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Abstract

Background: Design of personalized targeted therapies involve modeling of patient sensitivity to various drugs and
drug combinations. Majority of studies evaluate the sensitivity of tumor cells to targeted drugs without modeling the
effect of the drugs on normal cells. In this article, we consider the individual modeling of drug responses to tumor and
normal cells and utilize them to design targeted combination therapies that maximize sensitivity over tumor cells and
minimize toxicity over normal cells.

Results: The problem is formulated as maximizing sensitivity over tumor cell models while maintaining sensitivity
below a threshold over normal cell models. We utilize the constrained structure of tumor proliferation models to
design an accelerated lexicographic search algorithm for generating the optimal solution. For comparison purposes,
we also designed two suboptimal search algorithms based on evolutionary algorithms and hill-climbing based
techniques. Results over synthetic models and models generated from Genomics of Drug Sensitivity in Cancer
database shows the ability of the proposed algorithms to arrive at optimal or close to optimal solutions in significantly
lower number of steps as compared to exhaustive search. We also present the theoretical analysis of the expected
number of comparisons required for the proposed Lexicographic search that compare favorably with the observed
number of computations.

Conclusions: The proposed algorithms provide a framework for design of combination therapy that tackles tumor
heterogeneity while satisfying toxicity constraints.

Keywords: Combination drug design, Lexicographic search, Toxicity constraints

Background
Design of drug therapies for cancer have primarily been
considered from the perspective of sensitivity prediction
using genetic characterizations as the predictor variables
[1–3]. The genetic characterization based methodolo-
gies have severe limitations when the cancer type shows
numerous aberrations among the samples and conse-
quently predicting sensitivity based on similar steady state
genetic characterizations provide limited accuracy. We
have recently considered the modeling of tumor sensi-
tivity using functional drug response data [4, 5], along
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with a functional and genetic characterization based inte-
grated modeling [6]. Models were designed based on the
in vitro tumor response to a set of drugs with known tar-
gets. However, the combination therapy design was based
on the model reflecting the average behavior of the tumor
tissue [7].
In this article, we incorporate heterogeneity by consid-

ering the effect of a drug on various parts of the tumors
and incorporate toxicity by considering the effect of the
drug on normal cell types. Consider a solid tumor tis-
sue where the biopsy sample can be divided into sepa-
rate samples to explore the heterogeneity. We can pass
each biopsy sample through a drug screen to create a
probabilistic target inhibition map (PTIM) [5] model. Let
MT1,MT2, · · · ,MTk denote the k models corresponding
to the k spatial tumor biopsies.
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For toxicity the affect of the drug is not limited to the
same organ that the tumor resides in. To solve this we
can pass normal cell cultures from different organs of the
body through drug screens to create separate models of
different organs to assess toxicity of the drugs. Note that,
normal cells from kidney, lungs etc. of a specific cancer
patient may not be readily available and thus, the response
to drugs can be approximated by using drug screens on
normal human based cell lines of kidney, lungs and other
organs. The assumption is that variations in normal cell
response to different drugs over different patients are
smaller compared to tumor cell response over different
patients. The normal cell response to different drugs can
vary significantly for cells belonging to different organs
in the body. Let MN1,MN2, · · · ,MNp denote p models
corresponding to p different normal cell types.
The goal of the combination therapy design will be to

select a set of drugs that will maximize the sensitivity
over heterogeneous tumor models MT1,MT2, · · · ,MTk
and minimize sensitivity over normal cell type models
MN1,MN2, · · · ,MNp. Note that currently available com-
bination therapy design techniques are model free and
require multiple experimental iterations to arrive at the
optimal strategy [8–15]. This article considers model
based combination therapy design over multiple models
of tumor and normal cell lines.
We utilize the constrained structure of tumor prolifera-

tion models to design an accelerated lexicographic search
algorithm for generating the optimal solution. For com-
parison purposes, we also designed two suboptimal search
algorithms based on evolutionary algorithms and hill-
climbing based techniques. We test the performance of
our algorithms on synthetic models and models generated
from Genomics of Drug Sensitivity in Cancer (GDSC)
database [16]. Utilizing the model structure in the search
process allows us to arrive at optimal or close to opti-
mal solutions in significantly lower number of steps as
compared to exhaustive search. The article also presents
the theoretical analysis of the expected number of com-
parisons required for the proposed optimal Lexicographic
search that compare favorably with the observed number
of computations.
The paper is organized as follows: The model repre-

sentation is discussed in “Methods” section. “Algorithms”
section discusses the proposed lexicographic search algo-
rithm along with suboptimal Genetic algorithm and Hill
climbing approaches. “Results and discussion” section
presents the results followed by Conclusions in “Conclu-
sions” section.

Methods
Model type
In this section, we provide a brief review of the model
used to represent each spatial tumor biopsy or normal cell

line. A Probabilistic Target Inhibition Map (PTIM) model
provides an estimate of sensitivity for all possible target
inhibitions. Consider the example PTIMmodel with 3 tar-
gets k1, k2, k3 shown in Fig. 1 where the values for each
cell represent the sensitivity corresponding to that spe-
cific inhibition. For instance, inhibition of k3 alone will
produce a sensitivity of 0.75. Since the commonly used
targeted drugs inhibit oncogenes, we consider the targets
to be all oncogenes and inhibition of more oncogenes can
only cause the sensitivity to remain same or increase. For
instance, since the inhibition of k3 alone produces a sen-
sitivity of 0.75, all supersets of that inhibition ([ k3, k1],
[ k3, k2], [ k3, k1, k2]) will have sensitivity ≥ 0.75. Simi-
larly, any subset of known inhibition will have sensitivity
less than or equal to the observed value. Based on these
two biological constraints and limited drug perturbation
experiments, we can arrive at an inferred PTIM model
that can provide an estimate of sensitivity for all possible
target inhibitions. The details of the model are available at
[4–6] along with biological validation at [17]. Note that a
PTIM can also be approximately represented as a tumor
proliferation circuit as shown in Fig. 2 where the tumor
proliferation can be restricted by inhibiting at least one
series block. For instance, inhibition of the [ k1, k2] block
will provide a sensitivity of 0.95 whereas inhibition of k3
will provide a sensitivity of 0.75. Inhibiting more than the
minimum will produce higher sensitivities that are given
by the original map shown in Fig. 1.

Structure of tumor and normal cell models
Based on the previously discussed model structure, each
of the k tumor models will be represented as a probabilis-
tic target inhibition map that can also be approximated
by a circuit representation of series of parallel blocks as
shown in Fig. 3.
In Fig. 3, the number of blocks for models MTi for i =

1, · · · , k and MNj for j = 1, · · · , p are denoted by nTi and
nNj respectively. Every model is composed of five blocks
connected in series. Each block, b, contains a set of targets

Fig. 1 PTIM example. An example PTIM model with 3 targets k1, k2
and k3
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Fig. 2 PTIM circuit. A circuit representation of a PTIM model in Fig. 1

Tbi (up to a maximum of 5 targets), that are connected in
parallel. Thus each model can have up to 25 targets.

Optimization objectives
For optimization, we consider both the worst case and
best expected scenario. LetO(MTi,φ) denote the sensitiv-
ity of Tumor model i for i = 1, · · · , k with inhibition φ.
LetO(MNi,φ) denote the sensitivity of normal model i for
i = 1, · · · , p with inhibition φ.

Worst case optimization (WCO): We desire high sen-
sitivity over the tumor cell lines and low sensitivity over
the normal cells which can be formulated in the worst
case scenario as maximizing the minimum sensitivity over

Fig. 3 PTIM block diagram. Representation of k tumor models and p
normal models as series of parallel target blocks

the tumorous cells while maintaining the maximum sen-
sitivity over the normal cells below a certain threshold
θ1.
i.e. maxφ(mini [O(MTi,φ)]) while maxi[O(MNi,φ)]≤ θ1

Best expected optimization (BEO): In this scenario,
our goal will be to maximize the average sensitivity over
the tumorous cells while maintaining the average sen-
sitivity over the normal cells below a threshold θ2 i.e.
maxφ(O(MTi,φ)) while O(MNi,φ) ≤ θ2.

Algorithms
Lexicographic search algorithm
In order to find the optimal target set for our problem, we
can exhaustively search through all possible target com-
binations for a given toxicity threshold. Normally, for T
targets this would require searching through 2T combi-
nations, which is not computationally feasible for large T.
However, we can utilize the monotonic relationships of
PTIM models to our advantage to reduce the number of
search steps. Given a set of targets S1 whose toxicity (i.e.
sensitivity over normal cell lines) is greater than a given
threshold θ1, then all possible supersets of S1 will also have
a toxicity≥ θ1 and thus, there is no need to search through
the supersets of S1. Note that this is only valid when all the
targets are oncogenes.
To take advantage of this property, we perform a

branching Lexicographical Search of the solution space.
We can view the solution space as a directed graph where
each node of the graph is our target set represented as
a binary string with T bits. Each edge of the graph cor-
responds to turning on one bit to the right of the least
significant bit, creating a superset of that node. If the tox-
icity at a node exceeds the threshold, then there is no
need to continue along the associated edges andwe should

Algorithm 1 Lexicographic search
Require: Set of Targets S0, Toxicity Threshold θ1
Ensure: Ideal Target Set Sb

Initializing population:
D = Starting set of Drugs or Targets
Sb = S0
for Each target t right of the LSB in S0 do

St = Turn on target t in S0
if tox(St) < θ1 then

St = LexicographicSearch(St , θ1)
if sens(St) > sens(Sb) then

Sb = St
end if

end if
end for
return Sb
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Fig. 4 Lexicographic search example. Lexicographical Search for 4 Targets. Utilizing the superset rule, sets surrounded by dotted lines are excluded
from the search process when toxicity of [1100] ≥ θ1

instead trace back to the previous node. A recursive algo-
rithm to perform this search is shown in Algorithm 1.
A demo using four targets is shown in Fig. 4. Note that
in Fig. 4, we are assuming that the sensitivity over nor-
mal cell lines exceed the given threshold for target set
[1100] and thus its supersets consisting of [1110], [1101]
and [1111] marked by dotted lines are excluded from the
search process.

Lexicographic search analysis
In this section, we consider the stochastic analysis of the
proposed Lexicographic Search to generate the expected
number of searches. Let CDF(l, θ) = f (l, θ) denote the
probability that a normal cell model will have sensitivity
≤ θ for a random inhibition of l targets. We then define
gP(l, θ) as the probability that we will not exceed sensi-
tivity θ while targeting l random inhibitions in a set of P
cells. For the worst case scenario, gwcoP (l, θ) is the proba-
bility that the maximum sensitivity over the normal cells
is below threshold θ . Considering, independence of the
normal cell sensitivities, we have:

gwcoP (l, θ) = Pr(maxi(O(MTi)) ≤ θ)

= Pr(O(MT1) ≤ θ ,O(MT2) ≤ θ , · · · ,
O(MTP) ≤ θ)

= Pr(O(MT1) ≤ θ) • Pr(O(MT2) ≤ θ) · · ·
• Pr(O(MTP) ≤ θ)

= f (l, θ)P (1)

For the best expected scenario, let us consider the prob-
ability density function of observing a sensitivity of θ after
l inhibitions PDF(l, θ) = ∂ f (l,θ)

∂θ
. Let X denote the random

variable with PDF(l, θ) and Z denote the sum of P such
random variables. The probability density function of Z
denoted by qP(l, θ) can be calculated by repeatedly con-
volving PDF(l, θ) with itself for P − 1 times and is given
by

qP(l, θ) = PDF(l, θ) ∗ PDF(l, θ) · · · ∗ PDF(l, θ)

Let Y denote the random variable denoting the average
sensitivity over P cell lines with l random inhibitions. The
probability density function of Y is given by

pdfY (θ) = hp(l, θ) = P ∗ qP(l,Pθ) (2)

We can then estimate the cumulative density function
of Y, gbeoP (l, θ) by integrating across θ :

gbeoP (l, θ) =
∫ θ

0
hP(l,u)du

Expected savings
Define Ai to denote the event that the sensitivity over
P normal models with i random inhibitions ≥ θ , i.e.
Pr(Ai) = 1− gP(i, θ). Let Li denote the event of stoping at
level i of the Lexicographic Search where i represents the
number of bits we are searching through. The probability
of event Li is given by:

P(Li) = P
(
Ai ∩ AC

i−1 ∩ AC
i−2 · · · ∩ AC

1

)

= P

⎛
⎝Ai|

i−1⋂
j=1

AC
j

⎞
⎠P

⎛
⎝i−1⋂

j=1
AC
j

⎞
⎠ (3)

We note that:

P

⎛
⎝Ai|

i−1⋂
j=1

AC
j

⎞
⎠ = 1 − P

⎛
⎝AC

i |
i−1⋂
j=1

AC
j

⎞
⎠ (4)

By applying Bayes’ theorem, we can simplify further:

P
(
AC
i |AC

i−1 ∩ AC
i−2 ∩ . . .AC

1

)
=

P
(
AC
i
)
P

(⋂i−1
j=1 AC

j |AC
i

)

P
(⋂i−1

j=1 AC
j

)

= P
(
AC
i
)

P
(⋂i−1

j=1 AC
j

) (5)

By combining Eqs. 3, 4 and 5, we have:

P(Li) = g(i − 1, θ) − g(i, θ) (6)



The Author(s) BMC Bioinformatics 2017, 18(Suppl 4):116 Page 21 of 59

To find the expected savings, we note that by stopping
at Li, we search through

∑i
j=0

(T
j
)
combinations. Thus, the

expected savings E(S) is given by :

E(S) =
T∑
i=1

P
(
Ai ∩ AC

i−1 ∩ . . .AC
1

) ⎡
⎣2T −

i∑
j=0

(
T
j

)⎤
⎦
(7)

=
T∑
i=1

[
g(i − 1, θ) − g(i, θ)

]
⎡
⎣2T −

i∑
j=0

(
T
j

)⎤
⎦
(8)

Genetic algorithm based search
Pareto optimality
We consider a multi-objective optimization scenario
where we maximize sensitivity over tumor cells and
minimize sensitivity over normal cells. For worst
case optimization scenario, if therapies φ1 and φ2
satisfy the following relation: min1≤i≤k[O(MTi,φ1)]≥
min1≤i≤k [O(MTi,φ2)] and max1≤i≤p[O(MNi,φ1)]≤
max1≤i≤p[O(MNi,φ2)] with either min1≤i≤k [O(MTi,
φ1)]> min1≤i≤k [O(MTi,φ2)] or max1≤i≤p [O(MNi,φ1)]
< max1≤i≤p [O(MNi,φ2)], then therapy φ1 is considered
to dominate φ2 from the multi-objective Pareto sense.
The therapies that are not dominated by any other
therapy will form the Pareto efficient front.

Algorithm
Genetic Algorithms (GA) are inspired by evolutionary
theory where strong species have a higher opportunity
to pass their genes to offspring via reproduction and
weaker chromosomes are eliminated by natural selection
[18, 19]. Each generation or population consists of diverse
individuals or chromosomes and in our Genetic Algo-
rithm based Combination Therapy design (GACT), each
therapy φ is regarded as a chromosome comprised of
different target inhibitions. These target inhibitions are
binary variables with values of 0 (non-inhibited) or 1
(completely inhibited). In order to select the best solu-
tions (therapies) for the next generation, the fitness of
each solution is computed. The therapies with the best
fitness (our Pareto front) will be selected as the parents
of the next generation. During each reproduction pro-
cess, crossover and mutation operators are applied for
the purpose of generating new solutions from existing
ones. Mutation is performed by randomly flipping inhi-
bition values of our targets. Crossover is performed by
randomly picking values between two different target sets.
For example, if we take the two target sets [a1, a2, a3] and
[b1, b2, b3] a crossover between them can be performed by
considering:

[ c1, c2, c3]=[ a1, b2, a3]

Based on our starting set of targets (M), we form the ini-
tial population P0 of N random target inhibition profiles.
After calculating the fitness functions for the existing pop-
ulation, we calculate different Pareto front layers accord-
ing to their dominance relationships. The top Pareto
optimal points are selected to pairwise conduct crossover
and mutations to form offsprings. Here we have set the
number of offspring to be at least twice the number of
points in our Pareto fronts with a minimum of Offmin =
1000 and a maximum of nOffmax = 15, 000 offsprings.
After merging these offsprings with their parent popula-
tion Pt−1, we extract top N therapies to generate popula-
tion Pt . We iterate our algorithm until we have achieved
totalG generations or the number of offspring is greater
than nOffmax. Note that evolutionary algorithms like GA
will not guarantee convergence of the Pareto front but the
performance of our therapies will improve if the Pareto
front moves towards our desired direction with subse-
quent GA iterations. The detailed procedure for multi-
objective GACT is shown as Algorithm 2. Figure 5 illus-
trates how the algorithm moves our pareto front towards
better solutions across successive iterations. After running
the GACT, we consider the final Pareto front and pick
the target set that provides the maximum sensitivity over
tumor cell lines when the toxicity is below threshold θ1.

Algorithm 2Multi-objective GACT
Require: Set of Drugs/Targets N, Q, totalG
Ensure: Population Pt

Initializing population:
D = Starting set of Drugs or Targets
for i = 1 to N do

φi = Random(D, Q)
Add φi to P0

end for
f0 = EvaluateFitness(P0)
for t = 1 to totalG do

ComputePareto front:frontt = ParetoFront(ft−1)
Perform Crossover andMutation on the Pareto Front
crossover(frontt , ratec)
mutation(frontt , ratem)
Recalculate Fitness
ft = EvaluateFitness(Pt−1 ∪ frontt)
if ft > nOffmax then

Break
end if

end for
return Pt

Random restart hill climbing
We consider an additional suboptimal algorithm based on
Hill Climbing to search the target space. Hill Climbing is
an iterative method for finding the local maximum for any
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Fig. 5 GACT example. Pareto fronts converge for subsequent genetic
algorithm iterations

arbitrary function. Given a starting point, the algorithm
considers all the nearest neighbors and then selects the
neighbor that provides the best solution for the given opti-
mization criteria. These steps are subsequently repeated
until there are no neighbors that provide a better solution
or a maximum number of iterations have been reached.
While simple and effective in finding local optimum, Hill
Climbing will rarely find the global optimum for non-
convex functions. In order to overcome this handicap,
we will randomly restart our search to a new random
position whenever the algorithm converges to a local
optimum.
In our case, the starting criteria will be a random set of

targets chosen using latin hypercube numbers and each
neighbor will be created by inhibiting or un-inhibiting a
single target. As shown in Algorithm 3, our optimization
criteria will change depending on the toxicity of our cur-
rent set. If the toxicity is greater than the given threshold
then we choose the neighbor with the least toxicity, oth-
erwise we pick the neighbor with the highest sensitivity
whose toxicity is below the threshold. When no improve-
ments can be found among the neighbors we randomly
choose a new set of targets. This is repeated until we have
completedmaxIter iterations.

Results and discussion
To evaluate the performance of our algorithms, we consid-
ered both synthetic models and models based on experi-
mental datasets.

Synthetic model generation
The synthetic models are simulated using a proliferation
network structure based on probabilistic target inhibition
maps [5, 7]. Each cellular pathway, i, representing either a

Algorithm 3 Random restart hill climbing
Require: Toxicity Threshold θ1,maxIter
Ensure: Ideal Target Set Sb

S = RandomTargetSet()
for n = 1 tomaxIter do

SN = FindNeighbors(S)
if tox(S) > θ1 then

S1 = minToxicity(SN )
else

S1 = maxSensitivity(SN , θ1)
end if
if S1 = S then

if sens(S1) > sens(Sb) then
Sb = S1

end if
S = RandomTargetSet()

else
S = S1

end if
end for
return Sb

tumor or normal cell model is modelled by connecting a
set of blocks in series. The number of blocks for models
MTi for i = 1, · · · , k andMNj for j = 1, · · · , p are denoted
by nTi and nNj respectively. Within each block, b, contains
a set of targets Tbi (up to a maximum of 5 targets), that
are connected in parallel. Since the targets are in parallel,
the effective inhibition for each block given a set of tar-
get inhibitions, φ, is the minimum inhibition of the given
targets within the block. Thus, the effective inhibition of
block b in model MTi with target inhibition φ is given by
λ(MTi, b,φ) = min(∀φ ∈ Tbi).
Each block is also given a score, Sbi, randomly using a

uniform distribution with a minimum of 0.5 and maxi-
mum of 1. Finally, the overall sensitivity of the pathway
can be computed using the following equation where we
assume independence between the series blocks:

Sensitivity(MTi,φ) = 1 −
NTi∏
b=1

(1 − Sbiλ(MTi, b,φ))

Similary for normal cells:

Sensitivity(MNi,φ) = 1 −
NNi∏
b=1

(1 − Sbiλ(MNi, b,φ))

A representation of k tumor and p normal models as
series of parallel target blocks is shown in Fig 3.
The synthetic model set consists of a total of 1000 syn-

thetic pathways, 500 normal and 500 cancerous. A total of
25 targets are examined and all targets are equiprobable
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Table 1 Cell lines used in GDSC dataset

Breast Lymphoma

BT474 A3KAW

COLO824 A4FUK

DU4475 BC1

EVSAT CTB1

HCC1187 DOHH2

HCC2157 HT

HCC2218 KARPAS422

MFM223 MC116

MRKnu1 RL

OCUBM TUR

Table 2 Worst case optimization tumor cell sensitivity using
GACT for sythetic models

ratec

0.6 0.7 0.8 0.9

ratem 0.02 0.5826 0.5891 0.5933 0.5643

0.05 0.5903 0.5842 0.5877 0.5753

0.1 0.5770 0.5829 0.5757 0.5728

0.2 0.5938 0.5923 0.5848 0.5812

0.5 0.5669 0.5673 0.5762 0.5796

Table 3 WCO GACT for synthetic models with varying nGen

nGen Sensitivity

100 0.5938

200 0.6009

300 0.6027

400 0.6094

500 0.6074

Table 4 Hill climbing BEO performance with varying number of
iterations

maxIter Sensitivity

10000 0.8029

15000 0.8136

20000 0.8214

25000 0.8248

30000 0.8275

Table 5 LS worst case optimization synthetic data

nNormal

1 2 3 4 5

nTumor 1 0.9934 0.9828 0.9633 0.9681 0.9096

2 0.9867 0.9603 0.9099 0.9255 0.7852

3 0.9794 0.9454 0.8836 0.8110 0.7331

4 0.9681 0.9255 0.8487 0.7728 0.6858

5 0.9607 0.9005 0.8113 0.7194 0.6157

Table 6 GACT worst case optimization synthetic data

nNormal

1 2 3 4 5

nTumor 1 0.9934 0.9828 0.9633 0.9384 0.9096

2 0.9862 0.9599 0.9085 0.8594 0.7843

3 0.9772 0.9439 0.8811 0.8007 0.7268

4 0.9647 0.9200 0.8430 0.7679 0.6717

5 0.9561 0.8938 0.8056 0.7007 0.6097

Table 7 Hill climbing worst case optimization synthetic data

nNormal

1 2 3 4 5

nTumor 1 0.9926 0.9817 0.9614 0.9369 0.9086

2 0.9805 0.9550 0.9031 0.8449 0.7635

3 0.9625 0.9270 0.8650 0.7929 0.7016

4 0.9402 0.8923 0.8089 0.7341 0.6241

5 0.9137 0.8514 0.7630 0.6573 0.5536

Table 8 LS worst case optimization GDSC data

nNormal

1 2 3 4 5

nTumor 1 0.9792 0.9536 0.9218 0.8505 0.8282

2 0.9601 0.9226 0.8718 0.7853 0.7556

3 0.9326 0.8767 0.8207 0.7017 0.6270

4 0.9163 0.8280 0.7405 0.6126 0.4880

5 0.9045 0.7978 0.6809 0.5535 0.4539
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Table 9 GACT worst case optimization GDSC data

nNormal

1 2 3 4 5

nTumor 1 0.9789 0.9536 0.8738 0.7532 0.6056

2 0.9598 0.9124 0.8121 0.6900 0.4951

3 0.9320 0.8688 0.8062 0.6401 0.4843

4 0.9152 0.8210 0.7130 0.5525 0.3458

5 0.9028 0.7905 0.6551 0.4735 0.3348

Table 10 Hill climbing worst case optimization GDSC data

nNormal

1 2 3 4 5

nTumor 1 0.9788 0.9390 0.8859 0.8489 0.8230

2 0.9588 0.8762 0.8163 0.7399 0.7074

3 0.9357 0.8283 0.7283 0.6215 0.5724

4 0.9148 0.7773 0.6533 0.5286 0.4683

5 0.8959 0.7422 0.5936 0.4584 0.3908

Table 11 LS best expected optimization synthetic data

nNormal

1 2 3 4 5

nTumor 1 0.9934 0.9828 0.9633 0.9384 0.9096

2 0.9916 0.9756 0.9468 0.9170 0.8744

3 0.9901 0.9734 0.9461 0.9110 0.8698

4 0.9883 0.9702 0.9355 0.9049 0.8662

5 0.9872 0.9668 0.9305 0.8984 0.8596

Table 12 GACT best expected optimization synthetic data

nNormal

1 2 3 4 5

nTumor 1 0.9934 0.9828 0.9632 0.9384 0.9095

2 0.9912 0.9755 0.9451 0.9156 0.8741

3 0.9889 0.9716 0.9443 0.9102 0.8664

4 0.9861 0.9679 0.9325 0.9024 0.8640

5 0.9830 0.9629 0.9270 0.8945 0.8549

Table 13 Hill climbing best expected optimization synthetic data

nNormal

1 2 3 4 5

nTumor 1 0.9923 0.9817 0.9621 0.9377 0.9069

2 0.9853 0.9708 0.9409 0.9085 0.8524

3 0.9779 0.9597 0.9305 0.8900 0.8496

4 0.9684 0.9485 0.9138 0.8783 0.8268

5 0.9603 0.9361 0.9016 0.8628 0.8123

Table 14 LS best expected outcome GDSC data

nNormal

1 2 3 4 5

nTumor 1 0.9792 0.9585 0.9315 0.8681 0.8572

2 0.9783 0.9615 0.9360 0.8909 0.8813

3 0.9737 0.9568 0.9366 0.8910 0.8653

4 0.9735 0.9511 0.9263 0.8851 0.8508

5 0.9736 0.9498 0.9219 0.8826 0.8544

Table 15 GACT best expected optimization GDSC data

nNormal

1 2 3 4 5

nTumor 1 0.9789 0.9584 0.8916 0.8474 0.8129

2 0.9781 0.9611 0.9357 0.8609 0.8672

3 0.9734 0.9478 0.8996 0.8709 0.8246

4 0.9732 0.9502 0.8975 0.8771 0.8328

5 0.9733 0.9402 0.9124 0.8733 0.8407

Table 16 Hill climbing best expected optimization GDSC data

nNormal

1 2 3 4 5

nTumor 1 0.9777 0.9447 0.9030 0.8600 0.8464

2 0.9738 0.9360 0.8995 0.8589 0.8286

3 0.9734 0.9369 0.8956 0.8543 0.8267

4 0.9731 0.9370 0.8956 0.8501 0.8152

5 0.9731 0.9380 0.8934 0.8502 0.8177
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Table 17 Computational complexity synthetic data

WCO BEO

Searches Avg. Searches Searches Avg. Searches
Time (s) per s Time (s) per s

LS 1033500 132.2 7814 1033500 126.3 7934

GACT 501000 0.6052 827825 501000 0.5806 862900

HC 380130 20.11 18902 378940 16.69 22705

in both the cancer and normal pathways. We group the
pathways into 100 groups where each group has 5 normal
pathways and 5 cancerous pathways. From every group,
we consider nNormal normal pathways and nTumor can-
cerous pathways.

GDSC data
In order to test our algorithms on biological functional
data, we have utilized the GDSC database [16] to generate
a set of PTIM models for 20 different cell lines. These cell
lines were segregated into groups of 10, the first group is
composed of breast-cancer cell lines and the second group
is B-cell lymphoma cancer cell lines. A list of the cell lines
is shown in Table 1. For each of the cell lines, we consid-
ered the IC50 values for 32 drugs and combined with the
corresponding drug panels generated a PTIM model. The
drug panels contained the Kd values for 404 targets and
62 of these targets were found to correspond to the PTIM
model of at least one of the cell lines, 42 targets in the
breast cell lines, 49 in the lymphoma and 27 targets where
found in both the breast and lymphoma cell lines.
For the generation of sets of tumor and normal models,

we generate 100 groups and for each group we randomly
assign one type of cell lines (breast or lymphoma) to be
the Normal cells and the other type to be the Tumor cells.
We then randomly pick nNormal cell lines from the cor-
responding group and assign them asNormal cell models.
Likewise, we pick nTumor random cell lines from the
other group and assign them as our Tumor cell models.

Performance comparisons
For both the synthetic and GDSC cases, we select the
solution that provides themaximum cancer cell sensitivity
while keeping the normal cell sensitivity below a threshold
of θ = 0.1 using both the best expected scenario and the

Table 18 Computational complexity GDSC data

WCO BEO

Searches Avg. Searches Searches Avg. Searches
Time (s) per s Time (s) per s

LS 879 0.095 9253 2032 0.1317 15429

GACT 146430 4.32 33896 30850 1.01 30433

HC 300650 13.82 21749 299580 11.41 26256

Fig. 6 CDFs for synthetic cells and WCO

worst case optimization method. The maximum cancer
sensitivity is then averaged across all 100 groups.

GACT parameter selection
In order to find an optimal ratem and ratec for the GACT,
we set nTumor, nNormal = 5 and totalG = 100. We
then repeated the WCO GACT on the synthetic dataset,
varying either ratec or ratem on each run. The results are
shown in Table 2. Based on these results, we have selected
a ratem of 0.2 and ratec of 0.6. We then start varying nGen
and the corresponding results are recorded in Table 3.
From these results we can see that past 400 iterations,
there is no significant improvement in the GACT.

Hill climbing parameter selection
We perform a similar operation on the Hill Climbing algo-
rithm where we keep nTumor = nNormal = 5 and vary
nIter and measuring the best expected outcome in con-
trast to worst case optimization in previous case. The

Fig. 7 CDFs for breast cells and WCO
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Fig. 8 CDFs for lymphoma cells and WCO

results are shown in Table 4. Since, there are no signif-
icant changes in performance after 15,000 iterations, we
use maxIter = 15000 for running our Hill Climbing
algorithm.

WCO results
The results for worst case optimization for the three
approaches on synthetic and biological models are shown
in Tables 5, 6, 7, 8, 9 and 10. For the synthetic dataset,
we achieved minimum cancer sensitivities > 0.60 using
the LS (Table 5) and GACT (Table 6) algorithms while the
Hill Climbing algorithm could only achieve a sensitivity
of 0.55 (Table 7). Since the LS algorithm is the opti-
mal approach, it produces the best performance followed
closely by the GACT algorithm for synthetic dataset.
However, for the GDSC dataset, the GACT was only able
to achieve a sensitivity of 0.33 which is significantly worse
than the LS which was able to achieve a sensitivity of

Fig. 9 CDFs for synthetic cells and BEO

Fig. 10 CDFs for breast cells and BEO

0.45. For the GDSC dataset, it appears that GACT is close
to the optimal solution for smaller number of normal
cells and increasing the number of normal cells reduces
its performance (Table 9). Hill Climbing has reasonable
performance for GDSC data based models (Table 10).

BEO results
The results for best expected optimization scenario for
the three algorithms on synthetic and biological mod-
els are shown in Tables 11, 12, 13, 14, 15 and 16. For
the synthetic dataset, we achieved expected sensitivi-
ties over cancer models higher than 0.85 using the LS
(Table 11) and GACT (Table 12) algorithms and > 0.81
for Hill Climbing Approach (Table 13). For the GDSC
based models, performance close to LS (Table 14) is
observed with GACT (Table 15) followed by Hill Climbing
(Table 16).

Fig. 11 CDFs for lymphoma cells and BEO
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Fig. 12 Estimated vs. actual searches for synthetic dataset

Computational complexity
Tables 17 and 18 shows the average number of searches
and runtime for each algorithm for synthetic and GDSC
datasets respectively. All results are for nNormal =
nTumor = 5. Each program is written using MATLAB
and ran on a Inspiron 15 laptop with a Core i5-6300HQ
processor with 8GB of RAM. For the synthetic models,
GACT was the fastest, taking less than a second for both
WCO and BEO. The second fastest was the Hill Climb-
ing (HC) algorithm that takes around 20 s per group while
the LS algorithm takes the longest at over 125 s per group.
It should be noted that the GACT is able to perform
a proportionally larger number of searches in a shorter
amount of time than both the LS and HC algorithm. This
is because the GACT uses a small number of iterations
but performs a large number of searches per iteration
and is thus able to be vectorized more than the other
algorithms.

In contrast for the GDSC dataset, the LS algorithm per-
forms the fastest due to the small number of searches
required. The GACT is now the second fastest and HC
is the slowest. It should be noted that the GACT per-
forms significantly slower in the GDSC dataset than the
synthetic case. This is because we are unaware of the
underlying circuit models of the PTIMs in the GDSC
dataset as the sensitivities are computed using a lookup
table and cannot be vectorized as efficiently as the syn-
thetic data. In the next section, we explain the smaller
number of searchers required for the LS approach for
GDSC data as compared to Synthetic data based on the
the specific structures of g(l, θ).

Estimated number of searches
In this section, we empirically generate the distributions
of searches required for LS technique for random sets of
normal and cancerous cells for both synthetic and GDSC

Fig. 13 Estimated vs. actual searches for GDSC dataset
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data and compare them to theoretical estimates. In order
to generate f (l, θ), we randomly select l targets and record
the measured sensitivity for each cell line following inhi-
bition of the selected l targets. This process is repeated
300,000 times for l = 1 to nTargets to generate the entire
CDF. The gwcoP (l, θ) distributions for Synthetic, Breast
cancer and Lymphoma cell lines are shown in Figs. 6, 7
and 8 respectively.
The corresponding gbeoP (l, θ) distributions for Synthetic,

Breast cancer and Lymphoma cell lines are shown in
Figs. 9, 10 and 11 respectively.
We then use the theoretical estimate outlined in

“Lexicographic search analysis” section to predict the
number of searches required by the LS algorithm. In all
the scenarios, we are assuming P = 5. The predicted
value is plotted against the actual value fitted to a normal
distribution and the plots are shown in Fig. 12 for syn-
thetic data and Fig. 13 for the GDSC data. We note that
the theoretical estimates are very close to the mean of the
distributions confirming our savings estimate.
To explain the limited number of searches required for

GDSC models as compared to synthetic models, note
that gwcoP (l, θ) and gbeoP (l, θ) have gradual decreases with l
for synthetic data as shown in Figs. 6 and 9 respectively
whereas gwcoP (l, θ) and gbeoP (l, θ) for GDSC models have
sharp decreases with l as shown in Figs. 7, 8, 10 and 11.
Due to the sharp change in the probabilities, the expected
number of searches required for LS for GDSC models
(in the 600 to 2200 range) is significantly lower than the
expected number of searches required for the synthetic
models (in the 106 range).

Conclusions
In this paper, we have formulated the combination therapy
design problem of maximizing efficacy while minimiz-
ing toxicity as an algorithmic search problem to find the
optimal target set that maximally inhibit spatially hetero-
geneous cancer cell models while maintaining the effect
along multiple normal cell models below a certain thresh-
old. Our cell proliferation models are based on probabilis-
tic target inhibition map (PTIM) framework [4–7] that
consists of a series of blocks where each block contains a
set of targets connected in parallel. To find the ideal tar-
get inhibition profile, we proposed a lexicographic search
method to effectively search through all possible solu-
tions. This method takes advantage of the properties of
the PTIM to significantly reduce the number of poten-
tial solutions that we have to search through. We compare
the performance and computational complexity of this
method with other commonly used algorithms such as
Genetic algorithms and Hill Climbing. We demonstrated
the effectiveness of our algorithms using both synthetic
models and models generated from Drug Sensitivity of
Cancer Database. A theoretical analysis of the expected

number of steps required by the Lexicographic Search
process is included that was shown to provide a close
approximation to actual observed search steps.
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