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Abstract

Background: Population structure inference using the software STRUCTURE has become an integral part of
population genetic studies covering a broad spectrum of taxa including humans. The ever-expanding size of genetic
data sets poses computational challenges for this analysis. Although at least one tool currently implements parallel
computing to reduce computational overload of this analysis, it does not fully automate the use of replicate
STRUCTURE analysis runs required for downstream inference of optimal K. There is pressing need for a tool that can
deploy population structure analysis on high performance computing clusters.

Results: We present an updated version of the popular Python program StrAuto, to streamline population structure
analysis using parallel computing. StrAuto implements a pipeline that combines STRUCTURE analysis with the Evanno
�K analysis and visualization of results using STRUCTURE HARVESTER. Using benchmarking tests, we demonstrate
that StrAuto significantly reduces the computational time needed to perform iterative STRUCTURE analysis by
distributing runs over two or more processors.

Conclusion: StrAuto is the first tool to integrate STRUCTURE analysis with post-processing using a pipeline approach
in addition to implementing parallel computation – a set up ideal for deployment on computing clusters. StrAuto is
distributed under the GNU GPL (General Public License) and available to download from http://strauto.popgen.org.
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Background
Inference of population structure has found application
in fields as varied as human genetics (e.g., [1]) evolu-
tion and speciation [2], molecular ecology [3], landscape
genetics [4], agriculture [5], forest population genomics
[6], tree improvement [7], fisheries [8] and many oth-
ers. The Bayesian algorithm implemented in the software
STRUCTURE [9–11] is now among the most heavily
used methods to infer population structure from geno-
type data despite the difficulties in making unbiased esti-
mates of population structuring under various models of
demograhic history [12] or when not using balanced pop-
ulation sampling [13]. The STRUCTURE algorithm is a
model-based clustering method that uses Markov Chain
Monte Carlo (MCMC) re-sampling to determine the like-
lihood of a particular number of Hardy-Weinberg linkage
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equilibrium clusters (K ) for a given genotype dataset.
Once several replicate analyses for a variety ofK values are
completed, one can then determine the optimal number
of inferred genetic clusters (K) that individuals within a
given dataset draw ancestry from. This is most commonly
accomplished using the Evanno method [14].
Due to the underlying nature of the MCMC process,

the STRUCTURE algorithm is computationally intensive
while requiring very little computer memory. A single run
of the algorithm can take 100% of a processor’s computing
power for several hours to complete. This, along with the
replication required to generate the tests of likelihoods,
can lead to a single analysis taking between several days to
weeks to complete, even with fewer-than-optimal number
of replicates being performed.
The ever-expanding size of population genetic data

sets generated by next generation sequencing technolo-
gies and other high-throughput genotyping platforms
(e.g., [15, 16]) presents an additional significant compu-
tational challenge for researchers interested in perform-
ing STRUCTURE analyses. Phylogeographic datasets, one
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class of dataset for which STRUCTURE analysis is com-
mon, have shown a drastic increase in size over the past
five years, with some projections showing that the median
number of Single Nucleotide Polymorphisms (SNPs) per
dataset may approach 20,000 by the end of 2016 [16].
Recently a new method - fastSTRUCTURE [17], was
developed to speed up inference of population structure
in large genome-scale data sets, but it leverages approx-
imation to make computational gains at the cost of user
directed model selection. Given the continuing popularity
of original STRUCTURE algorithm, it is highly likely that
researchers interested in model selection will continue to
use it even with genome-scaled data sets. Such analyses
would significantly benefit from taking advantage of par-
allel computing in multi-core computing environments
using a streamlined pipeline - beginning with the repli-
cated STRUCTURE runs and ending in collation of results
using the pre-existing script STRUCTURE HARVESTER
[18] that is designed to visualize STRUCTURE output and
to implement the Evanno method [14] to determine the
optimal number of clusters (K).
Large datasets also make it more difficult to perform

exploratory analysis of datasets that inform the full and
complete analysis. As the documentation for STRUC-
TURE correctly points out, “...some care is needed in
running the program in order to ensure sensible answers.
For example, it is not possible to determine suitable run-
lengths theoretically, and this requires some experimen-
tation on the part of the user.”(STRUCTURE software
manual 2.3.4). In the case of large data sets, this process
is often challenging due to the time required to per-
form a single run of the STRUCTURE algorithm. Tools to
enhance the speed of these initial exploratory runs as well
as the full STRUCTURE analysis would be very useful.
While STRUCTURE can be easily implemented using

the back-end command-line interface, it lacks the front-
end functionality of setting multiple iterative runs to test
K clusters and then collating the data from each run.
STRUCTURE is also not designed to make use of parallel
computing, now commonly available on personal com-
puters and high performance computing (HPC) clusters.
Although runs of STRUCTURE have been parallelized
through the R programming language (R core team 2015)
package - PARALLELSTRUCTURE [19], it requires that
individual iterative runs for each K cluster being tested be
manually specified on the joblist. Additionally, some profi-
ciency in the R programming language is required tomake
use of this package.
To address these issues, we present an updated version

of the popular stand-alone, interactive, Python program
StrAuto to automate and parallelize STRUCTURE anal-
ysis on Macintosh OS and the various flavors of Unix
running on workstations and HPC clusters. The use of
the script requires no knowledge of Python programming,

and only requires basic interaction with the UNIX com-
mand line. This program also includes a secondary script
sampleStructureFile that randomly samples loci
from a structure file so that researchers can use sub-
sets of their data (e.g. 10% of loci) for initial exploratory
experimentation before they commit longer periods of
time to the full analysis. We demonstrate the usage and
benchmark the results from analysis of two example
data sets on a standalone computer and a HPC clus-
ter. StrAuto version 1.0 is available for download from
http://strauto.popgen.org.

Implementation
The StrAuto workflow is as follows:

1. Information about the user project and intended anal-
ysis, including the fraction (or number) of available
processing cores to be committed for parallelization,
is collected from a template text file.

2. Using this information StrAuto outputs a Unix shell
script (runstructure), two parameter files required by
STRUCTURE, and if parallelization is chosen, a file
with all individual STRUCTURE commands (struc-
tureCommands).

3. Optional parallelization is implemented through
GNU Parallel [20] (http://www.gnu.org/software/
parallel) which should be installed locally.

4. Upon execution, the shell script ‘runstructure’ runs
STRUCTURE for K clusters over n iterations dis-
tributed over x number of processors.

5. Results are compiled into a zip file and fed through
STRUCTURE HARVESTER [18], if available locally.

6. Final output is ready for visualization and inference of
population structure.

Also included with StrAuto is the script sample
StructureFile, which takes a structure-formatted
datafile and randomly samples a given number of loci in
to a new file for use in initial exploratory experimentation.
More information on the use of this script is available in
the StrAuto user manual.

Speed benchmarking trials
In order to benchmark StrAuto’s ability to speed up
STRUCTURE analysis on parallel computing platforms,
it was tested on two different data sets. The first data
set (SSR) included genotypes at 11 nuclear microsatel-
lite loci from 614 eastern white pine trees (Pinus strobus)
[21], and the second (SNP) data set included genotypes
from 799 nextRAD based SNP loci from 57 individu-
als of the Neotropical malaria vector Anopheles darlingi
[22]. StrAuto was used to set up the STRUCTURE anal-
ysis with K varying from 1 to 8 (SSR) and 1 to 5 (SNP)
and with MCMC chains of 1.1 million generations with
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the first 100,000 generations discarded as burnin. This led
to a total of 80 (SSR) and 50 (SNP) independent runs of
the program STRUCTURE (v. 2.3.4). To benchmark the
computational gain achieved using StrAuto, we replicated
all analyses on two separate systems. A standalone server
with 64 cores and 196 Gb of physical memory running
Ubuntu Linux version 14.04 was set up to incrementally
use 1, 5, 10, 20, 30 and 50 cores. A research computing
cluster (HPC) with multiple nodes, each with 16 cores and
128 Gb of memory running Red Hat Enterprise Linux ver-
sion 6.7 [23] was set up to incrementally use from 1 to 6
nodes (1, 16, 32, 48, 64, 80 and 96 cores respectively). The
SSR data (80 processes) was run on up to 30 cores on the
standalone computer and 96 cores (6 nodes) on the HPC
cluster. The SNP data (50 processes) was run on up to
50 cores on the standalone computer and 64 cores on the
HPC cluster.

Results and discussion
In the benchmark trials, there was a drastic decrease in
the total analysis time with increasing number of cores
applied (Fig. 1), regardless of whether the analysis is of a
large dataset with a few loci genotyped in many individ-
uals (SSR) or many loci genotyped in a few individuals
(SNP). It is important to note that StrAuto is not paral-
lelizing the STRUCTURE algorithm directly, but is dis-
tributing the replicate runs of the STRUCTURE algorithm

to different processor units. Therefore, any computational
gains are determined primarily by the number of cores
available and the total length of time required for a sin-
gle STRUCTURE run. One might even argue that StrAuto
will potentially lead to more ‘accurate results’ in shorter
amount of time merely by empowering users to (1) run
sufficient numbers of replicate runs and (2) perform an
appropriate number of burnin and MCMC sweeps, both
necessary for proper inference of the optimal K solution,
than if they were limited to running only one instance at a
time. StrAuto allows users to efficiently leverage the com-
putational power of their hardware for this analysis. For
instance, analysis of the SNP dataset using a single core,
which included 50 independent runs of the STRUCTURE
algorithm, took 149.2 h to complete on the standalone
computer and 86.4 h on the HPC cluster (Fig. 1). Using 50
separate cores, one per independent run of STRUCTURE,
the total time to complete the analysis was 5.68 h on the
standalone computer (∼26 times faster) and 2.22 h on the
HPC cluster (∼39 times faster). Analysis of the SSR data
set on the HPC cluster took 29.38 h to complete using one
core and 32 min using 80 cores (∼56 times faster; Fig. 1b).
The scaling seen using StrAuto will be dependent upon
the architecture of the computing environment. Interde-
pendence of available cores and overhead costs involved
in parallel processing will lead to less performance gain
than when cores are running independently. Other factors

(a) (b)

Fig. 1 Speed benchmarking for the analysis of two trial datasets incorporating various numbers of cores on two different computing systems. Single
Nucleotide Polymorphisms (SNP) data is from [22] and Simple Sequence Repeat (SSR) data is from [21]. The asymptotic approach to a minimum
time represents the time it takes for a single core to compute one complete run of the program STRUCTURE for the given dataset. a Standalone
Computer. b HPC Cluster
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such as disk I/O requirements of the program and hyper-
threading may also affect the scaling. Therefore one
should not expect linear scaling of the time needed for
the analysis. However, because the runs of STRUCTURE
are independent from one another, one will always see a
speedup of total computation time as one increases the
number of cores available for computation – until the
number of cores exceeds the total number of indepen-
dent STRUCTURE runs. This is clearly evident from our
benchmarking tests which show no further speedup once
the number of cores exceed total number of runs e.g. SNP
analysis using 50 vs 64 cores and SSR analysis using 80 vs
96 cores (Fig. 1b). On the other hand, it took 1.41 h of
additional computation time to complete analysis of the
SNP data set (total 50 runs) using 48 vs 50 cores. This
is because when using 48 cores, the analysis must wait
for two cores to become available before proceeding with
49th and 50th independent run (Fig. 1b). There is no wait
when using 50 cores because the number of runs is equal
to number of cores engaged.
A larger dataset from [22], with 11,533 loci genotyped

among 57 individuals, that analyzed 30 replicates for each
K ranging from 1 to 6 with MCMC chains as defined
above, took just over 9 days to complete on 60 cores using
the StrAuto script. Initial exploratory experimentation to
determine the MCMC parameters with this dataset was
conducted using 500 randomly sampled loci, and took ∼4
h with 30 cores.
In summary, the time to complete a fully replicated

STRUCTURE analysis is a function of the number of cores
available and the time to complete a single run of the
algorithm. Users with access to smaller numbers of cores
may consider using other multi-core or cloud-based com-
puting platforms when analyzing large datasets. As our
results show, HPC clusters offer greater scalability for this
analysis with up to 56 times speedup with our example
data than standalone computers which showed upto 26
times speedup.

Conclusions
StrAuto is the first tool to implement a pipeline approach
by (1) combining STRUCTURE analysis with downstream
collation of results using STRUCTURE HARVESTER,
and (2) distributing runs over multiple processors using
GNU Parallel. These functionalities make StrAuto ideal
for deployment on high performance computing clus-
ters and multi-core personal workstations, to reduce the
computational time.
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