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Abstract
Background: Biclustering has been largely applied for the unsupervised analysis of biological data, being
recognised today as a key technique to discover putative modules in both expression data (subsets of genes
correlated in subsets of conditions) and network data (groups of coherently interconnected biological entities).
However, given its computational complexity, only recent breakthroughs on pattern-based biclustering enabled
efficient searches without the restrictions that state-of-the-art biclustering algorithms place on the structure and
homogeneity of biclusters. As a result, pattern-based biclustering provides the unprecedented opportunity to
discover non-trivial yet meaningful biological modules with putative functions, whose coherency and tolerance to
noise can be tuned and made problem-specific.
Methods: To enable the effective use of pattern-based biclustering by the scientific community, we developed
BicPAMS (Biclustering based on PAttern Mining Software), a software that: 1) makes available state-of-the-art
pattern-based biclustering algorithms (BicPAM (Henriques and Madeira, Alg Mol Biol 9:27, 2014), BicNET (Henriques
and Madeira, Alg Mol Biol 11:23, 2016), BicSPAM (Henriques and Madeira, BMC Bioinforma 15:130, 2014), BiC2PAM
(Henriques and Madeira, Alg Mol Biol 11:1–30, 2016), BiP (Henriques and Madeira, IEEE/ACM Trans Comput Biol
Bioinforma, 2015), DeBi (Serin and Vingron, AMB 6:1–12, 2011) and BiModule (Okada et al., IPSJ Trans Bioinf
48(SIG5):39–48, 2007)); 2) consistently integrates their dispersed contributions; 3) further explores additional accuracy
and efficiency gains; and 4) makes available graphical and application programming interfaces.
Results: Results on both synthetic and real data confirm the relevance of BicPAMS for biological data analysis,
highlighting its essential role for the discovery of putative modules with non-trivial yet biologically significant
functions from expression and network data.
Conclusions: BicPAMS is the first biclustering tool offering the possibility to: 1) parametrically customize the
structure, coherency and quality of biclusters; 2) analyze large-scale biological networks; and 3) tackle the restrictive
assumptions placed by state-of-the-art biclustering algorithms. These contributions are shown to be key for an
adequate, complete and user-assisted unsupervised analysis of biological data.
Software: BicPAMS and its tutorial available in http://www.bicpams.com.

Background
The biclustering task has been shown to be essential for
improving the status-quo understanding of biological
systems, being of particular relevance for expression data
analysis (to discover putative transcription modules given
by subsets of genes correlated in subsets of conditions
[1]) and network data analysis (to unravel functionally
coherent nodes [2]). Such relevance is further evidenced
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by the high number of recent surveys on biclustering
algorithms for biological data analysis [3–6]. However,
and as an attempt to minimize the complexity of the
biclustering task, state-of-the-art biclustering algorithms
[1, 7–10] place restrictions on the coherency, quality and
structure of biclusters. These restrictions prevent the
recovery of complete biclustering solutions and generally
lead to the exclusion of non-trivial yet relevant biclusters.
Furthermore, state-of-the-art biclustering algorithms
generally rely on searches that cannot offer guarantees of
optimality [11, 12].
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Pattern-based biclustering emerged in recent years as an
attempt to address these limitations [13]. Patterns coher-
ently observed on a subset of rows, columns or nodes
reveal homogeneous subspaces. In this context, pattern-
based biclustering algorithms rely on widely-researched
principles for efficiently mining distinct patterns (includ-
ing frequent itemsets, association rules or sequential pat-
terns) in large databases as the means to identify these
subspaces in real-valued matrices or weighted graphs.
The major benefits of pattern-based approaches for

biclustering are: 1) scalable searches with optimality
guarantees [11]; 2) possibility to discover biclusters
with parameterizable coherency strength and coherency
assumption (including constant, additive, plaid and order-
preserving plaid assumptions) [11, 12, 14]; 3) flexible
structures of biclusters (arbitrary positioning of biclus-
ters) and searches (non-fixed number of biclusters)
[15, 16]; 4) robustness to noise and missing values [11] by
introducing the possibility to assign multiple symbols or
ranges of values to a single data element; 5) easy exten-
sion for labeled data analysis using discriminative patterns
[11]; 6) applicability to sparse matrices and network data
[2, 17]; 7) well-defined statistical tests to assess/enforce
the statistical significance of biclusters [18], and 8) easy
incorporation of constraints to guide the search [11].
Furthermore, results on biological data show their

unique ability to retrieve non-trivial yet meaningful
biclusters with high biological significance [2, 11, 14].
To integrate these dispersed contributions, BicPAMS

(Biclustering based on PAttern Mining Software) is pro-
posed to discover biclusters with customizable structure,
coherency and quality, yet powerful default behavior. Bic-
PAMS makes available earlier pattern-based bicluster-
ing algorithms (including BicPAM [11], BiModule [16]
and DeBi [15]), well suited for expression data analysis.
Furthermore, BicPAMS implements recent contributions
that guarantee the applicability of biclustering towards
network data (BicNET [17]), the discovery of order-
preserving and plaid models (BicSPAM [12] and BiP [14])
and the incorporation of domain knowledge [19].
This work is organized as follows. The remaining part

of this section provides the background on pattern-
based biclustering. “Implementation” section describes
the behavior of BicPAMS, covering the allowed inputs,
parameters and visualization options. “Results” section
provides empirical evidence of BicPAMS’ role to unravel
non-trivial and relevant putative modules from biological
data. Finally, the major implications are highlighted.

Definition 1 Given a real-valued matrix (or network) A
with a set of rows (or nodes) X={x1, .., xn}, a set of columns
Y={y1, .., ym} and elements aij relating row xi and column
yj (or relating nodes xi and xj): the biclustering task aims
to identify a set of biclusters B={B1, ..,Bp}, where each

bicluster Bk=(Ik , Jk) is defined by a subset of rows Ik ⊂ X
and columns Jk ⊂ Y (or two subsets of nodes) satisfying
specific criteria of homogeneity and statistical significance.

The placed homogeneity criteria determine the struc-
ture, coherency and quality of a biclustering solution,
while the statistical significance criteria guarantees that
the probability of a bicluster to occur deviates from expec-
tations. The structure of a biclustering solution is defined
by the number, size, shape and positioning of biclus-
ters. A flexible structure has a non-fixed of arbitrarily
positioned biclusters. The coherency of a bicluster is deter-
mined by the form of correlation among its data elements
(coherency assumption) and by the allowed deviations
per element against the perfect correlation (coherency
strength). The quality of a bicluster is defined by the type
and degree of tolerated noise. Figure 1 shows biclusters
with different coherency assumptions for an illustrative
symbolic dataset.

Definition 2 Given a matrix A, let the elements in a
bicluster aij ∈ B have coherency across rows (patterns on
rows) given by aij = kj + γi + ηij, where kj is the value
expected for column yj, γi is the adjustment for row xi,
and ηij is the noise factor (determining the quality of the
bicluster). Coherency across columns is identically defined
over the transposed matrix, AT . Let Ā be the amplitude of
values in A. Given A, coherency strength is a real value
δ ∈ [0, Ā], such that aij = kj+γi+ηij and ηij ∈ [−δ/2, δ/2].

Definition 3 The properties of aij elements define the
coherency assumption: constant when γ=0 and additive
otherwise. Multiplicative assumption is observed when aij
is better described by kjγi + ηij. Symmetries can be accom-
modated on rows, aijci where ci ∈ {1,-1}. Order-preserving
assumption is observed when the values along the subset
of columns induce the same linear ordering per row. A
plaid assumption considers the cumulative effects associ-
ated with elementar contributions frommultiple biclusters
on areas where their columns and rows overlap.

Definition 4 Given a bicluster B = (I, J), the bicluster
pattern ϕB is the set of expected values (kj) in the absence
of noise (ηij = 0) and adjustments (γi = 0) according to a
fixed ordering of columns: {kj | yj ∈ J}; while its support,
|I|, is the number of rows satisfying the pattern.

Consider the bicluster (I2, J2) = ({x1, x2}, {y1, y2, y4, y5})
in N

+
0 from Fig. 1 with an additive coherency assumption

across rows. This bicluster can be described by aij = kj+γi
with the pattern ϕ = {k1 = 1, k2 = 0, k4 = 1, k5 = 0},
supported by two rows with additive adjustments γ1 = 5
and γ2 = 1.
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Fig. 1 Symbolic pattern-based biclusters with varying coherency assumptions

Pattern-based Biclustering. The recently exploited syn-
ergies between biclustering and pattern mining paved the
rise of a new class of algorithms, generally referred as
pattern-based biclustering algorithms [13]. Pattern-based
biclustering algorithms are natively prepared to efficiently
find exhaustive solutions of biclusters and offer the unique
possibility to affect their structure, coherency and qual-
ity [13]. This behavior justifies the increasing attention
paid in recent years to this class of biclustering algo-
rithms by the bioinformatics community for biological
data exploration [11, 12, 14–17, 20].
Let L be a set of items. In the scope of pattern mining

research [21], a pattern is a frequent composition of items
P, either an itemset (P ⊆ L), association rule (P : P1 → P2
where P1 ⊆ L∧P2 ⊆ L) or sequence (P = P1 · · ·Pn where
Pi ⊆ L). Given a set of observations D={P1, ..,Pn}, let a
full-pattern be a pair (P,�P), where P is a pattern and �P
is the set of observations in D containing P. Let a closed
pattern to be a pattern without supersets with the same
support (∀P′⊃P|�P′ | < |�P|).
Given a real-valued matrixA, pattern-based biclustering

relies on mappings from A into D and on pattern mining
methods able to discover all closed full-patterns, which
are used to derive all maximal biclusters satisfying cer-
tain coherency (e.g. ηij < ε) and structure criteria (e.g.
|B| > p, |Ik| > θ , (

⋃
k Bk ∩ A) > τ ). A maximal biclus-

ter with regards to a specified homogeneity criteria is a
bicluster that cannot be extended with additional rows or
columns while still satisfying the target criteria. See [22]
for a detailed formal view on pattern-based biclustering.
In this context, a pattern-based biclustering solution is

optimal with regards to certain coherency, quality and
structure criteria. The optimality of pattern-based biclus-
tering algorithms is linked with their exhaustive and
unrestricted behavior, contrasting with peer greedy and
stochastic biclustering algorithms.
The major potentialities of pattern-based biclustering

against alternative biclustering approaches include the
possibility to: perform efficient searches with guarantees

of optimality [12]; discover biclusters with parame-
terizable coherency assumption and strength [11, 12];
guarantee robustness to noise, missing values and dis-
cretization problems through the possibility of assigning
or imputing multiple values or symbols to a single data
element [11]; discover structures with a non-fixed num-
ber and positioning of biclusters possibly characterized by
plaid effects [14, 16]; annotate biclusters with a measure
of their statistical significance [18]; extend their appli-
cability towards network data and sparse data matrices
[2, 17]; and incorporate domain knowledge from user
expectations, knowledge repositories and literature in the
form of constraints to guarantee a focus on biologically
relevant and non-trivial biclusters [22].

Related work. Following Madeira and Oliveira’s tax-
onomy [1], biclustering algorithms can be categorized
according to their homogeneity criteria (determined by
the underlying merit function) and type of search (defined
by whether the merit function is applied within a greedy
[7, 23], exhaustive [10, 11] or stochastic [9] algorithmic
setting). Hundreds of algorithms were proposed in the
last decade to discover biclusters satisfying specific forms
of homogeneity, as shown by recent surveys on biclus-
tering algorithms for biological data analysis [3–6]. As a
result, some of the algorithms with most visibility have
been made publicly available recurring to different soft-
ware, such as BicAT1 [24], biclust2 [25], Expander3 [10]
or BicOverlapper4 [26]. However, the available bicluster-
ing algorithms (regardless of whether they are provided or
not with adequate interfaces) assume very specific forms
of homogeneity and therefore do not support the enumer-
ated benefits of pattern-based biclustering approaches.
Table 1 synthesizes the inherent properties of the state-
of-the-art pattern-based biclustering algorithms and how
they tackle the problems of peer biclustering algorithms.
Despite their inherent benefits, they are not yet accessible
through adequate graphical or application programming
interfaces (GUI/API), and their contributions remain
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Table 1 Recent breakthroughs on pattern-based biclustering: algorithms and tackled limitations

Contribution Biological output Behavior Tackled limitations

Constant
Models
BicPAM [11]

Putative functional modules robust to
noise, such as co-expressed genes with a
regulatory pattern given by possibly
different expression levels across a subset
of conditions.

Algorithms consistently combining
preprocessing, pattern mining (itemsets
and association rules) and postprocessing
procedures to guarantee the flexibility
and robustness of the outputs.

Flexible structures; Exhaustive (yet
efficient) searches; Tolerance to
noise; Parameterizable coherence
strength.

Multiplicative
and Additive
Models
BicPAM [11]

Modules with shifting and scaling factors
to deal with the distinct responsiveness of
biological entities and handle biases
introduced by the applied measurement.

Iterative discovery of pattern differences
(shifts) and least common divisors (scales),
together with pruning strategies, to learn
additive and multiplicative models.

Precise modeling of shifting
and scaling factors across rows;
Flexible structure and
parameterizable quality.

Order
Preserving
Model
BicSPAM [12]

Coherent variation of gene expression or
molecular concentrations across samples
or within a temporal progression (such as
stages of a disease or drug response).

Biclustering is parameterized with enhanced
sequential pattern miners (by ordering
column indexes per row according to
the observed values) to flexibly discover
noise-tolerant orderings.

Surpasses efficiency and robustness
issues of exhaustive peers; Flexible
structures with guarantees of
optimality, addressing the
problems of greedy peers.

Symmetric
Bic(S)PAM
[11, 12]

Modules associated with biological
processes simultaneously capturing
activation and repression mechanisms
within transcriptomic, proteomic or
metabolic data.

Combinatorial sign-adjustments (together
with pruning principles) to model
symmetries and integrate them with
scales, shifts and orderings.

Discovery of non-constant
biclusters with symmetries;
Parameterizable properties.

Network
Modules
BicNET [17]

Coherentmodules in homo/heterogeneous
biological networks with weighted/labeled
interactions. Modules able to capture
non-trivial forms of behavior and
accommodate less-studiedbiological entities.

Extension of previous contributions towards
biological networks. For this end, new
data structures and searches are proposed
to effectively and efficiently deal with
the inherent sparsity of network data.

Discovery of non-dense modules;
Robustness to noisy and missing
interactions; Scalable for large
networks.

Plaid Model

BiP [14]

Overlapping regulatory influence in
expression data (cumulative effects that
multiple biological processes have on a
gene at a particular time) and network
data (cumulative effects in interactions
belonging to multiple modules).

Extended searches to recover excluded areas
(due to cumulative contributions on regions
where biclusters overlap) and to remove
noisy areas. New composition functions and
relaxations to deal with noise and non-linear
cumulative effects.

Addresses the exact additive plaid
assumption with relaxations; No
need for all the data elements to
follow a plaid assumption; Models
non-constant biclusters.

Constraints
BiC2PAM [19]

Biological modules in accordance
with user expectations (e.g. non-trivial
homogeneity, satisfying a given pattern
or preferred regulatory behavior (such as
repression)) or with consistent functional
terms.

Extended searches to benefit from
background knowledge, including:
constraints with succinct, anti-monotone
and convertible properties, and
incorporation of terms from knowledge
repositories.

Focus on regions of interest;
Efficiency gains; Removal of
uninformative values.

dispersed, being the possibility to consistently integrate
them still uncertain.

Implementation
BicPAMS (Biclustering based on PAttern Mining Soft-
ware) is the first tool consistently combining state-of-
the-art pattern-based biclustering algorithms and making
them available within usable interfaces (GUI and API).
Figures 2 and 3 provide snapshots of the graphical inter-
face of BicPAMS (where parameters P1 to P20 can be
used to determine the desirable properties of the output).
First, BicPAMS is described according to the possibilities
to parameterize the coherency, structure and quality of
its outputs, and the principles to guarantee the efficiency
of the underlying searches. We also visit additional con-
tributions of BicPAMS associated with the exploration of
potentialities inherent to the integration of pattern-based
biclustering algorithms. Second, we cover implementation
details associated with the behavior of BicPAMS and the
provided interfaces.

Pattern-based biclustering with BicPAMS
Coherency of biclusters. As highlighted in Table 1, Bic-
PAMS allows the search for a parameterizable coherency
assumption [P3]: constant overall, constant, multiplica-
tive, additive, symmetric or order-preserving. BicPAMS
also provides the possibility to robustly select the desir-
able coherency strength δ (such that ηij ∈[−δ/2, δ/2]). This
is done by fixing the length of the alphabet of discretiza-
tion |L| [P4], where δ ∝ 1/|L|. Furthermore, it allows for
the inclusion or neglection of symmetries [P9] in order
to effectively deal with both symbolic and real-valued
datasets with either positive and negative ranges of val-
ues or strictly positive ranges of values. Finally, BicPAMS
also offers the possibility to select coherency orientation:
whether verified on rows or columns [P16].

Structure of biclusters. BicPAMS relies on the itera-
tive application of dedicated pattern mining searches to
guarantee that biclustering can be performed in the pres-
ence of a meaningful stopping criteria [P12], such as the
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Fig. 2 BicPAMS: sound and parameterizable behavior (annotations in purple)

minimum number of (dissimilar) biclusters or minimum
percentage of the elements in the original dataset cov-
ered by the found biclusters. The minimum number of
rows [P12] (support) or columns [P13] of biclusters can
be optionally inputted to guide the search. Different pat-
tern representations can be used to affect the structure
[P15]: simple (all coherent biclusters), closed (all maximal
biclusters), and maximal (flattened biclusters with a high
number of columns). Furthermore, BicPAMSmakes avail-
able post-processing options with parameterizable criteria
tomerge and extend biclusters against the inputted homo-
geneity criteria and filter biclusters against to prespecified
dissimilarity criteria [P19,P20].

Quality of biclusters. BicPAMS provides multiple
strategies to guarantee robustness to noise. The user can

calibrate the desirable level of tolerance to noise through:
1) post-processing procedures by specifying the allowed
percentage of noisy elements within a bicluster [P5]; and
2) multi-item assignments by activating the possibility to
assign a parameterizable number of symbols per element
based on its original value [P8]. Similarly, BicPAMS
guarantees robustness to missing values [P10] by provid-
ing imputation methods and enabling the discovery of
biclusters with an upper bound on the allowed amount
of missing values (particularly relevant when biclustering
network data).

Efficiency. BicPAMS also relies on enhanced pattern
mining searches able to explore efficiency gains from
the biclustering task, inputted constraints and desir-
able structures [P17,P18]. BicPAMS supports frequent

Fig. 3 BicPAMS: textual and visual display of results
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itemset mining and association rule mining (including
Apriori-based, vertical or dedicated frequent pattern-
growth searches [21]), as well as sequential patternmining
(including state-of-the-art and dedicated searches [27]).
New searches based on annotated pattern-based trees
(F2G search [28]) and diffsets are implemented within
BicPAMS to surpass the problems associated with bitset-
based searches, as well as searches able to seize efficiency
gains from item-indexable properties (IndexSpan [29]).
These searches are integrated with heuristics, guarantee-
ing an effective pruning of the search space in the presence
of constraints such as minimum number of columns.
BicPAMS also makes available data structures to deal

with sparse data [17] that guarantee a heightened time-
and-memory efficiency in the presence of network data.

Finally, the application programming interface (API) of
BicPAMS can be used to explore additional efficiency
gains from non-optimal searches (mining approximate
patterns) and the application of pattern mining within
distributed/partitioned data settings.

Synergies. BicPAMS provides the unprecedented possi-
bility to consistently integrate the previously described
options, thus combining the contributions of BicPAM
[11], BicNET [17], BicSPAM [12], BiP [14], DeBi [15] and
BiModule [16]. Furthermore, BicPAMS can incorporate
background knowledge according to the contributions
made available in BiC2PAM [19], such as the possibil-
ity to remove uninformative elements. The API further

Table 2 BicPAMS: input data, major parameters, and output models

Input: Data P1 Matrix The accepted file formats include attribute-relation files (.ARFF) and standard matrix files (such as .TXT).
The first line of standard matrix files should specify the column identifiers, while the first entry of each
line should specify the row identifier. Tabular data can be either delimited by tabs, spaces or commas.

P2 Network BicPAMS accepts any input file format (such as .TXT or .SIG) assuming that: the first line specifies the
column identifiers, and each other line specifies an interaction/entry within the network. An entry
specifies the nodes and the association strength. Entries can be either delimited by tabs, spaces or
commas. In addition to the file, the column index identifying the first node, second node and
association strength needs to be inputted. Illustrating, for a network with header “idProteinA,
nameProteinA,idProteinB,nameProteinB,weight”, the user should fix (node1,node2,score) indexes as
(0,2,4) or (1,3,4). Finally, the user can specify whether each entry is directional from the first node towards
the second node or bidirectional. Bidirectional entries increase the density of the network.

Desirable
Biclustering
Models

P3 Coherency Assumption The coherency assumption defines the correlation of values within a bicluster. In constant models, an
observed pattern (possibly containing different items) is preserved across rows (or columns). In additive
or multiplicative models, shifting or scaling factors are allowed per row (or column) in order to allow
meaningful variations of the original pattern. In order-preserving models, the values per row induce
the same ordering across columns. A plaid model considers the cumulative effect of the contributions
from multiple biclusters on areas where their rows and columns overlap. Previous models can further
accommodate symmetric factors.

P4 Coherency Strength The number of items determines the allowed deviations from expected values. Illustrating, a gene
expression matrix parameterized with 5 items will have 2 levels of activation ({1,2}), 2 levels of
repression ({-1,-2}) and 1 level of unchanged expression ({0}). By going beyond the differential values,
BicPAMS enables the discovery of non-trivial yet coherent and meaningful correlations. To maintain
consistency, additive (multiplicative) models should be used with an uneven (even) number of items.
When considering order-preserving models, the number of items should be increased to balance the
degree of co-occurrences versus precedences.

P5 Quality This field specifies the maximum number of allowed noisy/missing elements (determining the
minimum overlapping threshold for merging procedures). The tolerance of biclusters to noise can
be additionally addressed using noise handlers (see mapping options) and alternative postprocessing
procedures.

P15 Pattern
Representation

Closed patterns (default option) enable the discovery of maximal biclusters (biclusters that cannot be
extended without the need of removing rows and columns). Maximal patterns gives a preference
towards flattened biclusters, possibly neglecting both vertical and smaller biclusters. Finally, the use of
simple/all frequent patterns leads to biclustering solutions with a high number of biclusters (possibly
contained by another bicluster), which can be useful to guide postprocessing steps. As the user specifies
one of these three options, the available pattern miners are dynamically updated.

P16 Orientation Coherency can be either observed across rows (default) or columns (searches are applied on the
transposed matrix). When the number of columns highly exceeds the number of rows (or vice-versa
when searches are applied on the transposed matrix), pattern miners with vertical data formats such
as Eclat should be preferred.

Output Upon successfully running BicPAMS, a textual and graphical display of the outputs is provided. The user
can select the level of details associated with the outputted biclustering solution (statistics only, list of
rows and columns per bicluster, disclosure of values per bicluster).
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Table 3 Additional parameters of BicPAMS along the mapping, mining and closing steps

Mapping
Options
(includes P4
from Table 2)

P6 Normalization Depending on the properties of the input data, the user can either normalize data per
Row, Column or for the Overall data elements or ignore normalization by selecting the
None option. Both outliers and missing values are handled separately.

P7 Discretization Real-valued data needs to be discretized to apply pattern-based biclustering (see noise
handling to understand how BicPAMs guarantees robustness to discretization drawbacks).
The user can select the cut-off points of a Gaussian distribution (default) or fixed ranges
of values (equal sized intervals after excluding outliers). Note that fixed ranges can lead to
an imbalanced distribution of items. The user can bypass this option for symbolic data by
selecting the None option.

P8 Noise Handler Multi-item assignments can be considered to handle deviations on the expected values
within a bicluster caused by noise or discretization issues. By selecting this option, 2 items
are assigned to elements with a value near a boundary of discretization (value in range c ∈
[a, b] when min(b-c, c-a)/(b-a)<25%). In this context, a data element becomes associated
with a varying number of items, thus increasing the size of data for analysis.

P9 Symmetries This option is dynamically selected if the input data is composed by positive and nega-
tive values (as it naturally affects the properties of the outputted biclusters). When using
symmetric ranges, additive (multiplicative) models should be parameterized with an odd
(even) number of items to guarantee consistent shifts (scales).

P10 Missings Handler The user can specify what happens in the presence of missing values. Since BicPAMS is
natively prepared to analyze sparse data, the Remove option (default) simply signals the
algorithms to exclude missings from the searches. Alternatively, the Replace option uses
WEKA’s imputation methods to fill missings (the error of imputations can be minimized
by simultaneously activating a noise handler). We suggest the use of Remove option for
network data and other meaningfully sparse datasets since BicPAMS is able to discover
biclusters with missing interactions (see Quality parameter).

P11 Remove Uninformative Elements This option supports the possibility to remove uninformative data elements. Zero Entries
can be selected to remove the {0}-items, while the Differential option is used to focus
on items with high absolute value (e.g. {-3,-2,2,3} when |L|=6). Uninformative elements
may correspond to: 1) weak interactions in networks, 2) unchanged expression, 3) healthy
evaluations from clinical data, among others.

Mining
Options
(includes P3,
P15 and P16
from Table 2)

P12 Stopping Criteria The search algorithm runs until any of the available stopping criteria is met. The available
options are: 1) minimum number of biclusters before merging (default), 2) minimum cov-
ered area by the discovered biclusters (as a percentage of the elements of the input data
matrix or network), and 3) minimum support threshold (minimum number of rows per
bicluster specified as a fraction of overall rows). The value associated with the selected
option should be additionally specified. We suggest the definition of a high number of
biclusters (>50) as the default option, in order to guarantee an adequate exploration of
the input dataset.

P13 Minimum 
Columns The minimum number of columns per bicluster can be optionally inputted to promote
efficiency and align the outputs according to user expectations. A good principle to fix
this value is to use the square root of the number of columns (interactions per nodes) of
the input matrix (network).

P14 
Iterations BicPAMS default behavior relies on two iterations. For data with large coherent regions
that may prevent the discovery of smaller (yet relevant) regions, the number of iterations
can be increased to guarantee their discovery. On every new iteration, 25% of the most
selected data elements (from the biclusters discovered from the previous iteration) are
removed to guarantee a focus on new regions. 3 iterations already guarantee an adequate
space exploration for hard data settings.

P17 Pattern Miner The available pattern mining algorithms are dynamically provided based on the selected
coherency assumption and pattern representation. Sequential pattern miners (SPM) are
provided for order-preserving models: PrefixSpan and IndexSpan (an optimized algo-
rithm able to explore gains in efficiency from the item-indexable properties) are made
available for simple pattern representations, while BIDE+ is provided for closed pattern
representations. Frequent itemset miners (FIM) are selected for the remaining coherency
assumptions. AprioriTID, F2G (pattern-growth method for data with a large extent of
coherent areas) and Eclat (vertical method for data with a high number of columns)
are made available for simple pattern representations. CharmDiffsets, AprioriTID and
CharmTID are made available for closed pattern representations, while CharmMFI with
diffsets is provided for maximal pattern representations.

P18 Scalability This option specifies whether data partitioning principles are applied or not to guarantee
the scalability of the searches (only suggested for data with >100 Mb).
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Table 3 Additional parameters of BicPAMS along the mapping, mining and closing steps (Continued)

Closing Opt.(includes P5) P19 Merging Different merging procedures are made available (according to [29]): heuristic (default
option) for an efficient quasi-exhaustive merging; and combinatorial and multi-support
FIM alternatives for an exhaustive yet more costly postprocessing step.

P20 Filtering Filtering is essential to guarantee compact solutions (applied after merging). A biclustered
is filtered if it has not enough Dissimilar Elements, Dissimilar Rows or Dissimilar Columns
against a larger bicluster. Considering a filtering option with 20% of dissimilar elements. In
this context, biclusters sharing more than 80% of their elements against a larger bicluster
are removed.

supports the specification of constraints and the inte-
grative biclustering analysis of experimental data with
annotations derived from knowledge repositories.
In this context, although BicPAMS offers an environ-

ment with a substantial number of parameters, it makes
available default and dynamic parameterizations that are
suitable for the majority of data contexts (see Table 4).
Furthermore, BicPAMS explores efficiency gains from

particular combinations of parameters. This is, for
instance, the case when BicPAMS is applied with multiple
coherency or quality criteria at a time. In this context, the
search benefits from new heuristics (based on the prin-
ciple that biclusters with stricter coherency or quality are
contained in biclusters with more flexible coherency or
quality) and the joint application of pre- and postprocess-
ing procedures.

On how to use BicPAMS
Input and output. BicPAMS supports the loading of
input data according to a wide-variety of tabular and
network data formats (see Tables 2 and 3). Upon run-
ning BicPAMS, when the stopping criteria is achieved, a

success message is displayed, enabling the visualization
of the output. Both graphical and textual presentations
(heatmaps and signal signatures) of the found biclus-
ters are provided. Biclusters can be filtered, sorted and
exported to be stored in knowledge bases or visualized on
alternative software.
Figure 4 provides an illustrative application of Bic-

PAMS for an inputted dataset (either in network or matrix
format), showing the outputted biclusters for varying
coherency assumptions. For this analysis, we assumed
|L| = 4, fixed discretization ranges and the assignment of
multi-items for an adequate tolerance to noise.

Graphical interface (GUI). The desktop interface can be
used to soundly parameterize pattern-based biclustering
algorithms, as well as to visualize their output. Figures 2
and 3 provide illustrative snapshots. Soundness is guar-
anteed by: performing automatic form checks, disabling
inconsistent fields when specific parameters are selected,
and adequately displaying possible causes of errors (such
as timeout alerts for heavy requests or data format
inconsistencies).

Fig. 4 Illustrative application of BicPAMS: input data and output biclusters



Henriques et al. BMC Bioinformatics  (2017) 18:82 Page 9 of 16

Console, API and source-code. Alternatively to the pre-
vious interfaces, BicPAMS makes available a console
to facilitate its invocation within language-independent

scripts, as well as a Java API, the respective source code
and the accompanying documentation. The API is essen-
tial to: extend the behavior of pattern-based biclustering

Table 4 Default and dynamic/data-driven parameterizations of BicPAMS

Parameter Value Notes

Major
parame-
ters

P3
Coherency
assumption

Constant
assumption

A default assumption considers a (possibly noise-tolerant) constant pattern on a subset
of rows/columns/nodes, providing an adequate degree of flexibility (superior to biclusters
with differential/dense values or constant values overall) well suited for initial analyzes.

P4 Coherency
strength

|L|=5 or
δ=Ā/5

Adequate sensitivity to different levels of expression ({-2,-1} {0} and {1,2} sets of symbols
correspond to down-regulation, preserved and up-regulation) or association strength.
Multiple symbols can be assigned to a single real-valued element to guarantee robustness
to noise.

P5 Quality 80% Guarantees an adequate tolerance to noise, allowing biclusters to have up to 20% of noisy
values.

P15 Pattern
representation

Closed Closed pattern representations enable the discovery of maximal biclusters (biclusters that
cannot be extended without removing rows or columns).

P16
Orientation

Patterns
on rows

In accordance with Def.2. Considering expression data where rows correspond to genes, a
bicluster with coherency across rows is defined by a group of genes with the same pattern
along a subset of conditions. When rows correspond to conditions, a less-trivial bicluster
is given by a group genes with preserved expression spanning a subset of conditions.

Mapping
options

P6
Normalization

Row Normalization of values per biological entity or sample.

P7
Discretization

Gaussian Cut-off points of a learned Gaussian curve to minimize imbalanced distributions of items.

P8 Noise
handler

None By default multi-item assignments are deactivated for an easy interpretation of results.
Nevertheless, we suggest the selection of multi-item assignments to guarantee a height-
ened robustness to discretization drawbacks and noise.

P9
Symmetries

Dynamic Symmetries are dynamically selected if the inputted data has negative values. This option
can be deactivated to force the biclustering task to not distinguish positive from negative
values.

P10
Missings
handler

Remove Remove is suggested since Quality P5 is already in place to accommodate missing values
within biclusters. Nevertheless, Replace option is suggested for data with a considerable
amount of missing values.

P11 Remove
uninformative
elements

None By default, no items are removed. Alternative options should be only selected in the pres-
ence of knowledge regarding uninformative elements, such as non-differential expression
or loose interactions.

Mining
options

P12
Stopping
criteria

50 biclusters Aminimumnumber of 50 biclusters (before postpro cessing) is suggested by default since
the combination of this option with the quality and dissimilarity criteria leads to a com-
pact set of dissimilar biclusters. This number (as well as the number of iterations) can be
increased to guarantee more complete solutions for complex or large datasets.

P13 Min.

columns

4 Although maximal biclusters have at least 4 columns by default, this number should be
increased for datasets where biclusters have a significantly higher number of columns.

P14

Iterations

2 Guarantees the removal of small and highly coherent regions in the dataset (after the 1st
iteration) to enable the discovery of less-trivial biclusters. This number can be increased to
promote a more even distribution of biclusters across the regions of the inputted data.

P17
Pattern miner

Dynamic From empirical evidence, CharmDiff is suggested for closed patterns, CharmMFI for maxi-
mal patterns, and F2G for simple patterns. When order-preserving coherency is inputted,
IndexSpan is suggested by default.

P18
Scalability

Dynamic Option activated in the presence of very large datasets (>20 million elements under a
constant assumption and>1million elements for the remaining coherency assumptions).

Closing P19 Merging Heuristic Guarantees an efficient yet quasi-exact postprocessing.

P20 Filtering 40% dissimilar
elements

Guarantees an adequate level of dissimilarity. Biclusters sharing more than 60% of their
elements with a larger bicluster are removed.
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algorithms for other tasks (such as classification and
indexation), and adapt the current behavior to guarantee
an optimum ability to handle biological data with specific
regularities. Detailed scenarios showing advanced possi-
bilities made available in the API of BicPAMS are provided
in the software’s webpage.

Parameters. The behavior of BicPAMS can be controlled
along its three major stages. First, parameters along the
pre-processing stage include: coherency strength (given
by the number of items |L| [P4]), normalization [P6],
discretization [P7], imputation [P10], non-informative
elements [P11], and the noise range ηij for multi-item
assignments [P8]. Second, parameters along the mining
step include: coherency assumption [P3] and orientation
[P16], stopping criteria (such as minimum number of
dissimilar biclusters) [P13], expectations (such as mini-
mum number of columns) [P14], pattern representation
[P15], and algorithmic choice [P17]. BicPAMS supports
the parameterization of two post-processing procedures:
maximum degree of noisy or missing elements per biclus-
ter (using merging procedures [29]) [P5/P19] and dissim-
ilarity criteria (using filtering procedures [11]) [P20]. The
API further provides the possibility to specify a desir-
ableminimumhomogeneity threshold to extend or reduce
the target biclusters according to a parameterizable merit
function [11].
Tables 2 and 3 provide an in-depth description of each

of these parameters, showing their default values and
how they can be modified according to the properties
of the input data and desirable outputs. For an exhaus-
tive exploration of biological data without apriori knowl-
edge of the desirable outputs, BicPAMS can be iteratively
applied with varying coherency assumptions, coherency
strength (|L| ∈ {3, 4, 5}) and quality ({60%, 80%, 100%}).
Table 4 discusses the default and data-driven parameteri-
zations provided by BicPAMS, showing their adequacy for
exploratory yet robust biological data analysis.

Scalability/limits. Although biclustering is inherently a
computationally complex task, BicPAMS is natively pre-
pared to analyze large-scale matrices/networks (>1 Gb)
and, under strict optimality criteria, data with more than
one million of entries (∼200 Mb). BicPAMS provides the
possibility to select data partitioning procedures. Assum-
ing coherency across rows (patterns on rows), partioning
procedures should be applied when (|X| > 20000 ∧ |Y | >

λ × 1000) is satisfied for the constant assumption (λ = 1)
or remaining coherency assumptions (λ = 0.1). In this
context, BicPAMS is able to efficiently analyze expression
data with more than 20000 genes (magnitude of human
genome) in hundreds of conditions, as well as over sparse
biological networks with over 20000 nodes.

Testing cases. Synthetic data (resembling biological
data), gene expression data and biological networks with
>100 Mb are provided with BicPAMS for testing pur-
poses. In BicPAMS webpage, we provide study cases using
both synthetic and real data with varying properties to
illustrate the multifaceted potentialities of the software.

Results
Additional file 1 provides extensive experiments that
extend the already available assessments of pattern-based
biclustering algorithms [2, 11, 12, 14–16] towards: new
synthetic and real data, and new performance views
(including metrics of completeness, precision and accu-
racy). In these experiments, the performance of 15 distinct
biclustering algorithms was for the first time compared for
data contexts with varying size, regularities, and amount
and type of noise. The gathered results confirm the enu-
merated advantages of BicPAMS, including its unique
ability to efficiently find exhaustive and flexible solutions
with superior robustness to noise.
Follows a brief analysis of some of the results gath-

ered from applying BicPAMS to discover regulatory
modules in expression and network data. Additional
file 1 extends these analyzes (concerning both the func-
tional enrichment and transcriptional regulation of the
discovered modules) and demonstrates the relevance
and completeness of pattern-based biclustering outputs
against the outputs produced by alternative state-of-the-
art biclustering algorithms. The biological relevance of
the biclusters was given by the assessment of the over-
represented functional terms using an hypergeometric
test after Bonferroni correction. We considered a term to
be highly enriched if it has a corrected p-value below 0.01.

Case studies on expression data analysis. Three
gene expression datasets were used: dlbcl dataset (660
genes, 180 conditions) gathering human responses to
chemotherapy [30], hughes dataset (6300 genes, 300 con-
ditions) to analyze nucleosome occupancy [31], and gasch
dataset (6152 genes, 176 conditions) with Yeast responses
to environmental stimuli [32]. The goal is to discover
coherent expression patterns corresponding to known
and putative transcriptional modules associated with the
experimental goal (such as elicited immune responses
in dlbcl and stress responses in gasch). Table 5 pro-
vides a functional enrichment analysis of pathways, cell
lines, transcription factors (TFs) and gene ontology (GO)
terms associated with 182 pattern-based biclusters found
in the dlbcl dataset. BicPAMS was applied with a con-
stant coherency assumption, multi-item assignments, 80%
quality, 50% dissimilarity and 3 iterations. The number
of genes per bicluster varies between 89 and 166. The
enrichment was computed using the Enrichr web tool
[33] against terms from the following databases: KEEG,
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Table 5 Analysis of the highly enriched terms (p-value below 0.01 after correction using Enrichr [33]) for the 182 pattern-based
biclusters found with BicPAMS in the dlbcl dataset (human cellular responses to chemotherapy) against multiple repositories: pathway
databases (KEEG, WIKI, Reactome and BioCarta), human PPIs, GO, NCI-60 and cancer cell line Encyclopedia, Human Gene Atlas and
MSigDB

Database Avg. 
terms
(p<0.01) per
bicluster

Summary

Pathways KEEG
Pathways

23 ± 11 Each of the 182 biclusters has a compact set of coherent and significantly enriched pathways in the KEEG
database. There is a high dissimilarity (low overlapping) of enriched pathways between biclusters. To illus-
trate the relevance of enriched pathways to characterize the putative biological role per bicluster, consider
the following four discovered biclusters {BK1,BK2,BK3,BK4} with terms showing a corrected p-value below
1E-8. BK1 has enriched responses to antigens, including the signaling of FCER1 (controls the production of
immune mediators) and NF-kappa pathways. BK2 shows enrichment of more global pathways associated
with cancer and immunodeficiency. BK3 has enriched antigen processing and presentation, as well as path-
ways related with a diversity of autoimmune infections. BK4 is associated with B-cell receptor signaling as
expected in chemotherapeutic regulation and pathways regulating the proliferation of (cancerous) cells.

WIKI
Pathways

20 ± 7 Although dissimilarity of WIKI pathways between biclusters is also observed, the overlapping degree of
pathways is higher than previous KEEG-based analysis. Consider the highly enriched terms (corrected p-
value below 1E-8) for three randomly selected biclusters {BW1,BW2,BW3}. BW1 shows enriched signaling
pathways associated B-Cell receptor, including signaling of type II interferon, TCR, almost all IL families,
chemokine, and TSLP. BW2 has genes closely matching the genes associated with the B-Cell receptor sig-
naling pathway. Finally, BW3 has enriched pathways involved in preventing cell proliferation (as expected
after chemotherapy), including G1 to S cell cycle control.

Reactome
Pathways

69 ± 37 The found biclusters have in average a higher number of enriched pathways in the Reactome than in
peer databases. Considering two randomly selected biclusters {BR1,BR2} and pathways with enriched p-
values below 1E-14 after correction. BR1 has enriched pathways associated with immune responses and
B-signalings, including cytokine signaling in immune system, interferon signaling, adaptive immune system
and immunoregulatory interactions between lymphoid and non-lymphoid cells. BR2 has enriched path-
ways associated with antigen activation of B-cell receptor and control of cell proliferation (including mitotic
G1-G1/S phases, and G1/S and M/G1 transitions).

BioCarta
Pathways

5, 5±2, 5 The found biclusters are associated with small and dissimilar sets of enriched pathways in the BioCarta
database. BioCarta provides unique pathway knowledge, being essential to guarantee a more complete
view of the putative roles of biclusters. Let us consider the enriched pathways for 3 randomly selected
biclusters, {BW1,BW2,BW3}. BW1 is associated with T-cell receptor (TCR) pathways, including TCR activation
by tyrosine kinases, TCR apoptosis and TCR signaling. Similarly to WIKI pathways, BW2 is associated with the
signaling of B-cell receptor (BCR) and BW3 with the control of cancerous cell proliferation (inc. regulation of
DNA replication and p53 signaling).

Cell lines NCI-60 Cancer
cell lines

5, 3±2, 1 The majority of biclusters shows a compact set of enriched cell lines – group of genes with unexpect-
edly high or low expression against remaining cell lines – with few overlapping cell lines between pairs of
biclusters. This analysis is key t unravel unique properties of the lymphoma targeted by each bicluster. To
illustrate, consider three randomly selected biclusters, {BN1,BN2,BN3}: BN1 was found to be primarily related
with follicular lymphoma (RS11846 cell line with corrected 7.9E-9 p-value); BN2 was found to be associated
with immunoblastic lymphoma (SR cell line with corrected 4.2E-10 p-value); and the {MOLT4,SW620,RPMI}
cell lines enriched in BN3 (with corrected p-values below 1E-8) are associated with T-acute lymphoblastic
leukemia, adenocarcinomas and chronic myelogenous leukemia.

Cancer
cell line
Encyclopedia

47 ± 30 The majority of enriched cancer cell lines were found to be associated with tumors of the hematopoi-
etic and lymphoid tissues. In general, each bicluster shows an unique set of enriched cell lines. Consider
3 randomly selected biclusters {BC1,BC2,BC3} with enriched cell lines (corrected p-value below 1E-10):
{DOHH2,KARPAS422,HS611T,WSUDLCL2,HT,SUDHL6} cell lines directly related with diffuse large B-cell
lymphoma were enriched in BC1; {MOTN1,ALLSIL,MOLT16} cell lines related with (childhood) T acute
lymphoblastic leukemia were enriched in BC2; and {HUT102,EHEB,JVM2} cell lines either pertaining to
B-lymphoblastoid or mantle cell lymphoma were enriched in BC3.

Human Gene Atlas 4 ± 1, 4 The analysis of terms enriched in the human gene atlas is pertinent to understand the types of cells more
likely to be affected by the putative biological responses modeled per bicluster. A few biclusters were found
to be associated with effects on the whole blood cells, while the remaining majority of biclusters model
more specific biological responses thus showing enrichment on specific types of cells. Considering four
randomly selected biclusters {BH1,BH2,BH3,BH4}, we found 721 B lymphoblasts and CD19+ B cells (with p-
values below 1E-6) associatedwith BH1, lymphoma burkitts (both Daudi and Raji with p-values below 7.2E-4)
associated with BH2, CD14+ Monocytes, CD4+ Tcells, CD8+ Tcells (with p-values below 1E-4) associated
with BH3, and CD33+ Myeloid and D56+ NKCells (with p-values below 1E-6) associated with BH4.
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Table 5 Average number of highly enriched terms (p-value below 0.01 after correction using Enrichr [33]) for each of the 182
pattern-based biclusters found with BicPAMS in the dlbcl dataset (human cellular responses to chemotherapy) against multiple
repositories: pathway databases (KEEG, WIKI, Reactome and BioCarta), human PPIs, GO, NCI-60 and cancer cell line Encyclopedia,
Human Gene Atlas and MSigDB (Continued)

MSigDB Oncogenic Signatures 9 ± 1, 5 The Molecular Signatures database (MSigDB) tests the enrichment of genes with potential to cause cancer.
Interestingly, the majority of the discovered biclusters have a single delineated oncogene (signature with
considerably higher enrichment than peer signatures). A few illustrative signatures include: VEGFA UP with
V1 DN (8.2E-8) corresponding to genes down-regulated by treatment with angionic factor VEGFA; RPS14
DN with V1 UP (4.3E-11) corresponding to genes up-regulated in CD34+ hematopoietic progenitor cells
after knockdown of RPS14; or CAMP UP with V1 UP (3.4E-9) associated with genes up-regulated in primary
thyrocyte cultures in response to cAMP signaling. This knowledge further discriminates the putative role of
each bicluster.

Regulation Transcription
factors

11 ± 3 Compact and dissimilar sets of TFs were found to be associated with the found biclusters. Illustrating
{STAT5A,STAT3,NFKB1}, {AIRE,ESR1,FOXP3,POU5F1,TP53} and {ILF2,CDKN1B,CCND1,UPF1} sets of TFs (with
corrected p-values below 1E-3) were observed for three randomly selected biclusters. The analysis of TFs is
essential to understand the putative regulatory mechanisms modeled by each bicluster. A more detailed
analysis of enriched TFs per bicluster is provided in Additional file 1.

PPI Hub
Proteins

83 ± 14 This analysis shows the proteins enriched per bicluster acting as hubs in interaction networks. Despite the
large number of enriched hubs per bicluster, it is interesting to notice that biclusters show a low number
of overlapping hub-proteins with each other. The analysis of four randomly selected biclusters revealed
the {PTPN6,JAK2,CBL}, {GABARAPL1,GABARAPL2, GABARAP}, {SHC1,IL7R,SRC} and {MCC,SLC2A4,CDK1} sets
of hub proteins with corrected p-values below 1E-10.

Gene
Ontology

GO Biological
processes

298± 90 All biclusters show a high number of functionally coherent terms associated with cellular biological pro-
cesses. An analysis of the enrichment for some biclusters is provided in Table 6. Complementary analyzes
are provided in Table 9.

GO Cellular
component

28 ± 16 The analysis of the enriched cellular components provides complementary information to characterize
the putative biological role of each bicluster. Given two randomly selected biclusters from the set of 182
biclusters: one bicluster was associatedwith cytosol and chromatin-related components (corrected p-values
below 1E-10), while the other with cell surface and membranes (<1E-10). Unlike biological processes, a few
pairs of biclusters share some cellular components.

GO Molecular
function

21 ± 7 Similarly to cellular components, the knowledge of the enrichedmolecular functions can be used to enlarge
the GO-based analysis of biclusters. Each bicluster was found to be associated with a compact set of molec-
ular functions consistently related with the molecular mechanisms underlying immunological responses
to chemotherapy. Considering two randomly selected biclusters: the first bicluster showed enriched terms
(with corrected p-values below 1E-6) associated with antigen binding and the binding of amide, protein
complexes and small proteins (inc. chemokine receptor); while the second bicluster showed enriched terms
(<1E-6) associated with protein kinase binding and regulation, structure-specific DNA binding, and ATPase
activity.

WIKI, Reactome and BioCarta, human PPIs, Gene Ontol-
ogy, NCI-60 and cancer cell line Encyclopedia, Human
Gene Atlas and MSigDB. Each database annotates groups
of genes with dedicated terms. Table 5 shows that all
the biclusters found are associated with dissimilar sets of
coherent terms. The analysis of enriched pathways, TFs,
cancer cell lines, target cells, oncogenic signatures andGO
terms confirm that the discovered biclusters are associ-
ated with meaningful and well-defined putative cellular
responses to chemotherapy. Similar analyzes were con-
ducted for the hughes and gasch data, revealing an iden-
tical average number of enriched pathways per bicluster
and a significantly higher average number of enriched TFs
and GO terms per bicluster.
Table 6 lists a compact subset of biological processes

with significantly enriched terms for pattern-based biclus-
ters found in dlbcl, hughes and gasch datasets. The
analysis of the enriched transcription factors (TFs) of

these modules confirms their role in regulating cellular
responses to chemotherapy (human) [34] and stress con-
ditions (yeast) [35]. Table 7 further shows the properties of
an illustrative subset of pattern-based biclusters with high
biological significance as verified by the number of highly
enriched terms after Bonferroni correction. These biclus-
ters could not be identified by peer biclustering methods
due to the presence of noise-tolerant patterns with mul-
tiple expression levels (B1, B2 and B5) and non-constant
coherency assumptions (B3, B6, B8). Additional file 1:
Tables S6–S9 further stress the relevance of discovering
biclusters with plaid, ordering-preserving and symmetric
assumptions.
Figure 5 plots four pattern-based biclusters from gasch

data with distinct coherent responses of genes to heat
shock at different points in time. These biclusters rely on
constant, multiplicative, additive and symmetric assump-
tions, each associated with noise-tolerant patterns with
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Table 6 Illustrative set of terms highly enriched in BicPAMS biclusters

Dataset ID Terms Bicluster with
best p-value


Genes in
best bicluster

dlbcl Dl1 Translation processes (including translational initiation and elongation) 4.49E-5 81
Dl2 Transmembrane-related processes (including Golgi apparatus and MHC protein complex) 5.40E-5 83
Dl3 Defense response; processes related with intra-cellular communication, including receptor activity 4.91-5 162
Dl4 Innate immune responses, including response to interferon-gamma 1.06E-4 58
Dl5 Cellular responses to chemical stimulus, including response to cytokine stimulus 0.001 60
Dl6 Processes targeting the membrane-enclosed lumen associated with the cell cycle process 2.92E-12 81
Dl7 Immune system processes 1.27E-4 52

hughes H1 Mitochondrion organization and translation; mitochondrial matrix 2.70E-39 416
H2 Processes concerning the cell periphery and sporulation; cell wall constituent and organization 1.73E-4 370
H3 Ribonucleoprotein complex biogenesis 3.61E-30 426
H4 Metabolic and biosynthetic processes of cellular amino acids and carboxylic acids 1.3E-25 581
H5 Metabolic processes of organonitrogen and sulfur compounds 1.62E-4 504

gasch G1 Cellular response to oxidative stress; generation of precursor metabolites and energy 2.37E-4 296
G2 Processes to generate precursor metabolites and energy, including the tricarboxylic acid cycle 1.16E-14 954
G3 Retrotransposon nucleocapsid; viral procapsid maturation 4.34E-6 102
G4 Processes targeting the intracellular organelle lumen and nuclear lumen 1.17E-47 263
G5 Nucleolus; ncRNA metabolic processes 1.03E-61 611
G6 Intracellular non-membrane-bounded organelle; structural molecule activity 5.33E-76 293
G7 Processes targeting the cytosolic part and, in particular, the ribosomal subunit 1.61E-88 460
G8 Mitochondrion organization; mitochondrial part; biogenesis of certain protein complexes 2.06E-26 592
G9 Regulation of macromolecular biosynthetic processes; protein modification 2.28E-13 1019
G10 Organic substance catabolic and metabolic processes (including carbohydrates) 1.02E-15 648
G11 General processes associated with ribonucleoprotein complex biogenesis 1.08E-94 784

Table 7 Illustrative set of biologically relevant biclusters with different properties

Dataset ID Pattern |L|
(items)

Coherency
assumption

Postprocessing 
Genes 
Conds 
p−values
<0.01


p−values
[0.01,0.05]

Best
p-value

dlbcl B1 FAABFFF 6 (A-F) constant Merging with tight overlapping 83 7 41 21 1.97E-10
B2 AAAABCAA 3 (A-C) constant Extensions allowed (tight merging) 153 8 9 1 2.27E-12
B3 AAAAA/../EEEEE 5 (A-E) multiplicative Reducing with high homogeneity 119 5 5 18 4.12E-8

hughes B4 EEECEE 5 (A-E) constant Merging allowed 581 6 12 7 1.31E-25
B5 CCDCBCBCCC 5 (A-E) constant Merging with relaxed overlapping 654 10 16 4 1.31E-17
B6 AAAAAA/... 7 (A-G) additive Merging with tight overlapping 476 6 12 10 1.92E-6

gasch B7 AAAGGGA/... 7 (A-G) multiplicative Merging with tight overlapping 483 7 57 10 1.24E-81
B8 AAABACCCAA/... 5 (A-E) additive Merging allowed 521 10 17 5 4.57E-12

Fig. 5 Pattern-based biclusters retrieved from gasch data following a constant assumption with symmetries a, multiplicative assumption with
symmetries (b), and additive assumption c and d
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Table 8 Biological networks used to experimentally assess BicPAMS

Type Source Organism 
Nodes 
Interactions Density Notes on the weight of interactions

GI (gene interactions) DryGIN Yeast 4455 191309 1.0% Weights (65% negative) from double-mutant arrays [36].

GI (gene interactions) STRING Yeast 6314 3759902 1.1% Known and predicted associations benchmarked from
multiple data sources and literature (text mining),
and combined through an integrative score [37].

PPI (protein interactions) STRING E. Coli 8428 3293416 4.6%
PPI (protein interactions) STRING Human 19247 8548002 2.3%

Table 9 Biological role of a subset of BicPAMS’ modules with varying properties

ID Homogeneity 
Nodes
|I| × |J|

Putative biological functions: enriched terms (p <1E-10)

STRING (yeast) Y1 dense (high noise-tolerance) 231×14 Metabolic processeswith incidence on peptide, protein and amidemetabolism
and biosynthesis.

Y2 dense (medium noise-tolerance) 217×9 Metabolism of nitrogen compounds and other organic substances.
Y3 constant (few high aij) 103×8 Amino acid activation and tRNA metabolism for aminoacylation.
Y4 constant (few high or low aij) 55×7 Signal transduction and its related subterms.
Y5 constant (few high or low aij) 43×6 Phosphorylation terms (with more incidence on protein phosphorylation).

Y6 order-preserving 176×12 Transport of organic acids (incidence on aminoacid transmembrane transport).
Y7 order-preserving 235×9 Oxidation-reduction process and metabolism of aminoacids.
Y8 order-pres. (few high aij) 146×8 Transport of molecules (highest enrichment found for drug transmembrane).

STRING (human) H1 dense (high noise-tolerance) 811×28 Multiple metabolic processes with incidence on transcription activity.
H2 constant (few high aij) 693×14 Regulation of intracellular signal transduction (over twenty highly enriched

terms).
H3 constant (few high aij) 645×10 Regulation of molecular functions with incidence on catalytic activity.
H4 order-preserving 720×24 Establishment of protein localization (protein targeting to ER and membrane).
H5 order-preserving 733×29 Protein phosphorylation and its subterms.

DryGIN D1 dense (high noise-tolerance) 28×17 Organelle localization (establishment of spindle and nuclear localization).
D2 constant (with pos&neg aij) 22×10 Chromatin remodeling and nucleosome organization.
D3 constant (with pos&neg aij) 21×7 Transport processes for the establishment of protein localization.
D4 constant (with pos&neg aij) 19×9 Regulation of growth (with incidence on filamentous growth).
D5 order-preserving 39×7 Organelle and nucleous organization.
D6 order-preserving 54×6 Negative and positive regulation of cellular metabolic processes.

Table 10 Relevance and exclusivity of BicPAMS’ solutions: properties of some of the found modules in DryGIN

ID Type 
Nodes |I| × |J| Items 
Enriched terms Details

DryGIN G1 constant 18×9 {-4,..,-1} 27 Module with coherently strong (–4) and soft (–1) negative
interactions.

G2 symmetric 4×9 {-3,..,3} 13 Module with multiple levels of strong (mainly positive)
interactions ({±3,±2}).

G3 symmetric 5×6 {-2,-1,1,2} 12 Module with either all negative or positive interactions per
“row”-node ({±1,±2}).

G4 constant 7×5 {1,2} 12 Module with coherent strong (2) and soft (1) positive
interactions.

G5 symmetric 7×5 {-2,-1,1,2} 11 Module with either all negative or positive interactions per
“row”-node ({±1,±2}).

G6 order 14×11 {-3,..,3} 25 Preserved precedences and co-occurrences per “row”-node
before postprocessing.

G7 order 42×8 {-2,-1,1,2} 50 Noise-tolerant module with mostly preserved orderings per
“row”-node.
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five expression levels (|L| = 5). Understandably, alterna-
tive state-of-the-art biclustering algorithms are not able to
discover identical biclusters due to the restrictive assump-
tions they place on the underlying homogeneity criteria.

Case studies on network data analysis. Four biolog-
ical networks were extracted from DryGIN [36] and
STRING v10 [37] databases (Table 8). The goal is to dis-
cover putative functional modules given by non-trivial yet
coherently interconnected subsets of biological entities.
Table 9 illustrates some of all highly enriched biclusters
discovered by BicPAMS over the biological networks in
Table 8, gathering modules with varying: tolerance to
noise (0–15% noisy interactions per bicluster), amount of
missing values (0–20% missing interactions per bicluster),
coherency assumptions (dense/differential, constant and
order-preserving) and coherency strength (D1-D4 biclus-
ters withL = {−2,−1, 1, 2},Y1−Y4 andH1−H2 withL =
{1, 2, 3},Y5 and H3 with L = {1, 2, 3, 4}). The biclusters
were discovered using multi-item assignments to guaran-
tee their robustness to noise. The results show that all
biclusters have highly enriched terms, and the enriched
terms per bicluster were also found to be taxonomically
related (see Additional file 1). These results further sug-
gest that the found modules are characterized by cohe-
sive putative biological functions. Table 10 characterizes
some the enriched pattern-based biclusters, reinforcing
the role of BicPAMS to find modules with varying shape,
coherency and quality; non-trivial yet biologically mean-
ingful as shown by the number of enriched terms after
correction.

Conclusions
BicPAMS consistently integrates the state-of-the-art con-
tributions from pattern-based biclustering within graphi-
cal, scripting and application programming interfaces for
the analysis of biological data. BicPAMS is essential for the
user-assisted unsupervised exploration of biological data
as it overcomes the commonly placed restrictions by peer
biclustering algorithms and provides the unprecedented
possibility to parameterize the properties of the bicluster-
ing solutions. Unprecedentedly, BicPAMS offers the pos-
sibility to customize the coherency (including coherency
assumption, orientation and strength), quality (including
tolerance to noise and missing values), structure and sta-
tistical significance (including minimum number of rows
and/or columns) of the outputted biclusters. BicPAMS
is applicable to dense or sparse, symbolic or real-valued
data, and optionally able to incorporate domain knowl-
edge. In order to guarantee the usability of this paramet-
rically rich environment, default parameterizations and
simple guidelines (according to the properties of input
data and desired output) are provided. BicPAMS further
supports multiple data formats and representations of the

output, verifying the soundness of requests. Empirical
evidence shows that BicPAMS is able to efficiently and
effectively discover non-trivial yet coherent biclusters that
are robust to noise and biologically significant.

Availability and requirements
Project name: BicPAMS
Project home page: http://www.bicpams.com
Operating system(s): All (cross–platform)
Programming language: Java
Other requirements: Java v7 or superior
Licence: GNU General Public License

Endnotes
1 http://www.tik.ee.ethz.ch/sop/bicat/
2 http://cran.r-project.org/web/packages/biclust
3 http://acgt.cs.tau.ac.il/expander
4 http://vis.usal.es/bicoverlapper/

Additional file

Additional file 1: Supplementary material – experimental assessments of
BicPAMS on synthetic and real data accessible at http://www.bicpams.
com/appendix. (PDF 685 kb)
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24. Barkow S, Bleuler S, Prelić A, Zimmermann P, Zitzler E. BicAT: a
biclustering analysis toolbox. Bioinformatics. 2006;22(10):1282–3.

25. Kaiser S, Leisch F. A Toolbox for Bicluster Analysis in R. 2008. Technical
Report Number 028 Department of Statistics University of Munich http://
www.stat.uni-muenchen.de.

26. Santamaría R, Therón R, Quintales L. BicOverlapper 2.0: visual analysis for
gene expression. Bioinformatics. 2014;30(12):1785.
doi:10.1093/bioinformatics/btu120.

27. Mabroukeh NR, Ezeife CI. A taxonomy of sequential pattern mining
algorithms. ACM Comput Surv. 2010;43:3:1–3:41.

28. Henriques R, Madeira SC, Antunes C. F2G: efficient discovery of
full-patterns. In: ECML/PKDD IW on New Frontiers to Mine Complex
Patterns. Prague: Springer-Verlag; 2013.

29. Henriques R, Antunes C, Madeira SC. Methods for the efficient discovery
of large item-indexable sequential patterns. In: New Frontiers in Mining
Complex Patterns (Held in Conjunction with ECMLPKDD), Selected
Papers. Cham: Springer International Publishing; 2014. p. 100–116.
doi:10.1007/978-3-319-08407-7_7.

30. Rosenwald A, DLBCL Team. The use of molecular profiling to predict
survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J
Med. 2002;346(25):1937–47.

31. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C. A
high-resolution atlas of nucleosome occupancy in yeast. Nat Genet.
2007;39(10):1235–44.

32. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G,
Botstein D, Brown PO. Genomic expression programs in the response of
yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57.

33. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z,
Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG,
Monteiro CD, Gundersen GW, Ma’ayan Avi. Enrichr: a comprehensive
gene set enrichment analysis web server 2016 update. Nucleic Acids Res.
2016;44(W1):W90. doi:10.1093/nar/gkw377.

34. Lee AP, Yang Y, Brenner S, Venkatesh B. TFCONES: a database of
vertebrate transcription factor-encoding genes and their associated
conserved noncoding elements. BMC Genomics. 2007;8:441.

35. Teixeira MC, Monteiro PT, Guerreiro JF, et al. The YEASTRACT database:
an upgraded information system for the analysis of gene and genomic
transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Res.
2014;42(Database issue):D161–D166. doi:10.1093/nar/gkt1015.

36. Koh JLY, Ding H, Costanzo M, Baryshnikova A, Toufighi K, Bader GD,
Myers CL, Andrews BJ, Boone C. DRYGIN: a database of quantitative
genetic interaction networks in yeast. Nucleic Acids Res. 2010;38(suppl 1):
D502–7.

37. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D,
Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M,
Bork P, Jensen LJ, von Mering C. STRING v10: protein–protein interaction
networks, integrated over the tree of life. Nucleic Acids Res. 2014;43(D1):
D447. doi:10.1093/nar/gku1003.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1002/9781118617151.ch25
http://dx.doi.org/10.1007/978-3-642-21786-9_60
http://dx.doi.org/10.1007/s10618-012-0258-x
http://dx.doi.org/10.1007/s10618-012-0258-x
http://dx.doi.org/10.1016/j.patcog.2015.06.018
http://dx.doi.org/10.1007/978-3-662-48221-6_1
http://dx.doi.org/10.1007/978-3-319-23485-4_34
http://www.stat.uni-muenchen.de
http://www.stat.uni-muenchen.de
http://dx.doi.org/10.1093/bioinformatics/btu120
http://dx.doi.org/10.1007/978-3-319-08407-7_7
http://dx.doi.org/10.1093/nar/gkw377
http://dx.doi.org/10.1093/nar/gkt1015
http://dx.doi.org/10.1093/nar/gku1003

	Abstract
	Background
	Methods
	Results
	Conclusions
	Software

	Background
	Pattern-based Biclustering.
	Related work.


	Implementation
	Pattern-based biclustering with BicPAMS
	Coherency of biclusters.
	Structure of biclusters.
	Quality of biclusters.
	Efficiency.
	Synergies.


	On how to use BicPAMS
	Input and output.
	Graphical interface (GUI).
	Console, API and source-code.
	Parameters.
	Scalability/limits.
	Testing cases.



	Results
	Case studies on expression data analysis.
	Case studies on network data analysis.


	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

