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software for processing metabolomics data
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Abstract

Background: Non-targeted metabolomics based on mass spectrometry enables high-throughput profiling of the
metabolites in a biological sample. The large amount of data generated from mass spectrometry requires intensive
computational processing for annotation of mass spectra and identification of metabolites. Computational analysis
tools that are fully integrated with multiple functions and are easily operated by users who lack extensive
knowledge in programing are needed in this research field.

Results: We herein developed an R package, metaX, that is capable of end-to-end metabolomics data analysis
through a set of interchangeable modules. Specifically, metaX provides several functions, such as peak picking and
annotation, data quality assessment, missing value imputation, data normalization, univariate and multivariate
statistics, power analysis and sample size estimation, receiver operating characteristic analysis, biomarker selection,
pathway annotation, correlation network analysis, and metabolite identification. In addition, metaX offers a web-
based interface (http://metax.genomics.cn) for data quality assessment and normalization method evaluation, and it
generates an HTML-based report with a visualized interface. The metaX utilities were demonstrated with a
published metabolomics dataset on a large scale. The software is available for operation as either a web-based
graphical user interface (GUI) or in the form of command line functions. The package and the example reports are
available at http://metax.genomics.cn/.

Conclusions: The pipeline of metaX is platform-independent and is easy to use for analysis of metabolomics data
generated from mass spectrometry.

Keywords: Metabolomics, Pipeline, Workflow, Quality control, Normalization

Background
Biochemicals (metabolites) with low molecular masses
are the ultimate products of biological metabolism,
while a metabolome represents the total composite in
a given biological system and reflects the interactions
among an organism’s genome, gene expression status
and the relevant micro-environment [1]. The most
prevalent technology used in analysis of metabolomics
is non-targeted mass spectrometry (MS) coupled with
either liquid chromatography (LC-MS) or gas chroma-
tography (GC-MS) [2, 3]. Generally, these techniques
generate a set data of mass spectra with chromatog-
raphy that includes retention time, peak intensity and
chemical masses. Data analysis involves stepwise

procedures including peak picking, quality control,
data cleaning, preprocessing, univariate and multivari-
ate statistical analysis and data visualization. A num-
ber of software packages are available for MS-based
metabolomics data analysis as listed in Table 1, in-
cluding propriety commercial, open-source, and on-
line workflows. The MS manufacturers generally
provide propriety software, like SIEVE (Thermo Sci-
entific), MassHunter (Agilent Technologies) and Pro-
genesis QI (Waters), which are often limited in scope
and function. Open-source software, such as XCMS
[4], CAMERA [5], MAIT [6], MetaboAnalyst [7] and
Workflow4Metabolomics [8], usually cover limited
processing steps. There is no such comprehensive
pipeline that is used across the metabolomics com-
munity [9, 10]. Referring to the capabilities of the
tools mainly used (as shown in Table 1), an automatic
and comprehensive open source pipeline is urgent in
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bioinformatics analysis of metabolomics. Basically, the
pipeline aims for users to easily perform end-to-end meta-
bolomics data analysis with a flexible combination of dif-
ferent methods to efficiently integrate new modules and
to build customized pipelines in multiple ways.
We herein developed a comprehensive workflow for

analysis of metabolomics data, termed metaX. At the
present time, R [11] is a popular statistical program-
ming environment and provides a convenient environ-
ment for statistical analysis of metabolomic and other
-omics data [12, 13]. We thus designed metaX as an
R package that automates analysis of untargeted
metabolomics data acquired from LC/MS or GC/MS
and offers a user-friendly web-based interface for data
quality assessment and normalization evaluation. This
workflow, which is open source and rich in functions,
encourages experienced programmers to improve the
relevant functions or to build their own pipeline
within the R framework. Overall, metaX aims to be a
tool array that utilizes an end-to-end statistical ana-
lysis of metabolomics data.

Implementation
A stepwise overview of data processing using metaX is
illustrated in Fig. 1.

Peak picking and inputs
In general, metaX can take mzXML files as input or a
peak table file as input. If taking mzXML files as input,
metaX will use the R package XCMS [4] to detect peaks,
then use the CAMERA [5] package to perform peak an-
notation. If a peaks table file is an input, metaX trans-
forms the table data from a peak detection software,
such as Progenesis QI (exported comma separated value
(csv) format file), into an R object compatible with the
subsequent workflow.

Pre-processing of raw peak data metabolite
The raw peak intensity data was pre-processed in metaX.
Firstly, if a metabolite feature is detected in < 50% of
quality control (QC) samples or detected in < 20% of ex-
perimental samples, it is removed from data analysis
[14]. Secondly, a missing value after the first filtering is
retained and imputed. In metaX, four methods are im-
plemented to perform missing value imputation: k-
nearest neighbor (KNN), Bayesian principal component
analysis replacement (BPCA), svdImpute and random
forest imputation (missForest) [15].

Data scaling and transformation
Five different scaling approaches are offered in metaX:
Pareto scaling, vast scaling, range scaling, autoscaling

Fig. 1 Overview of metaX. This figure summarizes the main modules, functions and features of metaX. The input data and the functions are included
in the figure
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and level scaling [16]. The formulas of these scaling ap-
proaches are described in detail elsewhere [16]. In
addition, three transformation approaches are offered in
metaX: log, generalized logarithm (glog) and cube root
transformation.

Removal of outliers
metaX provides the ability to automatically remove the
outlier samples in the pre-processed data based on ex-
pansion of the Hotelling’s T2 distribution ellipse [17]. A
sample within the first and second component principal
component analysis (PCA) score plot beyond the ex-
panded ellipse is removed, and then the PCA model is
recalculated. In default mode, three rounds of outlier re-
moval are performed.

Normalization
A metabolomics dataset usually contains unwanted varia-
tions introduced by signal drift/attenuation and multiplica-
tive noise across the dynamic range. These effects can
detrimentally impact the significant signal discovery and
MS features that are required for rigorous quality assurance
[14, 18]. In metaX, two types of normalization methods are
provided: 1) Sample-based normalization is used to correct
different concentrations of samples, such as normalization
to total sum, probabilistic quotient normalization (PQN),
variance stabilizing normalization (VSN) and quantile-
based methods. 2) Peak-based normalization is imple-
mented to correct data within batch experiment analytical
variation and batch-to-batch variation in large-scale studies
[19]. In this normalization, if a study contains QC samples,
the QC-robust spline batch correction (QC-RSC) can be
used to alleviate the effects of peak area attenuation [19].
During normalization, the degree of smoothening is con-
trolled by a parameter that sets the proportion of points for
smoothening at each point, while in metaX, this parameter
is automatically assigned by using leave-one-out cross valid-
ation. On the basis of QC samples, a metabolite feature
with a coefficient of variation (CV) over the predetermined
value is excluded after normalization. The CV threshold
could be set by users; generally, CV values ≤ 30% are rec-
ommended. Support vector regression (SVR) [20] and
ComBat [21] normalization methods are also implemented
in metaX. A user-friendly web-based interface (http://
metax.genomics.cn) was offered for rapid evaluation of the
data normalization methods for a specified dataset.

Assessment of data quality
Pre- and post-normalization, the data quality is visually
assessed in several aspects, 1) the peak number distribu-
tion, 2) the number of missing value distribution, 3) the
boxplot of peak intensity, 4) the total peak intensity dis-
tribution, 5) the correlation heatmap of QC samples if
available, 6) the metabolite m/z (or mass) distribution, 7)

the plot of m/z versus retention time, and 8) the PCA
score or loading plot of all samples. There are two ways
to perform data quality assessment in metaX, the com-
mand line mode and the user-friendly web-based inter-
face at http://metax.genomics.cn/.

Univariate and multivariate statistical analysis
metaX offers both univariate and multivariate statistical
analysis. For univariate statistical analysis, the parametric
statistical test (Students t-test), non-parametric statistical
test (Mann-Whitney U test), and classical univariate re-
ceiver operating characteristic (ROC) curve analysis are im-
plemented. For multivariate statistical analysis, metaX
offers functionalities for cluster analysis, multivariate mod-
elling, including PCA, partial least squares-discriminant
analysis (PLS-DA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA), with numerical and
graphical results and diagnostics (optimal number of com-
ponents estimated by cross-validation, R2, Q2, variable im-
portance in projection (VIP), statistical significance of the
model by permutation testing) [22]. In terms of the univari-
ate test analysis, metaX also offers the false discovery rate
(FDR)-corrected p-value by using the Benjamini-Hochberg
FDR algorithm [23]. The PLS-DA was implemented based
on the functions from the pls package [24], and the OPLS-
DA was performed using the functions from the ropls pack-
age [25].

Power and sample size analysis
metaX offers an easy-to-use function to perform the
power and sample size analysis. This function is based
on the Bioconductor package SSPA [26] and outputs a
figure to show the distribution curve of sample size ver-
sus the estimated power.

Metabolite correlation network analysis
metaX offers two types of network analysis. One is the cor-
relation network analysis without regard for experimental
groups information, and the other is differential correlation
network analysis, which aims to identify metabolite correl-
ation differences in a physiological state. The former was
implemented using the cor function from the stats package
to calculate the correlation coefficient, and the latter was
implemented using the function comp.2.cc.fdr from the
DiffCorr package [27] to calculate the significantly differen-
tial correlations. The igraph package [28] was used for net-
work analysis and visualization. In addition, the network
can be exported as a file in formats such as gml and pajek,
which can be imported into Cytoscape [29] and Gephi [30]
for network analysis and visualization. Both of the correl-
ation network analyses aim to describe the correlation pat-
terns among metabolites across samples, in which nodes
represent metabolites and edges represent the correlation
between different metabolites. The network analysis offers
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Fig. 2 User interface of metaX for quality assessment and normalization evaluation
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a complementary method to univariate and multivariate
statistical analysis methods.

Metabolite identification
Currently, metaX provides a function for metabolite
identification based on the Human Metabolome Data-
base (HMDB) [31], KEGG [32, 33], MassBank [34], Pub-
Chem [35], LIPID MAPS [36], MetaCyc [37] and
PlantCyc (www.plantcyc.org). Moreover, metaX can eas-
ily be extended to support the other databases. The me-
tabolites having molecular weights within a specified
tolerance to the query m/z or molecular weight value
are retrieved from the databases as putative identifica-
tions. The information of adducts and isotopes is utilized

to assist in metabolite identification if it is present. The
default tolerance is 10 ppm.

Functional analysis
At present, metaX provides a function for metabolite
pathway analysis based on IMPaLA [38].

Biomarker analysis
metaX uses functions from the R package “caret” to per-
form the biomarker selection, model creation and perform-
ance evaluation [39]. Currently, two methods, random
forest [40] and support vector machine (SVM), are imple-
mented to automatically select the metabolites which show
the best performance. After the best set features are

a

b

e

c

d

f

Fig. 3 QC charts generated by metaX. a The intensity of feature distribution before normalization. b The intensity of feature distribution after
normalization. c The correlation plot of QC samples before normalization. d The correlation plot of QC samples after normalization. e The missing
value distribution in experimental and QC samples. f The CV distribution of all features before and after normalization for each group
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selected, a randomForest model can be created and the
ROC curve can be plotted.

HTML-based report generation
metaX outputs an HTML-based report by using the
Nozzle package [41], which contains quality assessment
plots and other analysis results.

Results and discussion
To illustrate the applications of metaX, a published non-
targeted LC-MS metabolomics dataset from a coronary
heart disease (CHD) study was used [42, 43]. The dataset
consisted of two batches of 138 plasma samples (59 CHD
patients, 43 healthy controls and 36 QC samples) acquired
in positive ion mode on an LTQ Orbitrap Velos instrument
(Thermo Fisher Scientific, MA, USA). LC-MS raw data files
were converted to mzXML format using ProteoWizard
(version 3.0.5941) [44] and then were processed by XCMS
[4] and CAMERA [5] for peak picking and peak annota-
tion, respectively. In total, 1438 features were retained for
downstream analysis. The mzXML files can be downloaded
from the Dryad Digital Repository [43]. It merits to note
that the study focus is mainly on the software application

and its capabilities, not on the biological interpretation of
the generated results.

Quality assessment of metabolomics data using metaX
In metabolomics studies, data quality checks are crucial
prerequisites to achieve reliable results. metaX offers a
quick and easy data quality check of metabolomics data.
This can be done using the R function in metaX or a user-
friendly web interface at the website http://metax.geno-
mics.cn/ as shown in Fig. 2. The mainly QC charts
generated by metaX for the CHD dataset are illustrated in
Figs. 3 and 4. The number of features detected per sample
over the analysis time (injection order) is illustrated in
Fig. 4c, revealing that the peaks acquired from any group,
disease, healthy and QC, are randomly distributed. The in-
tensities of all features per samples before and after
normalization over the analysis time (injection order) are il-
lustrated in Fig. 3a and b, respectively. The missing value
distribution is shown in Fig. 3e, which gives an overview of
the percent of missing values of all features in both the QC
and experiment samples. According to Chawade’s view, the
total missing value plot and the total intensity plot derived
from raw data and treated with/without normalization

Fig. 4 QC charts generated by metaX. a The sum intensity of all features per sample before normalization over the analysis time (injection order).
b The sum intensity of all features per sample after normalization over the analysis time (injection order). c The number of features per sample
over the analysis time (injection order). d The score plot of PCA for the raw feature intensity data. e The score plot of PCA for the
normalized data
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could be used to identify sample outliers [45]. Our analysis
supported this. The correlation plots of QC samples before
and after normalization by SVR are illustrated in Fig. 3c
and d and indicate that the lowest correlation efficiency is
enhanced from approximately 0.7 to 0.9. The CV distribu-
tion of all features before and after normalization for each
group is displayed in Fig. 3f, implying that after
normalization, the signal quality is obviously improved. The
sum intensity of all features per sample before and after
normalization over the analysis time (injection order) is il-
lustrated in Fig. 4a and b, suggesting that normalization
could narrow the signal variation. The score plots of PCA
for the raw feature intensity data and the normalized data
are shown in Fig. 4d and e, respectively, which give an
overview of the dataset and showing trends, groupings and
outliers before data normalization and after data
normalization. The score plot of PCA (Fig. 4d) for the non-
normalized data provided a simple and easily interpretable
visual check of the presence of batch effects. In Fig. 4d, the
two data batches appear as two separated groups upon
PCA analysis without normalization, whereas in Fig. 4e,
after normalization the batch effect was reduced and all of
the QC samples were clustered tightly, which provides an
initial evaluation of the data quality. Overall, these QC
charts demonstrate the necessity of normalization for meta-
bolomics data, while metaX enables overview of the data
quality with different charts.

Evaluation of normalization methods using metaX
A systematic bias in high-throughput metabolomics data
is often introduced by various steps of sample processing
and data generation. Data normalization can reduce sys-
tematic biases. A question related to this issue is how to
select a proper normalization method. metaX provides a
user-friendly web-based Shiny application (http://metax.
genomics.cn) for this purpose. To select the optimal
normalization approach for the CHD dataset, seven
methods are evaluated using metaX. Figure 5 shows the
score plots of PCA using different normalization
methods. They indicate that after normalization using
QC-RSC, ComBat or SVR, all of the QC samples are
clustered more tightly, and the batch effect is effectively
reduced compared with other methods. Table 2 presents
the quantitative comparison metrics acquired by the dif-
ferent methods. From the results it is clear that all
normalization methods performed better than non-
normalization used in most of the metrics. Specifically,
SVR detects the largest number of features (1293) with
CV ≤ 30% in QC samples, followed by QC-RSC (1191).
For the average CV of features in QC samples, SVR
achieved the best performance, followed by QC-RSC.
This is similar to the findings in a previous study [20].
However, QC-RSC could detect the largest number of
differentially expressed features (178), followed by SVR
(170). Taken together, for this data set, SVR could be an

a b c d

e f g h

Fig. 5 Comparison of different normalization methods from PCA. a none, b QC-RSC, c ComBat, d SRV, e) PQN, f sum, g VSN and h quantiles. The
different points in the figures refer to different samples, and the samples were color-coded according to their group information and shape-
coded according to their batch information
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optimal normalization method, thus it was chosen as the
default normalization method for the downstream
analysis.

Univariate and multivariate statistical analysis
Data for the QC samples are removed from the dataset
prior to univariate and multivariate analysis in metaX.
For univariate analysis, Mann-Whitney U test and Stu-
dents t-test are performed to compare disease and health
groups, followed by false discovery correction using the
Benjamini-Hochberg method using metaX. The results,
along with the fold change of the disease group versus
health group, are presented in Additional file 1: Table
S1. In total, 171 features (13.22% of total features) are
detected under the criteria of the corrected p-value
(Mann-Whitney U test) ≤ 0.05, fold change ≥ 1.5 or ≤
0.667 and VIP > =1, and 170 features (13.15% of total
features) are detected under the criterion of the

corrected p-value (Students t-test) ≤ 0.05, fold change ≥
1.5 or ≤ 0.667 and VIP > = 1. The result is comparable
with that of the previous study [42].
For multivariate analysis, PCA, PLS-DA and OPLS-

DA are performed by metaX. In PCA analysis, the nor-
malized peak intensity matrix is glog transformed,
followed by Pareto scaling and centering, and then two
components are selected. The PCA score and loading
plots are shown in Fig. 6a and b, respectively. The score
plot indicates that there is an apparent difference be-
tween the disease and health groups. For PLS-DA and
OPLS-DA, the normalized peak intensity matrix is also
glog transformed, followed by Pareto scaling and center-
ing. Two components are selected for PLS-DA and two
components (one orthogonal and one predictive) for
OPLS-DA. The score and loading plots for PLS-DA and
OPLS-DA are shown in Fig. 7a and c, respectively. The
R2Y and Q2Y values of the PLS-DA model, which are

ba

Fig. 6 The score and loading plots of PCA. a Score plot of PCA and (b) Loading plot of PCA. The different points in the figures refer to different
samples, and the samples are color-coded according to their group information. The QC samples were removed before performing the PCA analysis

Table 2 The comparison of different normalization methods

Methods NO. of peaks NO. of peaks (CV≤ 30%)a DEFb Mean (CV) CHD d Mean (CV) Health d Mean (CV) QC e

ComBat 1438 930 127 0.4261 0.3816 0.1636

none 1438 527 65 0.4865 0.4739 0.2114

QC_RSC 1438 1191 178 0.5108 0.4664 0.1098

SVR 1438 1293 170 0.4853 0.4583 0.1081

PQN 1438 793 125 0.4945 0.4681 0.1777

Quantiles 1438 740 118 0.4911 0.4646 0.1895

sum 1438 761 119 0.5044 0.4733 0.1979

VSN 1438 772 120 0.5014 0.4761 0.1912

Note:
aAfter normalization, the number of peaks with CV ≤ 30% in QC samples
bDEF: differentially expressed features with q-value < = 0.05, fold change > = 1.5 or fold change < = 0.667 and VIP > = 1
cMean (CV) CHD: The average CV of peaks in CHD disease group
dMean (CV) Health: The average CV of peaks in health group
eMean (CV) QC: The average CV of peaks in QC group
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0.908 and 0.854, respectively, indicate that the model
has good goodness of fit and predictive ability. The R2Y
and Q2Y values of the OPLS-DA model, which are 0.905
and 0.847, respectively, indicate that the model also has
good goodness of fit and predictive ability. Overall, the
two multivariate data analysis methods, PLS-DA and
OPLS-DA, give similar results. To test the validity of the

models of PLS-DA and OPLS-DA, a permutation test (n
= 200) is performed. As shown in Fig. 7b and d, the test
indicated that the two models are valid, and the good pre-
dictive ability of the model is not because of over-fitting
with a p-value less than 0.05. Taken together, the results of
PCA and PLS-DA (or OPLS-DA) show a distinct separ-
ation between the disease and health groups.

Table 3 The biomarkers selected by metaX

MZ RT (min) Mass HMDB Name Delta (ppm) Chemical formula

308.0498 10.46 285.0629 HMDB14387 Cladribine −8.18 C10H12ClN5O3

424.3412 11.94 423.3349 HMDB06469 Linoleyl carnitine −2.31 C25H45NO4

155.0281 2.81 116.066 HMDB32411 2-Methyl-1-methylthio-2-butene −8.77 C6H12S

130.0499 3.43 129.0426 HMDB00267 Pyroglutamic acid 0.15 C5H7NO3

174.9913 2.30 NULL NULL NULL NULL NULL

309.0533 10.47 270.0892 HMDB33940 Vignafuran 3.44 C16H14O4

425.3446 11.94 424.3341 HMDB06327 Alpha-Tocotrienol 7.62 C29H44O2

324.0443 9.33 301.0563 HMDB01062 N-Acetyl-D-Glucosamine 6-Phosphate −3.86 C8H16NO9P

ba

dc

Fig. 7 The score and permutation test plots of PLS-DA and OPLS-DA. a Score plot of PLS-DA. R2Y: 0.908, Q2Y: 0.854. b Permutation test plot of
PLS-DA, p-value < = 0.05. c Score plot of OPLS-DA. R2Y: 0.905, Q2Y: 0.847. d Permutation test plot of OPLS-DA, p-value < = 0.05. The different points
in the score plots (A and C) refer to different samples, and the samples are color-coded according to their group information. The number of
permutations for the permutation test is 200
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Biomarker analysis, metabolite identification and pathway
analysis
To create the classification model between the disease and
health groups, the functions implemented in metaX are
used to conduct the biomarker selection, model creation
and performance evaluation. A recursive feature elimin-
ation algorithm with the random forest model is used to se-
lect the best feature set. During the treatment, 5-fold cross-
validation is used to optimize the model and reduce over-
fitting. As shown in Table 3, 8 features were selected. To
further evaluate the performance of the 8 selected features,
the 102 samples were randomly split into two sample sets.
One sample set (Disease: 29, Health 29) was for model
building and the other (Disease: 14, Health 30) was for test-
ing. Based on the two data sets, the 8 features were used to
build a random forest model, and a receiver operating char-
acteristic (ROC) curve of this model was plotted and is
shown in Fig. 8. The result indicated that the model based
on the 8 features had a good result with an area under the
ROC (AUROC) curve of 0.999. The 8 features were then
identified based on the HMDB (version 3.6) database

Fig. 8 The ROC curve result of the six selected metabolites

Fig. 9 The differential correction network. The top six largest numbers of nodes communities were color-coded. Detailed information about the
samples and their communities are presented in Table S3
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through metaX. Seven out of the 8 features were identified
with a mass accuracy of < 10 ppm (parts per million). The
putative identified metabolites were then submitted to the
IMPaLA website (version 9) through metaX to perform the
pathway analysis, and the results are presented in
Additional file 2: Table S2.

Correlation network analysis
Network-based correlation analysis is a complementary
method to the traditional univariate and multivariate statis-
tics that is taken in metabolomics analysis to identify me-
tabolite changes in response to variable status of
physiology. All of the features with the normalized intensity
described above were used to perform the differential cor-
rection network analysis. This analysis can be used to detect
the interconnection of metabolite pairs whose relationships
are significantly altered due to the disease process. In this
study, only the metabolite pairs that had significant differ-
ential correlations (q-value < = 0.01) between the disease
and health populations were used to build the network. As
shown in Fig. 9, of the network with 266 nodes and 444
edges, a giant component (198/266, 74.44%) was found and
the community detection analysis using the fast greedy
modularity optimization algorithm against this component
resulted in seven communities, in which each one has equal
to or greater than 10 nodes detected. In addition, metaX
can estimate three centrality metrics (degree, closeness
and betweenness) for each node, and they reflect the
importance of the node in the entire network
(Additional file 3: Table S3). Differentially correlation
network analysis is expected to provide useful insights
into the underlying biological processes of the clinical
development of CHD.

Conclusions
metaX presents a complete data processing software that is
easy to operate and capable of dealing with large-scale
metabolomics datasets. A metaX user can customize the
pipeline according to the research requirements. Compared
to software for metabolomics datasets that requires high-
manual interaction, metaX requires much less manual
interaction and can be used in a command line or web-
based user-friendly interface. Based upon the fast process
and the optimized workflow, therefore, metaX would
greatly improve the interpretation of metabolomics data.

Additional files

Additional file 1: Table S1. The fold change and p-value for all of the
features. (XLSX 146 kb)

Additional file 2: Table S2. The pathway analysis results for the 8
selected biomarkers. (XLSX 14 kb)

Additional file 3: Table S3. The centrality metrics for each node in the
network. (XLSX 22 kb)
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