUC val-
ues than the three state-of-the-art methods. This is the
main reason why our prediction method was used to
predict unknown miRNA-disease associations and the
top-ranked ones were added to reconstruct the disease-
gene-miRNA tripartite networks. The superior perfor-
mance of our prediction method is mainly attributed to
the careful selection of reliable negative samples as well as
the precomputed kernel matrix which can identify more
positive samples.

Discussion

A more challenging problem is to detect and pri-
oritize multi-disease associated co-functional miRNA
groups containing more than two members. An intuitive
approach is to integrate all the co-functional pairs that
overlap. As the co-function of more than two miRNAs is
rarely reported by the literature, it is hard to validate the
existence of multi-miRNA co-functional groups. The pri-
oritization of multi-miRNA co-functional groups is one of
our future research topics.

As demonstrated, our method has a much better perfor-
mance for the prediction of disease-gene associations. A
key idea of our method is the use of reliable negative sam-
ples screened and obtained through the fold change infor-
mation of miRNA expressions. An alternative approach to
the screening can be through pairwise test statistics. Com-
bining expression fold change and pairwise test statistics
may lead to decreasing the false positives in the set of
negative samples. In the future work, we will examine the
trade-off between the performance improvement and the
quadratic pairwise time complexity.

Multi-disease associated co-functional miRNA pairs are
also linked to the concept of competing endogenous
RNAs (ceRNAs) [51, 52] which covers the regulation rela-
tionships of miRNAs and their targets including both
mRNAs and long non-coding RNAs. Characteristics of
miRNAs in the ceRNA networks can be considered to
analyze the co-functions of miRNAs. For instance, if two
miRNAs are involved in the same ceRNA network, they
may always co-function with each other.

Table 2 Performance comparison between our method and the three state-of-the-art prediction methods

Methods sample size cv type Specificity Sensitivity Accuracy AUC
RLSMDA 1184+ Loocv - - 0.9475
our model 1184+,1184- LOOCV 0.9367 0.9368 0.9367 0.9896
Xu's method 37+, 44- 5-fold 0.8833 0.8643 0.8772 0.9189
our model 37+,37- 5-fold 0.9990 1.000 0.9995 0.9854
Jiang's method 270+, 270- 10-fold 09125 0.7338 0.8232 0.8884
our model 263+, 263- 10-fold 0.9274 0.8982 0.9128 0.9871

Symbols “+/-" represent “positive samples/negative samples”. cv means cross-validation

The best performance among the compared methods are showed in boldface
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Fig. 7 The ROC curves of our model compared with RLSMDA based
on the same positive samples. The comparison is based on the same
positive sample set and the different prediction model of RLSMDA
and our newly designed model. The average AUC value of our model
is 0.9896 while the RLSMDA obtains the lower value of 0.9475

Conclusion

We have conducted a cross disease analysis of co-
functional miRNA pairs on a reconstructed disease-
gene-miRNA tripartite network. We made the following
contributions: (1) We proposed a new idea for selecting
reliable negative samples of disease-miRNA relationship
which can overcome the problem of lacking negative sam-
ples for machine learning methods to make reliable pre-
dictions of disease-associated miRNAs; (2) Our prediction
model does not need to do feature selection, and it is appli-
cable for large scale prediction of disease-associated miR-
NAs; (3) Our prediction model can work well for those
miRNAs that have no currently known miRNA-disease
associations; (4) We designed a scoring function to prior-
itize the candidate multi-disease associated co-functional
miRNA pairs and their potential co-regulated genes; (5)
We performed detailed case studies to understand the
miRNA co-functional phenomenon for both cancers and
non-cancer diseases; and (6) We performed deep case
studies to reveal novel associations between miRNAs and
breast cancer and those between miRNAs and prostate
cancer. It can be concluded that our prediction method
has a superior performance for the prediction of unknown
miRNA-disease associations, and that the integration of
the top-ranked ones into the existing database is useful
and effective for the cross disease analysis of co-functional
miRNA pairs.

Methods
Our method for the detection and prioritization of
co-functional miRNA pairs and cross disease analysis
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includes three main computational steps: (i) Reconstruct-
ing the DGR tripartite network by combining the known
relationships of diseases, miRNAs, and genes with those
predicted disease-miRNA associations, (ii) Ranking the
candidate co-functional miRNA pairs via a novel scoring
method, (iii) Determining the potential co-functional tar-
get genes of these co-functional miRNA pairs. Details of
these steps and data sets are described in the following
subsections.

Data sets for the diseases, miRNAs and their related genes
Diseases and miRNAs stored at different databases may
have different names or IDs. To deal with this inconsis-
tency issue, we mapped the names of the diseases and
miRNAs from all the relevant databases to the database
Disease Ontology (DO) [53] and miRBase v21.0 [54]. The
Medical Subject Headings (MeSH) [44] and Comparative
Toxicogenomics Database (CTD) [55] were used as the
dictionaries of the disease names. We searched in DO for
all the disease names of a data set. When exact terms were
found in DO, the names and the DO ids were recorded
and stored in a separate file. Otherwise, we searched in
MeSH and CTD, and used their synonyms to map them to
DO terms. To map the names of the miRNAs, we searched
the given ids of the miRNAs in miRBase v21. When a
term was not found, then it was discarded (according to
miRBase, it may be a dead record because it is not a
miRNA, or the record has been replaced by another one).
A miRNA id is always related to two mature miRNA ids
with the suffix of *-5p’ or ‘-3p’ which means a precursor
miRNA will generate two mature miRNAs from the 5’-
arm or the 3’-arm respectively. As the mature miRNAs
are the real functional parts, the miRNAs from different
resources were mapped to the mature miRNA ids in miR-
Base v21. For those older version ids, we also mapped
them to the current mature miRNA ids according to the
term of Previous IDs of the miRBase database. Finally,
each miRNA was mapped to one mature miRNA id of the
database miRBase v21.

The genes were mapped to the entrez gene ids according
to the HUGO Gene Nomenclature Committee (HGNC)
[56]. To get the disease-related genes, we downloaded the
supplementary files of [57] which contains 117,190 asso-
ciations between 2817 diseases and 12063 genes from the
database SIDD [58]. After data correction and redundancy
removal, we obtained a data set of 114754 disease-gene
associations between 2802 diseases and 10893 genes. To
get the target genes of those miRNAs, we searched two
databases: miRecords [19] and miRTarBase [20]. After
mapping the miRNAs to miRBase v21 and mapping the
gene names to entrez gene ids, we retrieved 322,269
miRNA-target pairs between 2588 miRNAs and 14794
genes. We list these disease genes and miRNA targets in
Additional files 5 and 6 for more details.
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Positive samples and negative samples for training the
prediction model to identify unknown disease-miRNA
associations

There are several disease-miRNA databases such as
miR2Disease [17], HMDD [18], and miRCancer [33].
This work focuses on the human mature miRNAs. The
database HMDD stores the miRNAs as the precursor
miRNA ids, these ids were first converted into mature
miRNA ids according to the provided reference links
before mapping them to the mature miRNA ids. After
mapping the miRNAs and diseases to miRBase v21 and
DO respectively, we retrieved 4578 associations between
463 miRNAs and 263 diseases from HMDD, 1952 asso-
ciations between 83 cancers and 341 miRNAs from miR-
Cancer, and 2096 disease-miRNA associations between
108 diseases and 287 miRNAs from miR2Disease. These
are known disease-miRNA associations and they are
used as the positive samples for the training of the
prediction model.

Selection of negative samples, i.e., those disease-miRNA
pairs that have little associations, is a difficult problem. We
explored a novel idea to select credible negative samples.
The new idea is to select negative samples according to the
expression data of the miRNAs that we downloaded from
the Gene Expression Omnibus (GEO) database [59]. We
computed the fold changes of the miRNAs in the diseased
patients comparing with the controls (i.e., the adjacent
normal cells or the healthy contributor’s corresponding
cells) according to the given platform information of the
GEO database. A disease-related miRNA is always differ-
entially expressed significantly between these two groups
of subjects. Those miRNAs that are not significant differ-
ential expressed (the fold changes smaller than 0.05) will
be regarded as non-disease related miRNAs. After con-
ducting analysis on 78 GSE accessions (some accessions
without enough information for compute the fold changes
were removed), we determined 21432 disease-miRNA
pairs between 2473 miRNAs and 73 diseases which have
little association. The accession ids can be found in the
Additional file 7. By comparing this data set of nega-
tive samples with the above HMDD-based, miRCancer-
based and the miR2Disease-based positive data sets, those
pairs that appeared in both of the negative data set and
the positive data sets were discarded. We then obtained
4041, 1838 and 1487 disease-miRNA pairs respectively
from HMDD ,miRCancer and miR2Disease, which were
regarded as positive samples. 20772 disease-miRNA pairs
extracted by the analysis of the GSE accessions were
used as negative samples. To obtain more reliable nega-
tive samples, we also removed those diseases that have
no known related miRNAs and those miRNAs that have
no known related diseases according to the three positive
data sets from the 20772 disease-miRNA pairs. Finally,
there are 4638 negative samples involving 53 diseases and
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538 miRNAs. All these four data sets are further described
in Additional file 8.

We note that Jiang’s method [29] takes all those
unknown disease-miRNA pairs as negative samples and
constructed balanced data sets by a random selection of a
subset of the negative samples as the same size of the ver-
ified disease-miRNA associations. Xu’s method [28] takes
those miRNAs at the lowest expression levels in the nor-
mal tissue as negative samples. Our method for selecting
negative samples is different and more convincing as we
consider the fold changes of the expression levels of the
miRNAs between diseased and control tissues.

Precomputed kernel matrices for the support vector
machine

We applied support vector machine (SVM) to predict
disease-related miRNAs. SVM is a supervised learning
model for classification and regression [60]. We adopted
the LibSVM version 3.20 [61] in this work. Usually, one
can extract the features of the samples as the input of
SVM to implement classification or regression with dif-
ferent kernel functions such as linear kernel, polynomial
kernel, radial basis function kernel. However, even though
we can represent a miRNA as a feature vector, it is hard to
design an appropriate feature vector to describe a disease.
Diseases are always phenotypes of patients. It is difficult
to find the common properties of diseases that can be
normalized as mathematical variables. To overcome this
issue, we proposed to use precomputed kernel matrices
instead of constructing the feature vectors to represent
the disease-miRNA pairs. Construction of a precomputed
kernel matrix has three main steps:

Step 1: Calculate the difference between two disease-
miRNA pairs. Given two disease-miRNA pairs d;m; and
dymy, we compute their difference (diff (d1my, damy)) in
three ways:

e Average approach:

diff (dimy, damy) = (DisSim (dy, da) + MiRSim (m1, ma)) /2
(1)

e Squared root approach:

dlﬁr (dlml, dzmz) = \/(DiSSim (dl, dz) X MiRSim (ml, }’nz))
(2)
e Centre distance approach:
diff (dym, dymy) =[ (DisSim(dy, dy) — AvgDisSim)” +
(MiRSim (my, my) — AvgMiRSim) ]/
3)

where DisSim and MiRSim represent the similarities
between diseases and miRNAs respectively. AvgDisSim
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is the average similarity of all the disease-disease
pairs, and AvgMiRSim is the average similarity of all
the miRNA-miRNA pairs. Obviously, bigger values of
diff (dimy,doymy) means the two pairs dimy,dymy are
more similar. Details of computing the similarities
between diseases or between miRNAs are introduced in
the next section.

Step 2: Constructing the kernel matrix for train-
ing samples. For a training set of M samples
{dim1, dams, ..., dyrmyg} with class labels {13, o, ..., [y}, the
training kernel matrix, denoted as TKM, is given by:

kit - kiy
TKM=| : . (4)
kari -+ kpim

where, k;j = diff (dimi, djmj) is the difference between the
two pairs d;m; and djm;.

Step 3: Constructing the kernel matrix for
testing samples. For a testing set of xu samples
{D1M1,DoM>, ...,D,M,}, the kernel matrix for the
testing samples, denoted by PKM, is given by:

STRRRRRSYY:
PKM = : (5)
knl an

Using TKM and PKM as input to libSVM, the class
labels of the n testing samples can be predicted, and
the probabilities of the predictions can be derived at the
same time.

Measuring the pairwise similarities of diseases or miRNAs
Disease similarity between two diseases, denoted by
DisSim, is measured in two parts: the disease semantic
similarity (SemSim) and the functional similarity between
disease-related gene sets (FunSim). The multiplication of
SemSim and FunSim is defined as DisSim. The definition
of FunSim is referred to the SemFunSim method [57].
We implemented the algorithm and obtained the FunSim
measurements between 2802 diseases. The SemSim was
computed with the R package DOSE [62]. For the DOSE,
we applied Resnik’s [63] definition of the common ances-
tor for two given terms. To avoid too many zero values of
the similarities, we integrated SemSim and FunSim using a
sum (instead of multiplication) and a weight parameter o.
The new similarity measurement between disease d; and
disease d; is computed by

DisSim (d;, dj) = o x FunSim (di, dj) + (1 — &) x SemSim (dj, d))
(6)

MiRNA similarity between two miRNAs, denoted by
MiRSim is also measured in two parts: the sequence
similarity (SegSim) and the function similarity (funSim).

Page 13 of 17

SeqSim evaluates the similarity of the two miRNA
sequences. We applied the idea of pseudo amino acid
composition [64] to represent a miRNA as a (4 + A)-
dimension vector. This idea was originally proposed to
represent protein sequences as vectors.

Given a RNA sequence R r,72,...1,...rL, where
ri € {A,G,C,U}. Then, R is represented as a vector
Vr = [Vilix(a+x), where the first four components stand
for the occurrence frequencies of the 4 native nucleotides,
and the latter A components represent the sequence order
effects of the nucleotides of R. The ¢-th (¢t < L) tier
sequence order effect 0; is calculated by

1

0 = m LLz_lt O (ris rite) (7)
O (11, 7i+1) = (Mi — Miye)* (8)
MO

MOt L
M; = L ©)

s M 2

4 0 j

Zj:l (Mi - 2;21 4]>
)

where, M; is the normalized ith (i=1, 2, 3, 4) molecular
weight of the nucleotide. The original molecular weights
(M?) of the four nucleotides are 135.1270 for A, 151.1261
for G, 111.1020 for C and 112.0868 for U. Then Vi =

V1, V2, weViys v Vaga ),

Su
I — (1 <u<4d
Yimifit w6
WOy—4
i T ,b<u<4+2x)
Yimfit w6
In this work, we set A = 5 and the weight factor w =
0.05. f,, is the occurrence frequencies of the nucleotide u.
Then, each of the miRNA sequence R is represented as a
9-dimension vector Vi = [v;]1x9. Overall, the sequence
similarity is given by

(10)

Vy =

SeqDis (Vi, V}) — min(SeqDis)
max(SeqDis) — min(SeqDis)
(11)

SeqSim (Ri,Rj) =1

SeqDis (Vi, Vj) = |Vi — V| (12)

where, || is the Euclidean distance, and min(SeqDis) and
max(SeqDis) represent the maximum value and the min-
imum value of all the SegSim values between different
miRNAs.

The funSim measurement is computed similarly as com-
puting FunSim, namely a funSim between two miRNAs
can be represented as the similarity between the two
miRNA target sets. Similar to the measurement of DisSim,
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MiRSim of two miRNAs R; and R; is measured by inte-
grating funSim and SeqSim with the same parameter o as
follows:

MiRSim (R;, Rj) = o x funSim (R;, R}) 13)
+ (1 — ) x SeqSim (Ri,Rj)
Among all the datasets we mentioned previously,
551 different mature miRNAs were involved. Thus, we
obtained the similarities between these 551 miRNAs in
this work (details of the miRNAs and their targets listed in
Additional file 6). Together with the similarities between
2802 diseases (details of the disease-gene associations
listed in Additional file 5), these plenty of similarity infor-
mation provide us adequate data to investigate associa-
tions between diseases and miRNAs.

Scoring the multi-disease associated co-functional

miRNA pairs

This work defines a multi-disease associated co-
functional miRNA pair as a pair of miRNAs that can
dysregulate the same gene or whose target genes are
involved in the same cellular processes to participate in
the development of a series of diseases. Such a miRNA
pair has three good properties: (i) the members function
cooperatively, which means they prefer to share the same
targets; (ii) the members are associated with the devel-
opment of a same set of diseases; and (iii) the common
miRNA targets of the two miRNAs are potentially to
be the common disease genes of their related diseases.
These three properties can be examined on a DGR tri-
partite network containing various associations between
miRNAs, diseases and genes.

Let dgr = (Vd UV, U V,,E) be a DGR tripartite net-
work, where V; is a set of diseases, V; is a set of disease
genes, V; is a set of disease-related miRNAs, and E is
the associations between these diseases, genes, and miR-
NAs. Given a pair of miRNAs R; and Ry, R1,Ry € V,,
we find the gene sets G; = {gn,glg,...,glk,...,glm}
and G2 = {g21,g22, e Z2r e ,gzn}, where Lk & € Vg
and the edges (Rl,glk), (Rz,th) € E. We also find two
subsets of diseases D] = {dn,dlz, . dip, .. .,dlx} and
Dy = {dgl,dzg, - ,dgq, S ;dly}: such that dlp,qu e Vy
and the edges (Rl, dlp), (Rz, dzq) € E. Then, for each dis-
ease d; in D; and Dy, we can get its related genes d‘f =
levg g &)

We quantify (i) the function relationship between a pair
of miRNAs, (ii) miRNA regulation relationship in differ-
ent diseases, and (iii) the relationship between the shared
targets of two miRNAs and the common disease genes of
these miRNAs associated diseases:

e MiRNA function relationship. A function relationship
between R; and Ry is quantified as the proportion of
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the shared targets (psg (R1, R2)), namely,

G1 NGy

_— 14
G UGy (14)

bsg (R1,Ry) =

e MiRNA regulation relationship in different diseases.
The idea is that those miRNAs that have significant
differential expression levels in different disease are
more likely to function cooperatively. The
co-dysexpression rate of R; and Ry, rd(R1, Ry), is
defined with consideration of their shared diseases
and the percentage of the shared diseases comparing
with all the diseases in dgr (i.e., |Vy]|):

D1 N Dy
Dy UDy

D1 NDy

rd(Ry, Ry) = Vol

(15)

e The relationship between the shared targets of R;
and R and the common disease genes of R; and Ry
shared diseases is defined as psgc(R1, R2). The idea is
that those co-functional miRNAs always
co-dysregulate the common disease genes to
contribute to the disease development.

U1 (@GN Gy N d))

16
G1 NGy (16)

psge (R, R;y) =

where s is the number of diseases that the R1 and R2
shared.

The score for weighting the probability of the pair R;
and R to be a multi-disease associated co-functional pair
(¢fScore) is defined as:

¢fScore (R1, Ry) = psg (R1, Ry)-rd (R1, Ry)-psge (R1, Ry)
(17)

MiRNA pairs related to bigger number of diseases are
more likely to reflect the general regulation mechanism.
Thus, a threshold is set to control the number of diseases
that the pair is associated with. There is no reliable data
set for us to select an optimal threshold, we just set the
threshold to be 10. We can then rank all the candidate
co-functional miRNA pairs according to their c¢fScores. A
higher position indicates the pair is more likely to be a
multi-disease associated co-functional miRNA pair.

Usually, the two members of a co-functional miRNA
pair can share more than one common targets. However,
only part of them are really dysregulated by the miRNA
pair during the development of the diseases (called the
co-functional targets of this co-functional miRNA pair).
As all those miRNAs shared targets can be candidate
co-functional target, a probability is estimated for the
candidate co-functional targets to be the exact dysregu-
lated genes during the diseases’ developments. The idea
is that the candidate co-functional targets being the dis-
ease genes for more of the miRNA pair associated diseases
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are more likely to be the real ones. We calculate the
probability of gene g;, p(g;), to be a co-functional target by:

ConinDy)

p(g) = (18)

CpinD2)

where Cp,np, is the number of common diseases asso-
ciated with miRNA R; and Ry, while Cyn(pinDy) is the
number of diseases associated with gene g;.

Additional files

Additional file 1: The disease-miRNA associations for constructing the
DGR tripartite. We list the disease-miRNA associations for constructing the
DGR tripartite here including the cancer related tripartite and the non-
cancer disease associated tripartite. This file can also be downloaded from:
https://drive.google.com/open?id=0B6IH3mKdA9CSTkg2OVBPSOZfVnM.
(XLS 689 kb)

Additional file 2: The supplementary results for our work. This file mainly
introduces the supplementary results of our work such as the details

of the supplementary files, the details of the model comparison, the case
study results, our prioritized multi-disease associated co-function miRNA
pairs, the supplementary codes and the related references.This file can
also be downloaded from: https://drive.google.com/open?id=
0B6IH3MKJA9CSTkg2OVBPSOZfVnM.

® Figure S1. Performances of the predictions under different
precomputed kernel matrix and alpha.

® Figure S2. The ROC curves of the permutation test.

® Figure S3. Performances of the prediction models with different size
ratio of negative and positive samples.

® Figure S4. The ROC curves of our model compared with RLSMDA
based on the same positive samples.

® Figure S5. The ROC curves of our model and Xu's based on the
same positive sample set and 5-fold cross validation.

® Figure S6. The ROC curves of our method and Jiang's method based
on their positive sample set.

(PDF 1260 kb)

Additional file 3: Supplementary codes and data. The matlab codes of
our methods and the input datasets. The data can also be downloaded
from the following website: https://drive.google.com/open?id=
0B6IH3MKdAAICSWDJHaWpnSUIPbGce. (ZIP 3080 kb)

Additional file 4: Datasets for the comparison of different miRNA-disease
association prediction models. This file contains the three datasets that
used in three state-of-the-art methods such as RLSMDA, Xu's method and
Jiang's method.This file can also be downloaded from: https://drive.google.
com/open?id=0B6IH3MKdAA9ICSTkg20VBPSOZfVnM. (XLS 157 kb)

Additional file 5: The disease-gene associations. The disease genes are
listed in this file. These disease genes were obtained from the reference
[56] and curated based on the DOID database and the HGNC database.
This file can also be downloaded from: https://drive.google.com/open?id=
0B6IH3MKdA9CSTkg20VBPSOZVnM. (XLS 7220 kb)

Additional file 6: The miRNA-target associations. The miRNA targets were
downloaded from the two databased such as the miRecords an
miRTarBase. The miRNA ids were mapped according to the miRBase v21,
while the genes were mapped to HGNC database records. This file can also
be downloaded from: https://drive.google.com/open?id=
0B6IH3MKdAA9CSTkg20OVBPSOZfVnM. (XLS 5320 kb)

Additional file 7: The GSE accessions for extracting negative samples.
There are totally 78 GSE accessions that we downloaded from the GEO
database. We analyzed these files to compute the fold changes of the
miRNAs according to the given platform information.This file can also be
downloaded from: https://drive.google.com/open?id=

0B6IH3MKdA9CSTkg20VBPSOZfVnM. (XLS 28 kb)
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Additional file 8: Datasets for constructing the miRNA-disease
association prediction models. Four datasets such as three positive sample
sets “positive_miR", “positive_HMDD" and “positive_miRcancer” and the
negative sample set “negative_expression” are stored. The three positive
sample sets are retrieved from the three existing databases such as
miR2Disease, HMDD v2 and miRCancer, while the negative sample set was
obtained via analyzing the expression of the miRNAs.This file can also be
downloaded from: https://drive.google.com/open?id=
0B6IH3MKdA9CSTkg20VBPSOZfVnM. (XLS 947 kb)
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