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Abstract

Background: With the increase in the amount of DNA methylation and gene expression data, the epigenetic
mechanisms of cancers can be extensively investigate. Available methods integrate the DNA methylation and gene
expression data into a network by specifying the anti-correlation between them. However, the correlation between
methylation and expression is usually unknown and difficult to determine.

Results: To address this issue, we present a novel multiple network framework for epigenetic modules, namely,
Epigenetic Module based on Differential Networks (EMDN) algorithm, by simultaneously analyzing DNA methylation
and gene expression data. The EMDN algorithm prevents the specification of the correlation between methylation
and expression. The accuracy of EMDN algorithm is more efficient than that of modern approaches. On the basis of
The Cancer Genome Atlas (TCGA) breast cancer data, we observe that the EMDN algorithm can recognize positively
and negatively correlated modules and these modules are significantly more enriched in the known pathways than

those obtained by other algorithms. These modules can serve as bio-markers to predict breast cancer subtypes by
using methylation profiles, where positively and negatively correlated modules are of equal importance in the
classification of cancer subtypes. Epigenetic modules also estimate the survival time of patients, and this factor is

critical for cancer therapy.

Conclusions: The proposed model and algorithm provide an effective method for the integrative analysis of DNA
methylation and gene expression. The algorithm is freely available as an R-package at https://github.com/

william0701/EMDN.
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Background

DNA methylation is a chemical modification of cytosine
bases, which is critical for cellular differentiation, cell
development and disease progression [1-3]. For example,
DNA methylation directly inhibits the binding of tran-
scription factors [4], and methylation aberrations either
predispose to or result in disease progression [5]. With
biotechnological advancements, DNA methylation is also
considered a biomarker of epigenome analysis [6]. Multi-
ple platforms, including reduced representation bisulfite
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sequencing [7], whole genome shotgun bisulfite sequenc-
ing [8], methylC-Seq [9], and target capture bisulfite
sequencing [10] and DNA methylation beadarray, have
been developed to generate genome-wide DNA methyla-
tion data.

High-throughput technologies have generated large-
scale genome-wide DNA methylation profiles for various
cancers and cell lines, providing great opportunities for
revealing the epigenetic mechanisms. Various approaches
have been proposed on the basis of methylation profiles to
extract DNA methylation patterns. For example, Fleischer
et al. [11] identified 18 CpG probes associated with the
survival time of breast cancer patients. Hinoue et al. [12]
recognized four distinct subgroups in colorectal cancer
by analyzing large-scale genome-wide DNA methylation
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profiles. Yang et al. [13] discovered the comethylation
modules across 54 cell lines by using a weighted comethy-
lation network. Varley et al. [14] identified dynamic DNA
methylation patterns across 82 human cell lines. Gevaert
et al. [15] designed MethylMix to obtain 10 pancancer
clusters which reveal a novel similarity across various
cancers.

Further details have also been provided [16]. Although
DNA methylation patterns have been extensively investi-
gate, open questions have yet to be answered. For example,
it is acknowledged that DNA methylation aberrations
cause diseases by mediating gene expression [3, 17]. How-
ever, how the DNA methylation regulates gene expres-
sion remains unknown. Epigenetic modules is critical for
revealing the epigenetic mechanisms of cancers. Thus,
algorithms for functional epigenetic modules should be
established by simultaneously analyzing methylation and
gene expression data. However, the design of algorithms
for the integrative analysis of DNA methylation and
gene expression is highly nontrivial because of two rea-
sons. First, integrative analysis requires large-scale sample
matched methylation and gene expression profiles. Sec-
ond, DNA methylation patterns are difficult to determine
because the relationship between methylation and expres-
sion is unknown. For instance, it is acknowledged that
the correlation between promoter methylation and gene
expression is negative. However, the recent evidence indi-
cates that the positive correlation is also presented [14].

Regarding the first issue, the consortium, such as
TCGA, has generated sample matched DNA methylation
and gene expression data for various cancers [18]. Thus,
functional epigenetic module can be identified. Regarding
the second issue, researchers developed many algorithms,
such as the EpiMod algorithms [19], based on the gene
comethylation network by using methylation data and
searching modules in the network. However, these algo-
rithms are limited because they are solely based on either
methylation or gene expression. Consequently, these algo-
rithms fail to obtain epigenetic modules precisely. To
address this problem, researchers developed the FEM
algorithm [20] that integrates DNA methylation and gene
expression into a protein interaction network by assum-
ing the anti-correlation between DNA methylation and
gene expression. The algorithm successfully identifies a
novel epigenetically deregulated hotspot and methylated
gene modules. This finding indicates the superiority of
integrative analysis in terms of revealing methylated gene
modules.

Current algorithms are limited by heterogeneous data
integrated into a network, and thus require the corre-
lation between DNA methylation and gene expression.
However, the correlation between heterogeneous data
is unknown and difficult to determine. Recently, multi-
ple networks have been widely used to characterize the
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complex biological patterns. For example, Ma et al. used
multiple networks to characterize the dynamic modules
[21]. Cantini et al. proposed a novel multi-network-based
strategy to integrate different layers of genomic informa-
tion and developed algorithm to identify cancer driver
genes [22]. Didier et al. assessed aggregation, consensus
and multiplex-modularity approaches to detect commu-
nities from multiple networks [23]. These algorithms indi-
cate that characterizing biological patterns in multiple
networks is more accurate than those in a single network.

Therefore, we propose an alternative method that char-
acterizes the epigenetic modules by using multiple net-
works. We first construct the differential comethylation
and coexpression networks, and define the common mod-
ules within multiple networks as the epigenetic modules
(Fig. 1a). The proposed strategy is advantageous because
it avoids specifying the correlation between heteroge-
neous data and the accuracy in the identification of epi-
genetic modules is improved. We also develop the EMDN
algorithm by simultaneously analyzing multiple networks
(Fig. 1b). Experimental results demonstrate that the pro-
posed algorithm is more accurate than other algorithms.
We further demonstrate that epigenetic modules enriched
by the known pathways, serve as biomarkers to predict
breast cancer subtypes and survival time of patients. The
proposed model and algorithm provide an effective way
for the integrative analysis of DNA methylation and gene
expression.

Methods
The EMDN consists of two components: network con-
struction and epigenetic module discovery (Fig. 1b).

Step 1: differential network construction

The development of a gene differential coexpression net-
work involves two steps: 1) The development of a binary
coexpression network and 2) edge weight assignment
based on differential gene expression between normal and
tumor conditions. We assume that the gene expression
data represents normalized estimates of gene expression
intensity and are summarized at the gene level, which
includes RNA-seq or expression data generated by using
Ilumina Beadchip or Affymatrix arrays. The binary gene
coexpression network is developed where the edge weight
on a pair of genes is the absolute Pearson coefficient of
the gene expression profiles. To remove the indirect cor-
relation due to a third gene, w the first order partial
Pearson correlation coefficient is used [24]. Finally, edges
whose weights are equal or greater than the pre-defined
threshold § are selected.

Using the Limma package [25], the p-values of the
gene expression difference between normal and tumor
samples for each gene are obtained. The p-values are cor-
rected by Benjamini-Hochberg (BH) [26]. Then, the gene
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Fig. 1 Flowchart of the proposed algorithm. a The common modules in both gene expression and methylation networks are defined as the
functional epigenetic modules, (b) EMDN consists of two major components: differential network construction and functional epigenetic module
discovery. The differential network construction consists of two steps: First, the coexpression (comethylation) network is constructed using the gene
expression (methylation) profiles, then the p-values of gene expression (methylation) between tumor and non-tumor samples are incorporated into
the coexpression (comethylation) network to develop the differential networks. Finally, the algorithm discovers the common modules in multiple
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differential coexpression network is developed by using
the p-values. Specifically, the weight w;; on edge (i,j) in
the differential network is defined as

(|log Pi+log Pj|)1/2

(2 max1|10g1’1|)1/2 if |C0r(i,j)| =9

W,‘j =
if [cor(i, )| < 8,

where P; is the p-value of the differential expression for
gene i, and cor(i,j) is the value of Pearson correlation
between the i-th and j-th gene based on the expression
profiles. The genes that are co-expressed and significantly
differentially expressed are assumed to have assigned
heavy weights. In this study, the § is 0.4. This value leads
to the maximal number of genes connected in all the
networks.
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Analogously, the differential comethylation network is
developed using the gene methylation profiles.

Step 2: discovering the epigenetic modules

To infer the epigenetic modules, EMDN is based our
recently developed M-module algorithm that is designed
for identifying common modules in multiple molecular
interaction networks [21]. EMDN consists of three steps:
seed prioritization, module search by seed expansion and
refinement of candidate modules.

The seed prioritization ranks genes in multiple net-
works by using the topological feature of the gene in
the networks. Specifically, for each network Gy with the
weighted adjacency matrix Wi = (Wjk)uxn, @ function
fx : V — R is developed, where f; (i) denotes the impor-
tance of the i-th gene in the corresponding network. The
function is defined as

fe = aAifi + (1 — @)Y, )

where A;ﬂ denotes the topological importance of nodes
and Y is the vector for the prior information. The param-
eter o controls the relative weight of the topological
importance and prior knowledge. A;( is normalized adja-
cency matrix, i.e., A;< = D,:l/z WkD,?l/2 with D =
diag(dig, dog, . . ., dur). We use the following iteration-
based algorithm to obtain f;:

A =aa f 4+ (1 -y, 3)

where ¢ denotes the iteration, and fk[o] = 0. No prior
information is used. Thus, we set Y = 0. The iteration is
terminated if there is no change between fIt*1l and f14.
Usually, only 20 iterations are observed. We calculate the
z-score for fi. After ranking the genes in all networks, the
ranks of genes are obtained in multiple networks, denoted
by R =[fi,f2,-..,fm]. The final gene ranking is obtained
by using the z-score of genes in multiple networks, i.e., the
row sum of R.

Starting with each seed, the module search step iter-
atively adds genes whose addition causes the maximum
decrease in the graph entropy-based objective function
until no decrease in the objective function is observed.
Given a module C, the entropy function for network Gy is
defined as

Hi(C) = —prlogpr — (1 — pr) log(1 — pp), (4)

where p; = Zwec Wiik/ Y_icc Wijk- The entropy function
for C across all networks is defined as

2
H(C) =Y Hi(C)/ICl. (5)

k=1
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The module search procedure expands the module by
using Eq. (5). Each time the gene whose addition leads to
the maximum decrease of H(C) is included in C until no
gene can improve H(C).

During the refinement step, candidate modules whose
sizes are smaller than 5 are removed. To merge overlap-
ping function modules, two modules whose Jaccard index
is greater than 0.5 are merged.

Data

We download gene expression and DNA methylation data
for breast cancer from TCGA database. Specifically, 869
samples with matched level-3 Illumina 450k methylation
data and HiSeq RSEM gene-normalized RNA-seq data
are obtained with 785 tumor and 84 normal samples.
For methylation data, the g signal of the probe is used,
which is calculated as the methylated signal divided by the
sum of the methylated and unmethylated signal. For the
RNA-seq data, the reads per kilobase of exon model per
million mapped reads (RPKM) is used. The clinical infor-
mation is also obtained from TCGA. In all these datasets,
probes with more than 30% missing values are removed,
and probes with less than 30% missing values are imputed
using the R package PAMR [27].

Gene methylation profiles

To assign DNA methylation to a given gene (for Illumina
450k data), we follow the strategy in the Ref. [20]. Specifi-
cally, the average value of the probes mapping within 200
bp of the transcription start site (TSS) is assigned to the
gene. If no probes mapped within 200 bp of the TSS, we
use the average value of probes mapping to the 1st exon
of the gene. If such probes are also not available, we use
the average value of probes mapping within 1500 bp of
the TSS.

Eigengenes of modules

The eigengene of a module is defined as the first prin-
cipal component based on singular value decomposition
(SVD) [28]. In details, the gene expression matrix of a
given module is denoted by X = (x;;) where the index i
corresponds to the module genes and the index j corre-
sponds to the samples. The singular value decomposition
of X is denoted by

X =ubpvT, (6)

where the columns of the matrices U and V are the left-
and right-singular vectors, respectively. The first column
of V is the module expression eigengene. Similarly, we
obtain the module methylation eigengene by the gene
methylation profiles.
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Correlation of module methylation and expression

The correlation between module methylation and
expression is defined as the Pearson correlation coef-
ficient between module methylation and methylation
eigengenes. The correlation is significant when BH cor-
rection is used with the cutoff 0.05. If the sign of Pearson
coefficient is greater than 0, a positive correlation is
observed, and negative if otherwise.

Survival analysis
We use the function coxph (R package survival) [29] to
implement the Cox proportional hazard model to analyze
the association of methylation profile of each epigenetic
module with the patient survival.

We use the prognostic index to generate high- and low-
risk patient groups

k
index; = Z BeXei (7)
c=1

where k is the number of cancer-specific modules, B is
the regression coefficient of the Cox proportional haz-
ard model for the c¢-th module and X,; is the average
methylation level of genes within the ¢-th module in the
i-th patient. Patients are grouped into high- and low-risk
groups based on the median of prognostic index. The sur-
vival difference between these two groups of patients is
obtained by using the Kaplan-Meier estimator and log-
rank method.

HAND2 module and simulation

As the true module, we select the HAND2 module
(Fig. 3b), since the biological and clinical significance of
the driver gene, HAND?2, has been extensively validated
[17]. To fully assess the sensitivity and specificity of the
proposed method, the simulation model of HAND2 mod-
ule is also adapted [20], in which it simulates statistics
of differential methylation and differential expression on
the protein interaction network. The model bootstrapped
statistics for the member genes of this module to come
from the top and lower 5% statistics quartiles, with the
statistics of the rest of the network genes bootstrapped
from the middle 90% portion. For each simulation run, the
accuracy is recorded.

Statistical significance of modules

The statistical significance of modules is based on the null
score distribution of the random modules generated using
randomized networks. Each network is completely ran-
domized 100 times by degree-preserved edge shuffling. To
construct the null distribution, we perform EMDN on the
randomized networks. The empirical P-value of module is
calculated as the probability of the random module having
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the observed score or greater by chance. P-values are cor-
rected for multiple testing using BH correction. The cutoff
of P-value is 0.05, and it is statistically considered.

Functional analysis of epigenetic modules

To assess the functional relevance of the epigenetic mod-
ules, we perform the gene ontology (GO) enrichment
analysis by using the hypergeometric test. We obtain
enrichment lists with BH corrected p-value (cutoff 0.05).

Features of SVM on functional epigenetic modules

Given a module C, we obtain the methylation level of each
gene across all patient samples [30], denoted by X;; for the
i-th gene and j-th patient. For each sample j, the activity
score of the k-th module is defined as the average gene
methylation of all genes within the module, i.e.,

Xc =Y Xy/VICI. 8)

ieC

where |C| is the number of genes in module C. A feature
vector is constructed for each module.

Simulated multiple networks

The simulated networks were generated following and the
true classification of genes into clusters is known [31]. We
simulated three networks , each of which has 256 nodes.
In each network there are eight clusters of equal size. The
parameter controls the noise level of a network by control-
ling the ratio of intra-cluster edges to inter-cluster edges
that are connected to a node. The degree of each node
is fixed to 32. As mixed parameter increases from 0 to
0.6, the detection of clusters in the networks becomes
increasingly difficult. The multiple networks contain two
artificial networks, where the one network with noise level
0.1 and the other with noise level from 0.1 to 0.6.

Normalized mutual information

The normalized mutual information (NMI) [32] is based
on the confusion matrix N whose rows correspond to the
real modules in standard partition P* and the columns
correspond to the modules in obtained partition P. The
element Nj; is the number of vertices overlapped by the i-
th real and j-th predicted module. The NMI is defined as

Pl 1P| NGN
=2 i1 2jm1 Nijlog (Ni.]N/‘)
P . o AN
2 N tog (3 ) + 12! Ny log ()
)

NMI (P,P*) =

where |P| is the number of module in P and N; is the sum
of the i-th row of matrix.
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Results and discussion

Performance benchmarking of algorithms on artificial
networks

For a comparative analysis, three algorithms are selected,
including Consensus clustering (CSC) [22], multiple-
modularity method (MolTi) [23] and spectral clustering
(SPEC) [33]. The SPEC method is not suitable for multiple
networks. Therefore, the method is extended by using the
consensus strategy [22].

These algorithms are used in the artificial networks to
test the performance. Figure 2a is the heatmap of multi-
ple networks where the common modules are surrounded
by the dashed line. We used the normalized mutual infor-
mation (NMI) as a measure to quantify the performance.
Before giving the performance of the compared algo-
rithms, we first investigate how the parameter affects the
performance of EMDN. The only parameter involved is
the number of seeds. The result is illustrated in Fig. 2b,
where the number of seeds increased from 3 to 5%, and
the accuracy increases dramatically. The result indicates
that 5% is the optimal value. The accuracy of various algo-
rithms on the artificial networks is shown in Fig. 2c, where
EMDN outperforms the others and the MolTi algorithm
is better than the CSC and SPEC methods.

Negatively and positively correlated genes and pathways
are common in breast cancer

Prior to giving the performance of EMDN algorithm, we
first investigate the existence of positively correlated genes
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and pathways for breast cancer. We select the acknowl-
edged genes and pathways associated with breast cancer
metastasis from Ref. [34], including 32 genes and 8 path-
ways as shown in Fig. 3a. The correlation between gene
promoter methylation and gene expression is presented in
Fig. 3b, where 15 genes are negatively correlated (green),
5 positively correlated (red) and 12 uncorrelated (white).
The result is consistent with that presented in Ref. [11],
where the positively correlated genes are also important
in breast cancer metastasis. Moreover, the pathways can
be categorized into two groups: pathways only with neg-
atively correlated genes as well as pathways mixed with
both positively and negatively correlated genes. For exam-
ple, the MEK and growth factor receptor pathways are the
first group, whereas the PI3K/AKT/mTOR and cell cycle
are classified under the second group. Moreover, we find
that the PI3K/AKT/mTOR and cell cycle are significantly
positively correlated (Material Section). It is reasonable
because majority of genes within pathway are positively
correlated, for example, the coefficients are 0.12, —0.11,
and 0.375 for CCND1, CDKN2A, and CDK4, respectively.
The result indicates the existence of positively correlated
genes and pathways for breast cancer, which is also the
main focus of this paper.

Whether the positively and negatively correlated path-
ways are ubiquitous for breast cancer in various databases,
including the KEGG [35], Reactome [36], Biocart [37].
We find that the pathways in all databases are both neg-
atively and positively correlated although the majority of
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the pathways are negatively correlated (Additional file 1:
Figure S2). Specifically, 26.7% of the pathways in Bio-
Cart (21.4% in KEGG, and 16.5% in Reactome) are neg-
atively correlated with coefficient < —0.1 (p-value=5E-3,
Cor.test), whereas 6.5% of the pathways in Biocart (3.1%
in KEGG, and 4.7% in Reactome) are positively correlated
with coefficient > 0.1. To check the significance of the
percentage of correlated pathways, we compare the fold
change of pathway percentage whose absolute value of
correlation coefficient is equal or greater than 0.1 with the
size-matched random pathways (Fig. 4a). The fold changes
are 10.1 (BioCart), 7.2 (KEGG), and 4.5 (REACTOME) for
negatively correlated pathways, whereas the fold changes
are 2.3 (BioCart), 1.2 (KEGG), 6.0 (REACTOME) for pos-
tively correlated pathways. Both positively and negatively
correlated pathways are significantly higher than the ran-
dom modules (Fisher exact test, p-value<0.05).

The gene level correlation between methylation and
expression profiles is also calculated. As shown in
Additional file 2: Figure S1A, the gene level methylation-
expression correlations are both positive and negative.
For example, 5678 genes with coefficients less than -0.1

are observed, whereas only 1096 genes with coefficients
greater than 0.1 are observed.

Performance benchmarking of algorithms on HAND2
module

To evaluate the performance of EMDN algorithm,
we compare it with several state-of-the-art, including
Consensus clustering (CSC) [22], multiple-modularity
method (MolTi) [23], FEM [20], EpiMod algorithm [19].
Because EpiMod is designed for single network, we
applied it to differential comethylation and coexpres-
sion network respectively, denoted by EpiMod-Meth and
EpiMod-Exp.

We employed the HAND2 module as benchmark, which
has 11 genes centered at HAND2 gene (Fig. 4b). The
EpiMod-Meth and EpiMod-Exp algorithms cannot dis-
cover the module, while the rest algorithms discover
the module. The result demonstrates that the integrative
analysis of methylation and expression data is promis-
ing for functional epigenetic modules. The module rec-
ognized by EMDN contains 8 genes, in which 6 genes
are from HAND2 module (hexagon nodes in Fig. 4b,
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accuracy=>54.5%), whereas the accuracy of FEM, CSC and
MolTiis 37.9%, 22.9% and 17.4%. The reason why the FEM
and EMDN algorithms outperform CSC and MolTi is that
both CSS and MolTi are not designed for epigenetic mod-
ules. The results indicates that multiple networks based
strategy is more effective than the single network based
approaches.

To fully characterize the performance, we compare FEM
and EMDN on the simulated HAND2 module (Material
Section) by using the accuracy (ACC), positive predictive
value (PPV), false discovery rate (FDR) and false positive
rate (FPR). The comparison between FEM and EMDN
is in Table 1. EMDN is better than FEM on ACC, FPR,
PPV as well as FDR. Two possible reasons are presented
to explain why EMDN is better than FEM. The first rea-
son is that the multiple network model is a better way
to characterize the functional epigenetic module than
the single network based integration strategy because it
avoids specifying the correlation between gene expression
and methylation. The second reason is that the module
search strategy used in EMDN is effective.

Table 1 The accuracy of compared algorithms on the simulated
network, where values with bold font are the best performance
for each column among algorithms

Performance benchmarking of EMDN on TCGA breast
cancer networks

Next, we compare the algorithms using a compendium of
869 samples from TCGA. The differential comethylation
(coexpression) network has 12,142 genes and 11516060
(4939426) edges. We identify 26, 16, 19 and 17 modules
using EMDN, EpiMod-Exp, EpiMod-Meth and EMDN,
respectively.

No gold-standard exists for epigenetic modules in breast
cancer. Thus, we compare the algorithms from three
aspects. First, the correlation coefficients between the
methylation and expression of the modules are used to
validate the performance because the ultimate goal of the
algorithms is to discover methylated gene modules. The
higher the coefficient is, the more likely the methylated
module is. We compare the absolute value of correla-
tion coefficients for epigenetic modules obtained each
algorithm as shown in Fig. 5b. We conclude that the coeffi-
cients of the modules obtained by EMDN are significantly
higher than those obtained by other algorithms (EMDN
vs EpiMod-Exp p-value=0.02, EMDN vs EpiMod-Meth p-
value=0.04, EMDN vs FEM p-value=0.04, Student t-test).
The result demonstrate that the proposed algorithm is
more effective in discovering methylated gene modules.

Second, both positively and negatively correlated mod-
ules for breast cancer are shown. Moreover, whether all
these algorithms can discover both negatively and posi-

ACC FPR PPV FDR
— 370% 0003 0379 0601 tively gqrrelated modul.es is questioned. The percentages
of positively and negatively correlated modules for each

EMDN 54.5% 0.0003 0.750 0.125

algorithm are shown in Fig. 5a. We conclude that only
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FEM algorithm cannot recognize positively correlated
modules. The reason is that FEM assumes the negative
correlation between gene expression and methylation.

Finally, we check how well the modules are enriched in
the known pathways. Multiple reference pathway annota-
tions are used, including GO [38], KEGG [35], Reactome
[36], Biocart [37], and canonical pathways from MSigDB
[39]. To evaluate the performance, we use specificity and
sensitivity to quantify the accuracy, as shown in Fig. 5c and
d. Based on the results, we conclude that EMDN achieves
significantly higher specificity when evaluated using all
reference sets while a comparable sensitivity is maintained
(p-value< 0.05, one-sided Fisher’s exact test).

Epigenetic modules serve as biomarkers that improve the
accuracy of breast cancer subtype prediction

The genes or pathways has been used to improve the
prognosis of breast cancer [11, 40]. We hypothesize that
the epigenetic modules may also likely be considered as
biomarkers that predict luminal A/B, HER2 and Basal-
like breast cancer subtypes. We use the support vector
machine (SVM) package for multiple classes classification

[41]. As a baseline comparison, we first compare the
classification accuracy using the following feature sets:
modules obtained by various algorithms and size-matched
set of random modules. SVM is used for classification
by using methylation profiles (Methods), where the area
under curve (AUC) is employed to measure performance.
The results on TCGA data using fivefold cross validation
are shown in Fig. 6a, suggesting that the modules obtained
by EMDN are more discriminative than others on breast
cancer subtype prediction. The EMDN had significantly
higher AUC (0.73 vs 0.65, p-value=4.1E-4, Delong ROC
test [42]).

To check the possibilities that the above result is biased
because of parameter selection, we perform additional
analysis by varying each of these parameters. The result
is consistent when we employ a 3/10-fold cross validation
(Additional file 3: Figure S3A and B). To check out the
possibility that the confounding factors in TCGA dataset
contribute to the classification accuracy, we evaluate the
performance of the SVM classifiers (trained on TCGA
data) using an external data (GSE60185, Illumina 450k,
285 samples) [11]. The result indicates that the similar
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tendency is consistent with that in the TCGA dataset
as shown in Fig. 6b. The results indicate that the per-
formance is not due to the hidden confounding factors
in the TCGA data (0.72 vs 0.68, P = 7.9E-3, Delong
ROC test).

Finally, we investigate the possible reasons why EMDN
outperforms FEM. We quantify the importance of each
epigenetic module, which is defined as the AUC of SVM
based on the single module for subtype prediction. We
compare the feature importance between positively and
negatively correlated modules. There is no significant dif-
ference between the positively and negatively correlated
modules (Additional file 3: Figure S3C, p-value=0.3, Stu-
dent t-test). Both of positive and negative correlation
epigenetic modules are discriminative for cancer tumor
prediction.

Epigenetic modules are associated with survival time of
patients

Genes and modules are associated with patient survival
time in breast cancer [11]. We hypothesize that the epi-
genetic modules are also associated with the clinical
outcome using gene methylation(expression). The mul-
tivariable Cox proportional hazard models are used to
predict the survival time (Materials Section).

For each module, we predict the patient survival time
by using the methylation (expression) and the patients are
segregated well into high- and low-risk groups accord-
ing to the patient survival time. We find that both the
positively and negatively correlated modules divide the
patients into two groups whose survival time is signif-
icant different (p-value<0.05, Fig. 7). For example, The
module 1 and 8 are negatively correlated and the patients
are divided into two groups with significantly differ-
ent survival time (Fig. 7a and b). The module 7 and

11 are positively correlated and the patients are divided
into two groups with significantly different survival time
(Fig. 7c and d). In module 7, the enriched GO term is
immune response (p-value=1.7E-4, hypergeometric Test)
with genes FCERIA, CD1B, CDIA and MS4A2, etc. The
results further demonstrated that both the positively and
negatively correlated modules are critical for patient sur-
vival analysis.

Moreover, seven out of 26 modules obtained by EMDN
are significantly associated with the survival time of
patients, whereas 112 out of 1107 random modules with
similar sizes are significantly associated with survival time
of patients (p-value=1.4E-2, Fisher Exact test).

Comparison between coexpression/comethylation
networks and differential networks

It is necessary to validate the possibility to replace the
differential networks with the coexpression and comethy-
lation networks for EMDN. We identify 21 modules
by using the EMDN algorithm based on the coexpres-
sion and comethylation networks (co-exp/meth modules).
We first check the module methylation expression cor-
relation coefficients between co-exp/meth modules and
differential modules. The differential modules have signif-
icantly higher coefficients than the co-exp/meth modules
(p-value=3.6E-4, Student t-test, Additional file 4: Figure
S4A). Then, we check the sensitivity and specificity of the
two groups of modules, showing that the differential mod-
ules are more enriched by the known pathways than the
co-exp/meth modules (Fisher exact test, p-value < 0.05,
Additional file 4: Figure S4B and C). Finally, we compare
the two groups of modules on breast cancer subtype pre-
diction, and the result demonstrates that the differential
modules are more discriminative than the co-exp/meth
modules (p-value=6.7E-5, Delong test, Additional file 4:
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Fig. 7 Kaplan-Meier survival analysis for patients based on the epigenetic modules. Negatively correlated modules for survival time of patients:
(@) Module 1 with a p-value of 0.01 obtained using the log-rank test, (b) Module 8 with a p-value of 0.02. Positively correlated modules for survival
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Figure S4D). The result indicates that the differential
network is preferred than coexpression (comethylation)
network.

Conclusions

Exploring the functional epigenetic patterns is critical for
understanding the mechanisms of biological processes.
Recent technology has made it possible to perform simul-
taneously multi-platform genomic profiling of biological
samples, including DNA methylation and gene expres-
sion. However, the systematic and integrative analysis of
heterogeneous data for discovering biologically relevant
patterns is currently scarce.

Currently, all the available methods integrate the methy-
lation and expression data into a scaffold network, such
as protein interaction, which requires specifying the cor-
relation between gene expression and methylation. How-
ever, the specification of the correlation is unreasonable
because there are both positive and negative correlation.
In this study, a novel strategy is presented to character-
ize functional epigenetic modules by using heterogeneous
differential networks. The functional epigenetic module
discovery corresponds to find common modules in dif-
ferential coexpression and comethylation networks. Over-
all, EMDN possesses several unique advantages. (i) It
provides a novel strategy for the integrative analysis of
methylation and expression data. (ii) It is more effective
and accurate than modern methods because correlation
specification is not required. (iii) The method is easy to

extend for other data, such as Illumina 27k methylation,
and Chip-seq.

The basic concept of EMDN should be modified in
future work. First, the algorithm is a generalized frame-
work to any cohort of expression and methylation data,
although this study uses breast cancer as a proof-of-
principle. Second, data integration (e.g., epigenome and
CNVs) might further enhance the identification of com-
plicated molecular events involved in heterogeneous data.
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