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Abstract

Background: Intra-sample cellular heterogeneity presents numerous challenges to the identification of biomarkers
in large Epigenome-Wide Association Studies (EWAS). While a number of reference-based deconvolution algorithms
have emerged, their potential remains underexplored and a comparative evaluation of these algorithms beyond
tissues such as blood is still lacking.

Results: Here we present a novel framework for reference-based inference, which leverages cell-type specific
DNAse Hypersensitive Site (DHS) information from the NIH Epigenomics Roadmap to construct an improved
reference DNA methylation database. We show that this leads to a marginal but statistically significant
improvement of cell-count estimates in whole blood as well as in mixtures involving epithelial cell-types. Using this
framework we compare a widely used state-of-the-art reference-based algorithm (called constrained projection) to
two non-constrained approaches including CIBERSORT and a method based on robust partial correlations. We
conclude that the widely-used constrained projection technique may not always be optimal. Instead, we find that
the method based on robust partial correlations is generally more robust across a range of different tissue types
and for realistic noise levels. We call the combined algorithm which uses DHS data and robust partial correlations
for inference, EpiDISH (Epigenetic Dissection of Intra-Sample Heterogeneity). Finally, we demonstrate the added
value of EpiDISH in an EWAS of smoking.

Conclusions: Estimating cell-type fractions and subsequent inference in EWAS may benefit from the use of non-
constrained reference-based cell-type deconvolution methods.
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Background
One of the great challenges facing the omics community
is that posed by intra-sample heterogeneity (ISH) [1].
Molecular profiles derived from complex tissues such as
blood or breast represent averages over many different
cell types. Since cell-type composition of complex tissues
varies in response to phenotypes such as cancer or age,

correcting for changes in tissue composition could be
crucial if one wishes to identify potentially causal alter-
ations in individual cell-types [2, 3]. This is particularly
relevant for Epigenome-Wide Association Studies
(EWAS) where the effect sizes of interest could be small
compared to changes in tissue composition [3, 4]. Be-
cause of this, a number of different ISH deconvolution
algorithms for genome-wide DNA methylation data have
recently been proposed [5–9]. As with the analogous
tools developed for mRNA expression data [10, 11],
these algorithms can be classified as either “reference-
free” [6, 8] or “reference-based” [5], depending on
whether they use an a-priori database of cell-type
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specific DNA methylation (DNAm) reference profiles to
perform the deconvolution. Although reference-free
methods have the advantage that they don’t require such
a DNAm database and are therefore applicable, in
principle, to any tissue-type, these algorithms have only
been tested in blood and don’t provide sample-specific
absolute estimates of cellular proportions. Obtaining ab-
solute estimates of underlying cell-type proportions in a
tissue is an important task, as shifts in specific cell sub-
types within the tissue could be used for diagnostic or
prognostic purposes [12, 13], as well as providing useful
mechanistic insight into systems medicine [14]. A fur-
ther problem with reference-free methods is that they
often rely on the assumption that the top components of
variation correlate with cell-type composition, an as-
sumption which may not always hold, and which if vio-
lated could lead to loss of biological signal. Indeed, a
clear example of this can be seen in a study which used
a reference-free method called EWASher [6], concluding
that only a handful of CpGs are differentially methylated
between breast cancer and normal breast tissue, clearly
contradicting all the available evidence that DNA methy-
lation differences between breast cancer and normal tis-
sue is widespread and largely independent of changes in
tissue composition [15, 16]. Thus, reference-based ap-
proaches appear to be the safest option provided one
can construct a reference DNAm database for the tissue
of interest. As representative DNAm profiles for all hu-
man normal cell types accrue [17], reference-based
methods are therefore more likely to become the frame-
work of choice for tackling the ISH problem.
So far however, only one reference-based algorithm (the

Houseman algorithm) has been proposed for DNAm data
[5] (see also [18, 19]). Houseman’s algorithm performs in-
ference using a quadratic programming technique known
as linear constrained projection (CP), where non-
negativity and normalization constraints on cellular pro-
portions are imposed during inference. Interestingly, in
the gene expression context, a recent comparative study
concluded that CP is outperformed by a non-constrained
reference-based approach which relies on the technique of
Support Vector Regressions (SVR) [10]. Another tech-
nique based on robust partial correlations (RPC) [10] has
also not yet been explored in the context of DNA methy-
lation data. Thus, there is an urgent need to conduct a
comprehensive comparative evaluation of different
reference-based deconvolution algorithms. Here, we per-
form such a comparison using experimental as well as
computationally generated cellular mixtures, and includ-
ing epithelial cell-types as well as leukocytes.
The importance of the reference database itself for the

quality of the inference has also been noted before [10,
20]. Motivated by this, we here present a novel approach
for the construction of a reference DNAm database, which

integrates prior biological knowledge of cell-type specific
sites with cell-type specific DNA methylation. Specifically,
given that DNAse Hypersensitive Sites (DHS) are highly
cell-type specific [21], we use such DHS data from the
NIH Epigenomics Roadmap [17] and ENCODE [22, 23],
to improve the quality of the reference database. Sample-
specific cell-type proportions can then be estimated using
either Houseman’s CP algorithm or a non-constrained
approach such as SVR or RPC.
We show that incorporation of such prior biological

knowledge can improve inference, and that Houseman’s
algorithm is only optimal in the scenario of very noisy
data. For realistic noise levels, we discover that non-
constrained methods like RPC generally perform better.
Hence, we propose an improved novel framework for
reference-based inference of cell-type composition, called
EpiDISH (Epigenetic Dissection of Intra-Sample-Hetero-
geneity), which uses (i) DHS data from the NIH Roadmap
and ENCODE to construct a reference DNAm database,
and (ii) RPC for estimation of cell-type proportions.

Methods
Reference-based algorithms for deconvolution of
intra-sample heterogeneity
We considered a total of 4 different reference-based al-
gorithms. Reference-based means that each of these al-
gorithms models a DNAm profile of any given sample as
a linear combination of a given set of reference DNAm
profiles representing underlying cell-types present in the
sample. Given a number C of underlying cell-types, each
with a DNAm profile bc, and denoting by y the DNAm
profile of a given sample, the underlying model is

y ¼
X

c¼1

C
wcbc þ ε

The general idea is to estimate the weight coefficients in
a least squares sense, but restricting to a subset of CpGs
that are highly discriminative of the underlying cell sub-
types. Assuming that the reference database contains the
major cell-types present in the sample y, one may assume
that ∑c = 1

C wc = 1 (or more generally that ∑c = 1
C wc ≤ 1). The 4

algorithms differ in how the normalization constraint is
implemented:
For 3 algorithms, the constraint that weights have to be

non-negative and add to 1, is implemented a posteriori,
i.e. after inference of the weights themselves. Specifically,
we follow the procedure implemented in [10] and set any
negative weight estimates to zero, followed by a scaling to
ensure that the non-zero positive weights add to 1. The 3
algorithms which enforce the constraints a posteriori are
(i) multivariate linear regression or partial correlations
(LR), (ii) robust multivariate linear regression or robust
partial correlations (RLR/RPC) and (iii) Support Vector
Regressions (SVR), an advanced form of robust penalized
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multivariate regression. In the case of SVR, we used
the implementation called CIBERSORT [10]. For LR
and RLR/RPC we used the lm and rlm R-functions
(www.r-project.org), to perform the multivariate regressions.
The 4th algorithm performs the inference of the

weights in a least squares sense but imposes the posi-
tivity and normalization constraints as part of the infer-
ence process. This technique is known as linear
constrained projection (CP) and weights can be inferred
using quadratic programming (QP) [18, 19]. In imple-
menting CP/QP there are in principle two options for
the normalization constraint: one can implement a
strict equality which requires the weights to add to 1,
or one can implement the normalization as an inequal-
ity constraint, in which case the weights are only re-
quired to add to a number less or equal to 1. Here we
implement the CP algorithm using the normalization as
an inequality constraint. In effect, modulo the reference
database, this algorithm is the reference-based House-
man algorithm [5]. Differences between the two imple-
mentations of CP are relatively minor since in this
work we evaluate methods in tissues where all the
major cell subtypes are known and for which reference
DNAm profiles exist.

Construction of integrated DHS reference DNA
methylation databases
Below we give a brief summary of the datasets used in
the construction of the reference databases (see also
Table 1).

Blood tissue
In the case of blood tissue we used the purified blood
cell Illumina 450k data from Reinius et al. [24]. Spe-
cifically, we used the purified cell data of Monocytes,
Neutrophils, Eosinophils, CD4+ T-cells, CD8+ T-cells,
Natural Killer (NK) cells and B-cells. There were 6
samples for each cell-type coming from 6 different in-
dividuals. We used a well-known empirical Bayes
framework of moderated t-statistics [25] to derive dif-
ferentially methylated CpGs (DMCs) between one of
the 7 cell types and the rest using a false discovery
rate (FDR) threshold of 0.05. Separately to this, we
also identified all Illumina 450k probes that mapped
to a DNase Hypersensitive Site (DHS) in any of the
considered blood cell subtypes using data from the
NIH Epigenomics Roadmap. DHS data was available
for Monocytes, B-cells, T-cells and NK-cells. For each
cell-type we then filtered DMCs to include only those
mapping to a DHS, which we call DHS-DMCs. This
resulted in 14105 B-cell, 7723 NK-cell, 12118 CD4+
T-cell, 38131 CD8+ T-cell, 11289 Monocyte, 2375
Neutrophil and 11515 Eosinophil DHS-DMCs. We
then ranked these DHS-DMCs according to the mean
difference in DNAm, thus favouring DHS-DMCs with
large mean differences (i.e. delta beta-value > 0.8). For
each cell-type we picked the top 50 DHS-DMCs.
Across all 7 cell subtypes, there were 333 unique
DHS-DMCs. DNAm reference centroids were then
calculated as the average over the 6 samples of each
purified blood cell subtype and for each of these 333
CpGs, resulting in a blood DNA methylation

Table 1 Main Illumina 450k DNAm datasets used. We list the main datasets used in this study, the cell-types/tissue profiled, whether
the data was used for reference database construction (if yes, we specify which cell-types were used), whether the data was used
for validation/evaluation purposes (if yes, we specify which cell-types were used) and the reference/citation

Dataset
Name

Tissue/cell-types Use in Reference DNAm
Database

Testing/Evaluation Reference

Reinius et al. WB, PBMC, NK, B, CD4T, CD8T, Monoc, Neutro,
Eosino. (n = 6 of each)

NK, B, CD4T, CD8T, Monoc.,
Neutro., Eosino.

WB & PBMC [24]

Liu et al. WB (n = 335 controls,
n = 354 rheumathoid arthritis cases)

No Average Flow Cytometry estimates
for cases and controls

[2]

Koestler et al. WB (n = 18) No 12 Reconstructed WB mixtures +
6 WB samples with Flow Cytometry
estimates

[20]

Zilbauer et al. PBMC, CD4T, CD8T, NK, B,
Monoc, Neutro. (n = 6 of each)

No In-silico mixtures of purified blood
cell subtypes

[27]

ENCODE Various HMEC, HRCE, IMR90, Liver No [22]

Slieker et al. Various Pancreas Liver [26]

SCM2 Various No HRCE, Pancreas, IMR90 [29]

Lowe et al. Various No HMEC [28, 35]

Teschendorff
et al.

WB (n = 152) No Smoking associated DMCs [31]

Abbreviations: DNAm = DNA methylation, WB = whole blood, PBMC = peripheral blood mononuclear cells, HMEC = human mammary epithelial cells, HRCE =
human renal cortical epithelia, IMR90 (fetal lung fibroblast), SCM2 = Stem-Cell-Matrix Compendium-2, DMCs = differentially methylated CpGs, NK = natural killer
cells, B = B-cell, Monoc =Monocytes, Neutro. = Neutrophils, Eosino = Eosinophils, CD4T = CD4+ T-cells, CD8T = CD8+ T-cells
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reference database of 333 DHS-DMCs and 7 blood
cell subtypes.

Mixed epithelial cells
As a means of testing the statistical algorithms in an epi-
thelial context, we sought to identify at least 3 human
epithelial cell subtypes for which Illumina 450k DNAm
data was available, generated as part of at least 2 inde-
pendent studies, in order to use one study for reference
database construction and another for validation (gener-
ation of in-silico mixtures). In addition, we also required
DHS data from ENCODE or the NIH Epigenomics
Roadmap for these cell-types. We identified DHS data
from the NIH Roadmap for breast and pancreatic cells,
whilst from ENCODE we obtained DHS data for human
renal cortical epithelial (HRCE) cells. For human mam-
mary epithelial cells (HMECs) and HRCE cells, Illumina
450k data was available from ENCODE, whereas for
pancreas we used corresponding 450k data from Slieker
et al. [26]. In this case, because in some cases we only
had 1 representative sample for each cell-type, we
selected DMCs according to a difference in DNAm beta-
value being larger than 0.9. This differential DNAm ana-
lysis was only performed for CpGs that mapped to a
DHS in either HMECs, HRCEs or pancreas. Thus, this
procedure is extremely stringent as we select DHS CpGs
whose DNAm varies as much as possible between cell-
types. This resulted in 272 DMCs between HMECs and
HRCEs, 315 CpGs between HMECs and pancreas, and
54 DMCs between HRCEs and pancreas. In total, there
were 575 unique DMCs, resulting in a DNAm reference
database of 575 CpGs and 3 cell-types (breast, HRCEs
and pancreas).

Mixed epithelial and non-epithelial cells
We identified DHS data from the NIH Roadmap for a
fetal lung fibroblast cell-line (IMR90) and for B-cells,
whilst from ENCODE we obtained DHS data for hepato-
cytes. For IMR90 and hepatocytes Illumina 450k data
was available from ENCODE, whereas for B-cells we
used the data from Reinius et al. [24]. In this case too,
because in some cases we only had 1 representative sam-
ple for each cell-type, we selected DMCs according to a
difference in DNAm beta-value being larger than 0.9.
This differential DNAm analysis was only performed for
CpGs that mapped to a DHS in either hepatocytes,
IMR90 or B-cells. Thus, this procedure is extremely
stringent as we select DHS CpGs whose DNAm varies
as much as possible between cell-types. This resulted in
181 DMCs between IMR90 and liver, 405 CpGs between
IMR90 and B-cells, and 482 DMCs between liver and B-
cells. In total, there were 912 unique DMCs, resulting in
a DNAm reference database of 912 CpGs and 3 cell-
types (IMR90, liver and B-cells).

Non-DHS based reference databases
For the two previously described scenarios, we also de-
rived reference DNAm databases without restriction to
DHSs, but ensuring that reference databases were of ap-
proximately the same size as the DHS-based ones. In the
case of breast, pancreas and HRCEs, this resulted in a
558 DMC x 3 cell-type reference DNAm matrix. In the
case of IMR90, liver and B-cells, the reference DNAm
matrix was of dimension 975 DMCs and 3 cell-types. In
the case of blood, the corresponding “non-DHS” refer-
ence database was defined over 339 DMCs.

Validation datasets
In what follows we briefly describe the Illumina 450k
datasets used to validate and compare the different algo-
rithms (see also Table 1).

Blood tissue
One dataset profiling whole blood for over 650 samples
(encompassing both rheumathoid arthritis (RA) cases
and controls) was available from Liu et al. [2]. For this
dataset, there were average flow-cytometric estimates for
all major blood cell subtypes for RA cases and controls.
Another dataset (Koestler et al.) profiled 6 whole blood
(WB) and 12 experimentally reconstructed “whole
blood” mixtures [20]. In the former case, flow-
cytometric estimates for the different blood cell subtypes
were available for each of the 6 WB samples. In the lat-
ter case, the mixing proportions were determined by the
experimentalist and therefore known without error. We
also considered an additional Illumina 450k dataset from
Zilbauer et al., which profiled 5 blood cell subtypes
(Monocytes, Neutrophils, B-cells, CD4+ and CD8+ T-
cells) with 6 replicates of each [27].

Other cell types
For validating and assessing the algorithms in the con-
text of the mixed epithelial cell type scenario, we used as
validation, Illumina 450k DNAm data for HMECs from
Lowe et al. [28], and Illumina 450k data for HRCEs and
adult male & female pancreas from the Stem-Cell-
Matrix Compendium-2 (SMC2) [29]. For the case of the
mixed epithelial/non-epithelial cell types, we used Illu-
mina 450k DNAm data of IMR90 (fetal lung fibroblast)
from SCM2, for liver cells from Slieker et al. [26], and
purified B-cells from Zilbauer et al. [27].

Validation and evaluation strategy based on in-silico
mixtures
For evaluation and comparison of the statistical algo-
rithms, we generated 100 different in-silico mixtures of
the purified cell DNAm profiles, with weights chosen
randomly from a uniform (0,1) distribution, subject to
the constraints that weights add to 1. Performance of

Teschendorff et al. BMC Bioinformatics  (2017) 18:105 Page 4 of 14



each algorithm was then assessed using the root mean
square error (RMSE) between the estimated and true
weights for each cell-type, as estimated over the 100 dif-
ferent mixtures. R2 values between estimated and true
weights for each cell-type were also computed over the
100 different mixtures. Average RMSE and R2 values
over cell-types were also calculated. Finally, this proced-
ure was repeated for a total of 25 Monte Carlo runs,
yielding a total of 25 average RMSE and R2 values. This
overall strategy was used for validation/testing purposes
in the Zilbauer dataset, as well as for testing the
methods in the mixed epithelial and mixed epithelial/
non-epithelial scenarios.

Noise analysis
We note that in this work we always test methods on
data which is independent from the data used to
construct the reference database. This already implicitly
assesses the performance of the algorithms under noise
levels which one may encounter between two similar
experiments performed by different labs and personnel.
However, in order to assess the algorithms under
increasing levels of noise, we also added Gaussian
Noise of increasing variation to the mixtures. The
addition of Gaussian Noise was done in the M-value
basis, with data subsequently transformed back to the
beta-valued basis for application of the algorithms. Spe-
cifically, we considered 7 increasing levels of standard
deviation noise: SD = 0, 1, 2, 3, 4, 5, 6. For a DMC that
differs between 2 cell-types by an amount of 0.8 (in a
beta-valued basis), this corresponds roughly to a differ-
ence in the M-value basis of approx. 6. Thus, the case
SD = 6, can be seen as an extreme case of noise. The
case SD = 1 corresponds to a typical deviation in the
beta-value basis of approximately β (1-β)/(1 + β), i.e. an
approx. 5% change for a CpG which is say unmethy-
lated (β = 0.05), and an approx. 16% change for a CpG
which is partially methylated (β = 0.4). Thus the case
SD = 1 is a fairly realistic scenario given known noise
levels in Illumina 450k data.

Definition of a gold-standard list of smoking-associated
DMCs and of a true negative list
Smoking and whole blood is the ideal scenario in which
to compare methods for cell-type correction, since many
whole blood EWAS have reported strong consistency of
smoking-associated DMCs (reviewed in [30]). Hence, to
define a gold-standard list of sDMCs and associated
genes, we used the curated table of Gao et al. [30]. Spe-
cifically, we defined a gold-standard list of sDMCs de-
fined by Illumina 450k probes which have been
associated with smoking in at least 3 independent stud-
ies. This resulted in a total of 62 gold-standard sDMCs,
implicating a total of 15 unique genes. Using this gold-

standard list to declare a list of true positives, we then
assessed sensitivity of the methods in an independent
whole blood EWAS of 152 samples [31]. We note that
this EWAS was not among the ones reviewed by Gao et
al. and hence is truly independent.
Definition of a true negative CpG (i.e. one not associ-

ated with smoking) is much harder. However, to con-
struct an approximate set of true negative CpGs, we
used the intersection of 450k probes not associated with
smoking in 3 independent EWAS studies. These EWAS
studies were a (i) whole blood set of 464 samples from
Tsaprouni et al. [32] (GEO: GSE50660), (ii) a set of 333
whole blood samples from healthy controls and (iii) cor-
responding 354 whole blood sample from rheumathoid
arthritis cases, all from Liu et al. (GEO: GSE42861) [2].
For all 3 sets, smoking status information was available.
In the case of Tsaprouni et al., processed data was down-
loaded from GEO. In the case of Liu et al., we processed
raw data with minfi [33]. All 450k data was corrected for
type-2 probe bias using BMIQ [34]. P-values of associ-
ation with smoking (treated as ordinal variable, 0 = non-
smoker, 1 = ex-smoker, 2 = current-smoker) was
determined by linear regression in each set. We then
defined CpGs as not associated with smoking if their P-
value > 0.25 in each of the 3 datasets, resulting in 89290
true negative (TN) CpGs.

Software availability
The blood reference DNAm database for 333 DHS-
DMCs and 7 blood cell subtypes is provided (Table S1 in
Additional File 1). A user-friendly R-script implementing
EpiDISH is available (Additional File 2). EpiDISH is also
freely available as an R-package from github: https://
github.com/sjczheng/EpiDISH

Results
The EpiDISH algorithm and validation in blood using
flow-cytometry
We collected DHS and Illumina 450k DNA methylation
data from the NIH Epigenomics Roadmap [17] and EN-
CODE [22, 23], as well as from other Illumina 450k
studies profiling individual cell-types [24, 29] and nor-
mal tissues [26, 35] (Table 1). Given a tissue of interest,
and with prior knowledge of which cell subtypes might
be present in the tissue, EpiDISH first constructs a DNA
methylation reference database, by integrating DHSs
from the corresponding cell subtypes with a supervised
selection procedure, to identify cell subtype specific dif-
ferentially methylated CpGs (DMCs) which localize to
open chromatin (DHS-DMCs, Methods, Fig. 1a). Once
the reference database is constructed, EpiDISH then in-
fers sample-specific cellular proportions using robust
partial correlations (Fig. 1b, Additional File 2).
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We first considered the case of blood tissue, a complex
tissue for which the main constituent cell types are well
known and which is being used extensively in EWAS
[2]. We constructed a blood reference database using
Illumina 450k DNAm profiles for a total of 7 purified
blood cell subtypes (B-cells, NK-cells, CD4+ T-cells,
CD8+ T-cells, Monocytes, Neutrophils and Eosinophils)
obtained from [24], integrating it with blood cell subtype
specific DNAse Hypersensitive Sites (DHS), as obtained
from the NIH Epigenomics Roadmap [36], and further
filtering the 450k probes for differential methylation be-
tween every pair of blood cell subtypes, resulting in an
integrated blood reference DNAm database of 333 CpGs
and 7 blood cell subtypes (Methods, Table 1, Table S1 in
Additional File 1). As a sanity check, we verified that the
original purified samples segregated according to cell
subtype when clustered over these 333 CpGs (Figure S1
in Additional File 1). Blood cell subtype proportions ob-
tained with EpiDISH on whole blood (WB) and periph-
eral blood mononuclear cells (PBMC) from the same
study were also in line with known proportions, i.e.
strongest enrichment for neutrophils in WB and with
lymphocytes making the dominant component of
PBMCs (Figure S2 in Additional file 1).
In order to validate the EpiDISH algorithm, we first

applied it to an independent 450k data set of 689 whole
blood samples from an EWAS in Rheumatoid Arthritis,

for which FACS (flow-cytometric) estimates of 5 puri-
fied blood cell subtypes (B-cells, NK-cells, T-cells,
Granulocytes and Monocytes), averaged separately over
354 cases and 335 controls, was available [2]. We ob-
served excellent agreement between EpiDISH and
FACS estimates, for both cases and controls, with a
root mean square error (RMSE) of only 4% (Fig. 2a).
Agreement was even better for the actual difference in
mean blood cell subtype proportions between cases and
controls, with a RMSE of 1% (Fig. 2a). To further valid-
ate EpiDISH, we applied it to another set of 6 whole
blood samples, for which independent flow-cytometry
estimates of blood cell subtype fractions was available
[20]. In this set too, EpiDISH achieved a RMSE of ap-
proximately 3 to 4%, with a reasonably high average R2

value of 0.85 (Fig. 2b).

EpiDISH correctly infers blood cell subtype proportions in
reconstructed whole blood samples
Flow cytometric estimates of blood cell subtype propor-
tions are also subject to error. Hence, we further
assessed EpiDISH in its predictions to correctly infer
cell subtype proportions from 12 reconstructed whole
blood samples where the exact mixing proportions are
known [20]. For all those cell subtypes whose propor-
tions exhibited a reasonable dynamic range in the ex-
perimental mixtures, EpiDISH obtained R2 values

a

b

Fig. 1 Epigenetic Dissection of Intra-Sample Heterogeneity: the EpiDISH algorithm. a Given a tissue of interest and with knowledge of the main
underlying cell subtypes, EpiDISH constructs a reference DNA methylation (DNAm) database for these cell subtypes using (i) DNase Hypersensitive
Sites (DHS) and DNAm data for these cell types from existing public databases and (ii) a supervised selection procedure which identifies differen-
tially methylated CpGs (DMCs) among each pair of cell-types. The resulting reference DNAm database is defined only over DMCs that map to a
DHS in at least one of the underlying cell-types. b Given a tissue sample of interest, EpiDISH next infers underlying cell type proportions/weights
using robust partial correlations, with non-negativity and normalization constraints imposed a-posteriori. Having estimated cellular proportions for
each sample, feature selection against a phenotype of interest is then performed using these proportions as covariates
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a

b

c

Fig. 2 Validation of EpiDISH in independent data with FACS and known mixture estimates. a Left panels: Barplots of the average weight
proportions of each major blood cell subtype according to FACS and EpiDISH, in 354 rheumatoid arthritis (RA) cases and 335 controls. Right
panel depicts the difference between cases and controls. b Left panel: Barplots of the average weight proportions of each major blood cell
subtype according to FACS and EpiDISH in 6 whole blood samples from Koestler et al. Root Mean Square Error (RMSE) is given. Right panel:
Scatterplot of the corresponding estimated cell fractions vs the FACS estimates for all 6 samples and each cell subtype. R2 values (rounded to two
significant digits) for each cell subtype are given, as well as the average value over all cell subtypes. c Scatterplots comparing the estimated cell
fractions using EpiDISH to the true known fractions for 12 experimentally reconstructed “whole blood” samples, where the mixing proportions
were known. One scatterplot is shown for each blood cell subtype used in the reconstructions. In each case, we give the RMSE and R2 value
(latter values have been rounded to two significant digits)
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above 0.95, with an average RMSE of 2.6%, confirming
that EpiDISH can accurately quantify blood cell subtype
proportions (Fig. 2c).

Using DHS information marginally improves the quality
of the reference database
In order to demonstrate that statistical inference is im-
proved by using relevant cell-type DHSs when construct-
ing the reference DNAm database [21], we conducted a
comparative analysis using two different references: one
using DMCs that map to cell-type specific DHSs, and an-
other where we only use DMCs (Methods). We performed
the analysis for three different scenarios. In the first, we
generated 100 random in-silico mixtures of 5 purified
blood cell subtypes from Zilbauer et al. [27], and com-
pared EpiDISH’s R2 value for the estimated cell-type pro-
portions between the two different reference databases.
Performing this analysis for 25 different Monte Carlo
runs, revealed significantly higher R2 values for the data-
base that used DHS information (Fig. 3a). We next
repeated this analysis for another scenario where we gen-
erated mixtures from 3 epithelial cell-types (breast, human
renal cortical and pancreas) for which DNAm profiles
were available from at least 2 independent studies, and for
which DHS information for each individual cell-type was
also available from either the NIH Roadmap or ENCODE
(Methods). DNAm data from 2 independent studies is ne-
cessary to separate out the process of reference construc-
tion (training) and evaluation (validation). Confirming the
previous analysis, improved R2 values was observed for
the DHS-based reference database (Fig. 3b). Finally, we
considered a third scenario where we mixed together

epithelial and non-epithelial cell-types (fetal lung
fibroblast-IMR90, hepatocytes and B-cells). For each of
these cell-types, DHS data and DNAm profiles generated
by two independent studies were available (again, in
order to avoid overfitting). Confirming the previous re-
sults, R2 values were distinctively improved upon using
DHS information (Fig. 3c). Using RMSE as performance
measure, the DHS-based reference was best in 2/3
studies (Figure S3 in Additional File 1). However, we
note that in all cases improvements were only marginal.

EpiDISH compares favorably to other reference-based
methods
Having validated EpiDISH, we next performed a de-
tailed comparison to competing reference-based
methods. Specifically, we compared EpiDISH to the
linear constrained projection technique (CP) used by
Houseman and others [5, 18, 19], to an algorithm
called CIBERSORT (CBS), which uses Support Vector
Regression and which has been shown to perform
best on gene expression data [10], and finally to a
non-robust variant of EpiDISH based on simple
multivariate regression (LR). In order to objectively
compare the 4 algorithms, we first considered the
case of blood tissue, for which several datasets profil-
ing purified blood cell subtypes were available. For
each algorithm we used the same blood reference
database of 333 DHS-DMCs and 7 blood cell sub-
types, as constructed previously using the purified
blood cell data from Reinius et al. [24]. Using the
known reconstructed whole blood mixtures (12 sam-
ples) from Koestler et al. [20], we compared the
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Fig. 3 DHS information improves quality of the reference database. a Using 100 in-silico mixtures of 5 purified blood cell subtypes from Zilbauer
et al., we compare the R2 values (R2, y-axis) of the estimated cell proportions as obtained using EpiDISH between the two different reference
databases: one which uses cell-type specific DHSs to select DMCs when constructing the DNAm reference centroids (DHS), and another which
only uses DMCs regardless of DHS status (noDHS). The average R2 value over all cell-types is being shown. A total of 25 different Monte Carlo runs
were performed to obtain 25 average R2 values (x-axis) for each reference database. P-value is from a one-tailed paired Wilcoxon-rank sum test.
(b) As (a) but now 100 in-silico generated mixtures of 3 epithelial cell subtypes (breast, renal cortical and pancreas) for which DHS data was available.
(c) As (b), but now for 3 other cell subtypes (fetal lung fibroblast-IMR90, hepatocytes and B-cells) with available DHS information and DNAm
profiles from two independent studies
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algorithms in terms of the RMSE and R2 values of
the estimated mixing proportions. Interestingly, we
observed that robust partial correlations (EpiDISH)
outperformed both CP and CIBERSORT in terms of
the RMSE, with similar performance as assessed using
R2 (Fig. 4a). In an independent dataset of 5 purified
blood cell subtypes from Zilbauer et al. [27], where
we generated in-silico mixtures, CP underperformed
while EpiDISH/CIBERSORT performed optimally
(Fig. 4b). In order to further compare performance in

the context of other cell-types, we applied all 4 algo-
rithms to the 3 epithelial cell type and 3 epithelial/
non-epithelial cell type mixture scenarios considered
earlier (Methods). Once again, EpiDISH compared
very favorably relative to the other methods, specially
relative to CP which overall showed the weakest per-
formance (Fig. 4c, Fig. S4 in Additional File 1). We
note however that EpiDISH did not outperform
CIBERSORT in one of these two studies (Figure S4 in
Additional File 1).

a

b

c

Fig. 4 Comparison of EpiDISH to other reference-based algorithms. a Barplots of RMSE and R2 values for the estimated cellular proportions for
the four different algorithms as applied to the reconstructed blood mixtures of Koestler et al. All estimates were obtained over the 12 reconstructed
samples. Right panels show the average values over all blood cell subtypes. (b) As (a), but now for the in-silico generated mixtures of 5 blood
cell subtypes from Zilbauer et al. All RMSE and R2 estimates were obtained over 100 randomly generated in-silico mixtures, averaged over the
5 cell-types, and this experiment was repeated a total of 25 times (“Runs”). P-values comparing EpiDISH to each of the other 3 methods are
from a paired one-tailed Wilcoxon rank sum test. (c) As (b), but now for in-silico generated mixtures of 3 epithelial/non-epithelial cell types:
fetal lung fibroblast, liver and B-cells. All RMSE and R2 estimates were obtained over 100 randomly generated in-silico mixtures, averaged over
the 3 cell-types, and this experiment was repeated a total of 25 times (“Runs”). P-values comparing EpiDISH to each of the other 3 methods
are from a paired one-tailed Wilcoxon rank sum test
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Constrained Projection reveals added robustness under
higher levels of noise
Since the reconstructed and in-silico mixtures from the
previous analyses were generated from cell-type specific
DNAm profiles that are independent from the cellular
DNAm profiles used to build the reference databases,
these analyses already implicitly assess the robustness of
the algorithms to natural levels of noise, as encountered
for instance between different labs or different experi-
mental protocols. However, in order to improve our un-
derstanding of the noise performance characteristics of
the different methods, we next investigated their relative
performance under increasingly higher levels of noise
(Methods, Fig. 5). Adding increasing levels of noise to
the reconstructed mixtures of Koestler et al., we ob-
served that while EpiDISH was optimal for low levels,
that the relative performance of other algorithms, not-
ably constrained projection (CP), improved as noise
levels increased (Fig. 5a). We observed a similar pattern
using in-silico mixtures of purified blood cell subtypes
from Zilbauer et al., with EpiDISH optimal at low levels
of noise, but CP emerging as the more optimal method

at higher levels (Fig. 5b). In the context of in-silico mix-
tures of 3 epithelial cell subtypes, we once again ob-
served a cross-over in RMSE performance between CP
and EpiDISH, with EpiDISH performing better at lower
levels of noise, but CP and CIBERSORT emerging as the
more optimal methods under larger levels (Fig. 5c). In
terms of R2, CP emerged as the best performing method
in this set. CP also emerged as the better performing
method (in terms of R2) for larger levels of noise in the
context of in-silico mixtures of epithelial/non-epithelial
cell subtypes (Fig. 5d). In summary, these data indicate
that the relative performance of constrained (CP) vs
non-constrained (EpiDISH, CIBERSORT) approaches for
estimating cell proportions in heterogeneous mixtures is
dependent on cell-type and the levels of noise in the
data.

EpiDISH improves sensitivity in an EWAS of smoking in
whole blood
In order to further validate EpiDISH and to illustrate its
application to EWAS, we applied it to an EWAS of
smoking in a cohort of 152 women, all aged 53, for
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Fig. 5 Evaluation of EpiDISH under increasing levels of noise. a RMSE (upper panel) and R2 (lower panel) values for the estimated cellular
proportions for the four different algorithms as applied to the 12 reconstructed whole blood mixtures of Koestler et al. under increasing levels of
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which whole blood samples were taken and for which
DNAm profiles using the Illumina 450k technology were
generated [31]. Smoking in whole blood tissue provides
the ideal scenario in which to test EpiDISH, since a
gold-standard list of 62 smoking-associated DMCs
(sDMCs), as derived from an extensive survey of inde-
pendent smoking EWASs, exists [30] (Methods, Table S2
in Additional file 1). Hence, we applied EpiDISH to our
152 samples to obtain sample-specific weights for the
different blood cell subtypes. The resulting estimates
were in line with what is expected for whole blood
samples, with granulocytes/neutrophils making up
~50% of the samples and with lymphocytes/monocytes
making up the rest (Fig. 6a). SVD analysis confirmed
that the top component of variation correlated
strongly with changes in blood cell-type composition
(Fig. 6b). Not adjusting for variation in blood cell

subtype composition, we observed 34 sDMCs at
genome-wide significance (FDR < 0.05, Table S3 in
Additional File 1, Fig. 6c). Adjusting for cell-type pro-
portions, as estimated using EpiDISH, we observed a
doubling of sDMCs (70 sDMCs at FDR < 0.05, Table S4
in Additional File 1, Fig. 6d). Importantly, among the
additional sDMCs identified with EpiDISH, there were
probes that mapped to 5 genes within our gold-standard
set of 15 smoking-associated genes [30, 37–41] (Methods,
Fig. 6e). For instance, an additional probe mapping to
AHRR was observed after adjustment, and probes map-
ping to PTK2 and LRP5 were obtained only after ad-
justment (Fig. 6e). In contrast, only one probe in the
unadjusted analysis was not found after adjustment
(Table S3 in Additional File 1). To investigate this fur-
ther we estimated the sensitivity for an unadjusted ana-
lysis, EpiDISH (with and without DHS-DMCs in the

Fig. 6 EpiDISH improves sensitivity of a smoking EWAS in blood. a Distribution of cellular proportions (weight) for the main blood cell subtypes
in the 152 whole blood samples from Teschendorff et al., as inferred using EpiDISH. b Heatmap of P-value associations between significant principal
components (PC) and various factors, including Smoking Status, Bisulfite Conversion Efficiency (BSC), sentrix ID and position, and cellular proportion for
6 blood cell subtypes (eosinophils were not considered due to weights being effectively all zero). c Quantile-quantile plot of all 450k probes passing
quality control from a supervised analysis against smoking-pack-years only adjusted for sentrix ID (“No adjustment”). The number of CpGs passing an
FDR < 0.05 threshold are given, and defined to be smoking-associated differentially methylated CpGs (sDMCs). d Quantile-quantile plot of all 450k
probes passing quality control from a supervised analysis against smoking-pack-years adjusted for sentrix ID and blood cell subtype proportions
as estimated using EpiDISH (“Adjusted (EpiDISH)”). The number of CpGs passing an FDR < 0.05 threshold are given, and defined to be
smoking-associated differentially methylated CpGs (sDMCs). e Among the 34 and 70 sDMCs identified in c and d, respectively, we indicate the
numbers of these that map to a selected set of 5 well-known and validated smoking-associated genes. This subset derives from a set of 15
gold-standard smoking-associated genes, as curated by a review of the literature by Gao et al. [30]
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reference), CIBERSORT and CP, at two different FDR
thresholds (FDR < 0.05 and FDR < 0.3) (Table 2). This
confirmed that EpiDISH improves the sensitivity over
an unadjusted analysis, although CP performed margin-
ally better (Figure S5 in Additional File 1). To check
that the improved sensitivity is not at the expense of a
much lower specificity, we also defined a set of true
negative CpGs, i.e. CpGs not associated with smoking
(P > 0.25) as assessed in 3 independent EWAS cohorts
(Methods). This resulted in a true negative set of 89290
CpGs, allowing the relative specificity of the methods to
be assessed. Using the same FDR < 0.05 threshold, we ob-
served that all methods achieved comparably high relative
specificity values (Specificity ≈ 1), although CP exhibited a
3-fold higher type-1 error rate (false positive rate) than
EpiDISH or CIBERSORT (Table 2). At a more relaxed
threshold (FDR < 0.3), CP exhibited a 10 times higher
type-1 error rate than EpiDISH or CIBERSORT (Table 2).
Thus, overall, EpiDISH improves inference over an un-
adjusted analysis and compares favorably to CP.

Discussion
The aim of this study was to compare different reference-
based methods in order to establish whether there is an

optimal approach. This is particularly pertinent given that
only one reference-based approach (Houseman’s algo-
rithm) has been applied to DNA methylation data. As our
study has demonstrated, Houseman’s algorithm, which re-
lies on the CP technique, is in fact not the most robust
method. While we did not identify a single method which
always outperformed all others, we found that non-
constrained techniques such as partial correlations and
support vector regression provided a more robust infer-
ence framework than CP, particularly for more realistic
noise levels. This is consistent with the results obtained by
Newman et al. on gene expression data [10]. In our study,
CP only emerged as the optimal choice if data was sub-
jected to a large amount of noise, typically larger than
what is encountered in real data. Hence, our study ad-
vances upon the state-of-the-art, and proposes the use of
RPC or CIBERSORT as a more robust means for inferring
cell-fractions in complex tissues.
Another important novel insight of our study is that in-

ference can be improved, albeit only marginally, by in-
corporating cell-type specific DHS information when
constructing the reference DNAm database. We demon-
strated this not only in the context of blood tissue, but
also for mixtures involving epithelial cell subtypes. To
understand why the improvement is only marginal, we
note that supervised selection of DMCs from a training
set, for instance, by selecting DMCs that show big (i.e.
80% or over) differences in DNAm between cell-types, will
almost always identify true DMCs. Supervised selection
tends to favour DMCs with larger differences in average
DNAm which serve better for the statistical deconvolution
problem. Thus, while prior biological knowledge can help
remove a few false positives, this leads to only a relatively
minor improvement in the quality of the inference. It will
be interesting to explore if further improvements are pos-
sible, for instance, using predicted cell-type specific DMCs
[42], although we anticipate that such prior information
will turn out to be more fruitful in the context of “semi-
reference-free” approaches such as RUV [43].
We further showcased EpiDISH in an EWAS of smok-

ing, where it was found to identify twice as many
smoking-associated DMCs than an unadjusted analysis.
Importantly, some of the additional sDMCs mapped to
genes (e.g. AHRR, PTK2, MYO1G, LRP5) which are well-
known to be associated with differential methylation in
smokers [30], thus confirming that EpiDISH leads to an
increase in sensitivity. Although similar improvements
were possible with CIBERSORT and CP, CP suffered from
a higher FDR. Thus, our detailed analysis on experimental
and in-silico generated mixtures, which suggests improved
modelling with a non-constrained technique such as
RPCs, appears to also hold true on real data, although we
caution that analyses in more smoking-EWAS will be
needed to reach a robust conclusion.

Table 2 Comparison of the relative sensitivity and specificity.
Smoking-associated DMCs (sDMCs) were defined at FDR
< 0.05 and FDR < 0.3 and for each of 5 methods in the 152
whole blood Illumina 450k samples from the MRC1946 birth
cohort data

nTP = 62,
nTN = 89290

NoADJ EpiD
(noDHS)

EpiD CBS CP

FDR < 0.05

sDMCs 34 67 70 58 152

| TP ∩ sDMC | 31 34 35 36 37

Sensitivity 0.50 0.55 0.56 0.58 0.60

FP= |TN∩ sDMC
|

0 3 3 0 11

Specificity 1 0.999966 0.999966 1 0.999877

Empirical FDR <0.03 0.045 0.043 <0.02 0.072

FDR < 0.3

sDMCs 67 544 802 259 10457

| TP ∩ sDMC | 40 50 52 44 54

Sensitivity 0.64 0.81 0.84 0.71 0.87

FP= |TN∩sDMC| 1 73 121 31 1735

Specificity 0.99998 0.9992 0.998 0.9996 0.98

Empirical FDR 0.01 0.13 0.15 0.12 0.17

Methods are: NoADJ = no-adjustment, EpiD (noDHS) = adjustment with RPC
using reference with no DHS info, EpiD = adjustment with RPC and a reference
with DHS info, CBS = adjustment with CIBERSORT, CP = adjustment with
constrained projection. Sensitivity was estimated as the fraction of the 62
gold-standard true positives (TP) found among the sDMCs. In the case of specificity,
this was estimated as the fraction of true negatives (TN) among sDMCs measured
relative to a gold-standard set of 89290 true negative (TN) CpGs
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Our analysis focused entirely on Illumina 450k data.
While this may be seen as a limitation, in light of the re-
cent arrival of the newer 850k version [44], the over-
whelming majority of the 450k probes are present in the
new beadarray version, rendering the extension to 850k
data relatively trivial. Likewise, given the relatively good
agreement between Illumina 450k and WGBS/RRBS data
[45], and given that in both cases DNAm data can be
treated in the beta-value basis, we would envisage that ap-
plication of EpiDISH will carry over to such data, although
studies demonstrating this will be needed.

Conclusions
In summary, we have presented a novel reference-based
algorithm, EpiDISH, for in-silico deconvolution of DNA
methylation data, which compares very favorably in rela-
tion to the current gold-standard. We recommend the
use of EpiDISH for dissection of intra-sample heterogen-
eity in EWAS, and to this purpose we provide the com-
munity with an R-package (EpiDISH), freely available
from https://github.com/sjczheng/EpiDISH.
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DMCs (sDMCs). Table S3. Smoking-associated DMCs with no adjustment
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