
SOFTWARE Open Access

Processing tracking in jMRUI software for
magnetic resonance spectra quantitation
reproducibility assurance
Michał Jabłoński1,2* , Jana Starčuková1 and Zenon Starčuk Jr.1

Abstract

Background: Proton magnetic resonance spectroscopy is a non-invasive measurement technique which provides
information about concentrations of up to 20 metabolites participating in intracellular biochemical processes. In
order to obtain any metabolic information from measured spectra a processing should be done in specialized
software, like jMRUI. The processing is interactive and complex and often requires many trials before obtaining a
correct result. This paper proposes a jMRUI enhancement for efficient and unambiguous history tracking and file
identification.

Results: A database storing all processing steps, parameters and files used in processing was developed for jMRUI.
The solution was developed in Java, authors used a SQL database for robust storage of parameters and SHA-256
hash code for unambiguous file identification. The developed system was integrated directly in jMRUI and it will be
publically available. A graphical user interface was implemented in order to make the user experience more comfortable.
The database operation is invisible from the point of view of the common user, all tracking operations are performed in
the background.

Conclusions: The implemented jMRUI database is a tool that can significantly help the user to track the processing
history performed on data in jMRUI. The created tool is oriented to be user-friendly, robust and easy to use. The
database GUI allows the user to browse the whole processing history of a selected file and learn e.g. what processing
lead to the results, where the original data are stored, to obtain the list of all processing actions performed on spectra.

Keywords: Magnetic Resonance Spectroscopy, Signal Processing, SQL database, jMRUI

Background
Proton magnetic resonance spectroscopy (MRS) and
magnetic resonance imaging (MRI) are non-invasive
measurement techniques utilizing the phenomenon of
nuclear magnetic resonance (NMR) for detecting sig-
nals of hydrogen protons in the human or animal
body. Protons, endogenous and abundant in all tis-
sues, provide structural and functional information by
probing their nearest biochemical neighborhoods and
reporting their positions by responding to gradient-
field encoding. It is primarily MRI that is widely used
in medicine for diagnosing cancer, injuries, vascular

abnormalities, dementia and other diseases [1]. MRI
also serves for monitoring disease progression, therapy,
and – often as a quantitative tool – for biomedical re-
search. Images, carrying statistical information on local
nuclear magnetic interactions, translational motion a ran-
dom mobility of water molecules, on tissue perfusion,
blood oxygenation, or water/fat content, are well accepted
by the medical and biomedical users because of their com-
parability with other imaging modalities, good signal-to-
noise ratio, often self-evident verifiability of the absence of
artifacts, and reasonable acquisition times. Only in cases
of doubt or lack of specific markers, or for specific re-
search do MR technology users add MR spectroscopy to
their exploratory portfolio and then often find themselves
overwhelmed by unexpected complexity of physics, engin-
eering and data processing connections. Measurement
parameter setting, quality assessment and data processing

* Correspondence: jmj@isibrno.cz
1Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64
Brno, Czech Republic
2Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech
Republic

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Jabłoński et al. BMC Bioinformatics (2017) 18:56
DOI 10.1186/s12859-017-1459-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1459-5&domain=pdf
http://orcid.org/0000-0002-8448-2312
mailto:jmj@isibrno.cz
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

typically require expert knowledge not readily available in
radiologists, and unless an experienced MR spectroscopist
is available on site, the possibility of documenting all oper-
ations, availability of records for consultation, result verifi-
cation and standardization becomes important.
Unlike MRI, MR spectroscopy, practiced as single-

voxel or multi-voxel 1D spectroscopy or 2D or 3D
spectroscopic imaging, provides spatially localized in-
formation about the concentrations of up to about 20
low-molecular-weight metabolites [2], participating in
numerous intracellular biochemical processes. Such in-
formation may, for example, provide the physician
more specific clues for staging and grading of a tumor
previously identified by MRI; the improved assessment
of the degree of malignity and prognosis may then
contribute to optimizing the therapy. Besides diagnos-
tics of brain tumors, MR spectroscopy has been used
in studies of metabolic changes in brain tumors,
strokes, seizure disorders, Alzheimer's disease, depres-
sion and other diseases affecting the brain and mus-
cles [3]. Depending on the metabolic marker under
observation, a suitable MRS acquisition method (pulse
sequence) and corresponding data processing must be
chosen. For example for the detection of neurotrans-
mitters GABA and glutamate, MEGA-edited PRESS
may be preferred [4], while for obtaining information
about as many metabolites as possible, the PRESS [5],
STEAM [6], LASER [7], semi-LASER [8] or SPECIAL
[9] pulse sequences with short echo times could be
used; such a choice impacts on the optimal data pro-
cessing workflow.
Despite the potential of MR spectroscopy in medicine

and research [10], its practical usage is still limited. The
main obstacles are the facts that spectroscopy itself
does not produce an image that can be relatively easily
interpreted, signal artifacts are not always easy to
recognize, and that to obtain metabolite concentration
estimates, the signals have to be analyzed with a sophis-
ticated model fitting (quantitation) algorithm, whose
reliability depends on many factors. As the properties
of the acquired signals depend on the acquisition
method used, the fitting algorithm always needs some
specific prior knowledge (such as the signal or
spectrum pattern for each metabolite) and constraints.
Accurate quantitation of metabolite concentrations is
often further complicated by regular or random signal
artifacts [10], for which no useful model may be avail-
able and which may reduce the credibility of all results
if they are ignored. The artifacts become particularly
difficult to manage in combination with the fast-
decaying signals of macromolecules and lipids, found in
signals acquired at short echo times, which are pre-
ferred for the detection of metabolites exhibiting multi-
plet resonances. Therefore, quantitation procedures

and results should always be inspected by an experi-
enced spectroscopist to exclude misinterpretation.
While at present every MR scanner provides at least

basic sequences for MRS acquisition, to our knowledge
none of commercial scanners provides robust, reliable
and validated quantitation software. Therefore, for me-
tabolite quantitation, third party software [11–13] is
most commonly used. Obviously, no software can
quantify an arbitrary spectrum automatically without
first obtaining appropriate prior knowledge and con-
straints [14]. This need is satisfied differently by the vari-
ous software products available. Whereas for LCModel
[12] this information is custom made [13], TARQUIN of-
fers a set of predefined constraints and for the most typ-
ical acquisition methods the prior knowledge is simulated
with an idealized NMR physics model.
jMRUI [11] another widely used quantitation soft-

ware (currently used in more than 3000 laboratories
all around the world), is a flexible tool for spectro-
scopic signal processing and quantitation: it includes
several quantitation algorithms such as AMARES
(Advanced Method for Accurate, Robust, and Efficient
Spectral fitting) [15], AQSES (Automated Quantitation of
Short Echo Time MRS spectra) [16] and QUEST
(QUantum ESTimation) [17] and various other quantita-
tion methods based on singular value decomposition
(SVD) [18]. Moreover, it also contains a choice of data
preprocessing algorithms (e.g. water peak removal, phase
correction etc.), data visualization and versatile simulation
routines based on quantum mechanics for experiment
planning [19] and realistic prior knowledge calculation.
Thus it allows quantitation of virtually any type of
spectrum but for the price: suitable constraints and prior
knowledge must be provided by the user, and sometimes
found on a trial and error basis.
Due to the high level of complexity of MRS process-

ing in jMRUI, full tracking of operations done with the
spectroscopic signals is required for highly reproducible
processing [10, 20] and for the automation of quantifi-
cation using already verified processing steps in both
clinical and research environments. Up till now only a
very simple history tracking method was used in
jMRUI. jMRUI enables the users to retrieve the
quantitation-results files corresponding to successive
trials via the set-up menu (the result files can be over-
written or not) but the parameters used can be only
partly recovered and not in an automatic way (.op files
must be saved). The processing history was saved at the
user’s request in a batch file, and only for the most re-
cently loaded data. The batch file included no informa-
tion about the data processed nor about the results
obtained. It could be used for batch processing only,
and not for the identification of what processing steps
had led to a particular result or how a particular data

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 2 of 11

set had been processed in the past. To respond to such
needs, a novel method of tracking the data and all pro-
cessing operations executed has been developed; this
article provides its description.

Implementation
In this paper the following convention will be kept in
the database description:

� Names written in capitals (like FILES) are names of
database tables.

� Names written in italics (like ID_file) are names of
columns in the database.

� Names written in capitals in quotes (like “OPEN
FILES”) are names of registries.

� Names written in italics in quotes (like “SAVE”) are
commands stored in the database.

Database organization
The presented solution uses a database and the file sys-
tem (Fig. 1) to record all the information necessary to
describe the whole processing pipeline from the moment
of data loading to saving the quantitation results.
The entire storage system is based on Structured

Query Language (SQL) database, file system and a Java
class (DBHandling.java) which handles the SQL driver
and processes the data before the storage and deals with
the file system. The class also connects the jMRUI inter-
face with the stored data and handles the retrieving of

the stored information. The class contains registries
which are crucial for the functioning of the database and
are not stored on the hard disk (e.g. “OPEN FILES”
which stores information about all currently open files).
Reliable storage and management of the processing

history are provided by a well-established SQL database,
and hash sum (also called checksum) was used for the
identification of data files. The SQL, a programming lan-
guage designed for relational databases, is widely applied
in the industry because of its high robustness. The H2
database [21] – an SQL database written in Java – was
selected for jMRUI as the database engine. One of the
advantages of the selected database is that it does not re-
quire installation of any additional big software pack-
ages; it offers a self-contained single-file installation.
The hash sum is a unique string of numbers and letters

of a fixed length that acts as a fingerprint for a particular
file. The hash sum is calculated using a hash function,
which maps data of an arbitrary size (e.g., the file con-
tents) to a fixed-size code – the hash sum. Because of
their ability to provide completely different hash sums
even for similar data, hash functions are widely used in
cryptography and in digital communication to ensure the
integrity of files transmitted.
File identification in the jMRUI database was based on

hash function SHA-256. The advantage of such identifi-
cation over using their locations is that even files which
were moved to a different storage location will still be
recognized.

Fig. 1 The overall scheme of the data flow history tracking in jMRUI. The scheme shows the flow of the data from the scanner through jMRUI to the
database. The database driver connects jMRUI with the file system that stores and retrieves all necessary database-related information. In the user-selected
database directory the database file (in this example jMRUIDataBase.mv.db), all parameter files and quantitation results are stored. The parameter files and
quantitation results are stored in separate subdirectories. For fast and unambiguous identification, all results and parameter files are renamed with the hash
sum of their content

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 3 of 11

Database SQL tables
Each SQL database is a structure of connected tables. The
jMRUI database uses 9 tables. Processing history is stored
in 5 tables, comments of actions and results in 2 tables
and 2 tables are used for the storage of macros. The struc-
ture of the jMRUI database can be found in Fig. 2.

ACTIONS
Table ACTIONS records the actions (processing methods)
performed on data. It contains 3 columns. In the ID_action
column an incrementally generated number is stored. The
number is used for the action identification in all other
tables and enables data linkage between different tables.
In the column opertime the timestamp of the per-
formed action is saved. Column action contains the
macro key (short name of each routine) of the corre-
sponding processing method.

PARAMS
Table PARAMS contains 5 columns: ID_action, param-
eter, description, hash and the automatically generated and
incremented ID. Column ID_action is used to identify the
particular action (and thus processing method) to which
the parameters belong. Column parameter serves as the
storage of the action related parameters; it could be a
number, text or a full file name. In the column description
a comment is always saved, i.e. information about the
units used and/or the parameter description. In case the
full file name is stored in the parameter column as a

parameter, the hash sum of the corresponding file for pre-
cise file identification is saved in the column hash. For
organizational purposes there is an additional column
(called ID), which is automatically incremented.

RESULTS
Table RESULTS is used for the storage of information
about all quantitation results that were generated in
jMRUI. Table RESULTS is very similar to the table
PARAMS. The main difference between both tables is that
in this table only quantitation results are stored, thus the
hash sum of the result file is always computed and stored
for reliable result file identification. Column ID_action is
used to identify the particular action (quantitation method
used in this case) that produced the result.

FILES
Table FILES stores information about file handling and it
contains 4 columns. During data file loading into jMRUI
the hash sum of the file is computed and compared with
the table FILES, and if it is not found, a new entry is added
to the table FILES. An incrementally generated number is
stored in the column ID_file and also in the “OPEN
FILES” registry of the database (see Fig. 3 for more de-
tailed explanation of the data file workflow), the original
location of the data file (full path file name) is stored in
column path, and the corresponding hash sum of the file
is stored in the column hash. The column child is filled
with “-1” by default. If the user decides to save the data

Fig. 2 The structure of the jMRUI database. Each table consists of different number of columns (fields). For example in the table ACTIONS there
are three columns: ID_action (type INT, i.e. integer), opertime (type TIMESTAMPS), action (type VARCHAR(64), i.e. character string)

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 4 of 11

processed in jMRUI, a new entry in table FILES will be
created with a new value of ID_file, the corresponding
path and the hash columns. Column child will be filled
with the ID_file of the file that gave origin to the new file.
The original file will be called “parent”.

FILES_ACTIONS
Table FILES_ACTIONS provides a link between the ta-
bles ACTIONS and FILES. This table contains 3 columns.
Whenever a new entry is created in the ACTIONS table,
the value of column ID_action is inserted also into a new
entry in the FILE_ACTIONS table, and ID_file column of
the FILE_ACTIONS table is filled with the column ID_file
of the currently processed data (obtained from the “OPEN
FILES” registry). There is also an automatically incremen-
ted ID column, which is used for ordering purposes. This
table increases the flexibility of processing tracking by

separation of the tables ACTIONS and FILES and it per-
mits to record actions in 1-1 and N-1 relationships.

MACRO_contents and MACRO
The information about macros (i.e. sequence of actions
done in jMRUI) is stored in two tables. For each created
macro a unique number is generated during the creation
process and stored in the column ID_macro (the same
number in both tables). The table MACRO_contents
stores sequences of actions of each macro created by the
user from a list of actions performed on data in the past.
Typically more entries in the table belong to the same
macro having the same value in the ID_macro column
and different values in the column ID_action. The values
in the column ID_action link a macro to the corre-
sponding actions (processing methods and consequently
to parameters used in past) in the ACTION table. If the
user wants to modify some macro, e.g. to change value

Fig. 3 Flow chart of the database operation – registration of a data file loaded. When a file is loaded to jMRUI, the hash sum of the file content is
computed. The database searches for the hash sum of the given file in the FILES table; if it is found, the database returns the corresponding file
identification number from the ID_ file column, otherwise a new entry in the table FILES is created and the new ID_file is returned. If more files
were loaded, this procedure is repeated for all selected files. All values from ID_ file column are stored in the “OPEN FILES” registry and will be
kept there until the data file is saved or removed from the jMRUI processing mode. A new entry with “LOAD_FILE” value is added to the column
action of the table ACTIONS

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 5 of 11

of some parameter, this is possible directly in the user
interface. The table MACRO stores additional informa-
tion about saved macros: a unique text name of the
macro in the column name and user’s comments about
the macro in the column comment.

RESULTS_comment and ACTIONS_comment
Although those two tables are identical and they are
used for storage of comments they are separated due
to the fact that some actions (mainly quantitation al-
gorithms) also generate results. Both tables contain
the ID_action and the comment columns. ACTION-
S_comment contains all comments to ACTIONS,
RESULTS_comment is used to store all comments re-
garding the results.

Database operation
History processing storage
Storing the processing history is performed automatic-
ally by the database engine without the user’s inter-
action. The database engine storage workflow includes
several steps as shown in Figs. 3, 4 and 5. The process of
data file registration triggered whenever data are loaded/
saved in jMRUI is shown in Figs. 3 and 4. The procedure
shown in Fig. 5 is triggered each time the user performs
any preprocessing or quantitation operation.
In jMRUI database configuration menu the user can

choose whether also a text file with the processing his-
tory should be generated and saved for each loaded file.

History processing extraction
To extract data from the database a query is needed.
Figure 6 demonstrates some examples of extraction
process implemented in database.

Database interface
Processing history of any data can be obtained by brows-
ing database in the jMRUI database graphical user

interface (GUI). Processing history of a loaded data file
or a result file can be also obtained by choosing the cor-
responding menu item command.

Menu item commands
The following menu item commands are available for
both a data file and a result file loaded:

� Current session – this operation lists all processing
steps done in current session. This mode basically
provides the same information as we can get from
the basic history tracking in jMRUI. In case of
opening a result file all steps prior to the quantitation
are listed.

� History with parents – this operation lists all
processing steps done on the current file including
all operations that were done on all files that gave
origin to this file.

The following feature is available only in case of loading
a data file

� All performed operations – this operation lists all
processing steps done on this particular file.

The following feature is available in case of loading a
result file:

� Export all files – this option does a macro query
like in first point and takes all files that were
used in the quantitation and pre-processing
including the data file and result file. All files
are compressed to one zip file and saved in a
location selected by the user. An example is
shown in Fig. 7.

An example of a history list is shown in Fig. 8.

Fig. 4 Flow chart of the database operation – registration of a saved data file. If the user decides to save the currently open file, the
corresponding ID_file number is removed from the “OPEN FILES“ registry. jMRUI saves the file and automatically computes the hash sum of the
new file. The computed hash sum and the newly generated ID_file are inserted in the table FILES, and the ID_file of the original file is saved in
the column child. The new ID_file of the saved file is added to the registry “OPEN FILES”. The file saving operation is recorded in table ACTIONS
by adding a new entry with with its actions column set to “SAVE”

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 6 of 11

Database graphical user interface (GUI)
Apart from using the menu item commands, user has
possibility to browse the history using graphical user
interface. GUI was designed using the Model-View-
Controller design pattern. The GUI window and descrip-
tion of functionalities is shown in Fig. 9. The GUI is
available as jMRUI Custom Plugin – in the main bar
Custom/HistoryGUI.
GUI enables user to:

� Browse history
� Comment an action (a processing method), and

classify it as successful or failed attempts.
� Approve an action and later filter it by all actions/

only approved/only not approved
� Select actions, modify parameters and run them on

loaded data.
� Save selected actions into a macro in the database.

The macro can be also exported on demand as a
text file any time later. In this way the user can
execute a macro (saved actions) with or without
modifying parameters on any data in future.

� Copy selected actions as a plain text to clipboard.

Implementation notes
jMRUI is plugin based software [11]. Each plugin imple-
ments one processing method (action). After the data
are processed by the plugin the jMRUI Kernel calls the
obligatory plugin method histo() that is supposed to pass
information about the action performed to the database
via newly created object of the class DataCarrier. The
class DataCarrier is described in Fig. 10. An example of
source code of the method histo() for a quantitation plu-
gin is presented below (Table 1).

Results
The main reason of MRS data processing is to quantify
the data, which may be a complex process. Due to the
fact that jMRUI provides flexible quantitation methods
this process may require several attempts based on trial
and error method. Moreover the plug-in architecture in
jMRUI enables the user to develop new quantitation or
processing methods. Those two features show that there
is a need for a tool which would track automatically all
operations done by the user for later analysis or testing.
The delivered tool should provide a user-friendly

Fig. 5 Flow chart of the database operation – registration of actions. If the user processes the loaded data using any preprocessing method in
jMRUI, the macro key (short name of each routine), which corresponds to the preprocessing method, is stored in the action column of the
ACTIONS table. A new action identification number is generated and saved in the column ID_action in the ACTIONS table and in all other related
tables as shown in the figure. Processing parameters (and if a parameter is a file also the file hash sum) are stored in the PARAMETERS table. The
parameter files, if any, are stored in the preprocessing files directory. A new entry is created in the FILES_ACTIONS table linking the processed file
(its ID_file number obtained from the “OPEN FILES” registry) with the action performed (identified by the action ID_action number). If the user
decides to quantify the currently loaded data, jMRUI will store also the quantitation result file. The result file is stored in the results file directory
and the hash sum of the result file is stored in the table RESULTS

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 7 of 11

Fig. 6 An example of information extraction from the database. The graph is divided into three paths which represent three possibilities of data
extraction, “GET ALL ACTIONS” – is a basic database query without sorting and returns all actions done on this particular file, “ALL ACTIONS WITH
PARENTS” – is a database query with basic sorting of actions which get information about the origin of the file, “EXPORT” – is a routine which
exports the processing history with all parameter files and compresses it into a single.zip file

Fig. 7 Contents of file generated by “Export all files” used in results mode. In the zip file the user will find all files that were used during
quantitation packed to a single zip file. In the generated file the original data file (.mrui file), processing history (file “processing.batch”), QUEST
parameter file (.op file) and metabolite basis set list (.ml file) and finally the result file (_QUEST.results file) can be found

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 8 of 11

interface that would enable user to sort and extract eas-
ily desired information.
Therefore the database storing all processing steps, pa-

rameters and files was developed for jMRUI. The imple-
mented jMRUI database is a tool that can significantly
help the user to track the processing history performed
on data in jMRUI. The created tool is oriented to be
user-friendly, robust and easy to use. For the common
user all tracking operations are invisible as they are per-
formed in the background. The database GUI allows the
user to browse the whole processing history of a selected
file and learn e.g. what processing lead to the results,
where the original data are stored, to obtain the list of
all processing performed on spectra. The database user
interface provides the possibility to create a database in-
stance per study, thus the database size should not pose
a problem. The documented history can be used for
automation of MRS data processing by generation of
macros and for ensuring reproducibility by storing pro-
cessing protocols together with processed data. It can

serve as a database of all processing steps ever per-
formed in jMRUI. The proposed database system could
become the scientist’s diary, or a bug tracking tool for
software developers. One of the added values of the pro-
posed solution comparing with the earlier version of
jMRUI when only the current session history could be
stored in a text file is the possibility of getting history in-
formation about quantified data. There is a possibility of
recovering all processing steps that were used in order
to obtain a given results file (with pre-processing macro,
and all parameter files) and packing it to a single zip file.
This option is especially useful for users that need to re-
cover processing history of their results after some time
or share it with other researchers.
The proposed database tracking system includes a new

approach to the identification of files, which are identi-
fied by the hash sum of the content, and therefore the
files will be correctly identified regardless of their loca-
tion on the disk. In the database GUI user can obtain
precise time and date of each operation, get detailed

Fig. 8 History information obtained from Result mode File. 1D window contains a simplified browser of processing history. The macro obtained
in this way can be saved as text file by clicking on “Save”

Fig. 9 GUI with description of its elements. Main features are described. This GUI can be useful in case of browsing complex processing history

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 9 of 11

information about stored parameters with short descrip-
tion. The proposed tool provides a possibility of com-
menting all actions and let the user to select if this
particular action was successful or not. Later the user
interface can sort the actions based on this quality infor-
mation. From the development and maintenance point
of view all described database functionalities can be used
in further jMRUI debugging and improvements. With
the history tracking database if the user finds any bug
and would like to share this information with the

development team the database can generate a pack with
all necessary files, parameters and processing history.
We believe that this jMRUI enhancement could bring

an important increase of reproducibility in data process-
ing and popularize NMR Spectroscopy in research and
clinical environment.

Discussion
Generally, there are at least three possible approaches to
storing the processing history. The first one is to create
a text file (macro) that accompanies the original data
and the results of the processing. This approach offers
basic processing tracking and is not suitable for complex
data processing and extensive studies. The authors de-
cided to add this approach to the implemented history
tracking system as an auxiliary system.
Another possibility would be to store the processing his-

tory directly in the data file as suggested by Mocioiu et al.
[22]. They developed a XML interface for jMRUI that
stores the processing history and exports it together with
data in XML format. This solution was however mainly
designed to automate data preprocessing for classification,
and offers the storage only of a limited number of listed
preprocessing routines and in the fixed order. We found
this approach not suitable for complex studies.
The third possibility was to use a database linked with

the jMRUI. The authors decided to use this approach
which is far less invasive and more robust than the two
mentioned approaches and also allows recovering all
processing steps ever done in jMRUI. SQL database was
designed with certain level of redundancy that makes
the overall database more flexible. Other important fac-
tor which was taken into account was to provide full
compatibility of the database with future releases. Struc-
ture of the database enables to add new methods and
functionalities in the database engine without changing
the structure of tables and thus without changing the
database file format.
Thus in future the following improvements can be eas-

ily added

� The database file editing could be partially restricted
– the user interaction could be limited to just adding
new entries without removing and editing the already
existing contents in any external application.

� The database could be placed on a centralized server
after a few small changes in the database engine.

� The database file could be encrypted - if there is
such a necessity, the security of the database can be
increased.

Since jMRUI will receive soon a new MR Spectro-
scopic Imaging (MRSI) interface, the current database

Fig. 10 Diagram of the class DataCarrier. In the method histo() the
programmer has to create a new object of the DataCarrier class, set
its variables such as action keyword, all parameters, short description
of parameters, unit if applicable etc. and pass the object created to
the database

Table 1 Example of history tracking for a custom made
quantitation plugin. In the line 1 an object of DataCarrier class is
created. In the line 2 the action keyword is obtained from the
plugin property text file and set into the variable action. In the
line 3 and 4 parameters (in this case metabolite basis set and
parameter file) are set with a brief description. Line 5 enables
the quantitation flag (in case of other types of plugins this line
should be omitted). Finally the line 6 sends the recently created
object to the database. The rest of the process is done in the
background and the plug-in programmer does need to care
about it

DataCarrier d1 = new DataCarrier();

d1.setAction(getShortName());

d1.addParam(new File(metaboliteBasisSetFile), "Metabolite list file = ?");

d1.addParam(new File(paramFile), "Overall phases file = ?");

d1.isQuantitation(true);

mrui.addHistoryStateDB(d1);

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 10 of 11

version may need some additional adaptation once the
new version of MRSI interface is released.

Conclusions
The jMRUI database system presented helps significantly
to tracking of all operations done by the user, it helps to
better organize the processing history. The novel approach
for file identification guarantees efficient file handling.
The implemented system provides a user-friendly GUI
several history retrieval operations built-in directly in
jMRUI, it increases the reproducibility and documentabil-
ity of all spectroscopic processing. This functionality pro-
vides the user a robust system which could be used as a
scientist’s diary registering all data operations performed.

Availability and requirements
Project name: jMRUI database
Project home page: http://www.jmrui.eu
Operating system(s): Windows, Linux
Programming language: Java
License: Free of charge for academic institutions and
hospitals (subject to approved registration)

Abbreviations
MRI: Magnetic resonance imaging; MRS: Magnetic resonance spectroscopy;
NMR: Nuclear magnetic resonance; SQL: Structured query language

Acknowledgements
Not applicable.

Funding
This work was funded by the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° ITN-GA-2012-316679
– TRANSACT and by MEYS CR (LO1212), its infrastructure by MEYS CR and EC
(CZ.1.05/2.1.00/01.0017) and by ASCR (RVO:68081731).

Availability of data and materials
The implemented database is a new component of the jMUI software. jMRUI
is freely available to academic users and hospitals and available for a fee to
commercial users.
It can be downloaded from www.jmrui.eu (subject to approved registration).

Authors’ contributions
MJ and JS designed the database. MJ did the programming. ZS advised
about the user interface. MJ and JS did the testing and optimization of the
user interface and functionalities. All authors helped to draft the manuscript
and read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 3 August 2016 Accepted: 3 January 2017

References
1. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, et al. Clinical proton

MR spectroscopy in central nervous system disorders. Radiology. 2014;
270(3):658–79.

2. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and
coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129–53.

3. Bendahan D, Mattéi JP, Kozak-Ribbens G, Cozzone PJ. Non-invasive
investigation of muscle diseases using 31P magnetic resonance
spectroscopy: potential in clinical applications. Revue Neurologique. 2002;
158(5 Pt 1):527–40.

4. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R. Simultaneous in vivo
spectral editing and water suppression. NMR Biomed. 1998;11:266–72.

5. Bottomley PA. Spatial Localization in NMR Spectroscopy in Vivo. Annals of
the New York Academy of Sciences. 1987;508:333–48. doi:10.1111/j.1749-
6632.1987.tb32915.x.

6. Frahm J, Klaus-Dietmar Merboldt, Hänicke W. Localized proton spectroscopy
using stimulated echoes. J Magn Reson. 1987;3:502–8. doi:10.1016/0022-
2364(87)90154-5.

7. Garwood M, DelaBarre L. The return of the frequency sweep: designing
adiabatic pulses for contemporary NMR. J Magn Reson. 2001;2:155–77.

8. Scheenen TW, Klomp DW, Wijnen JP, Heerschap A. Short echo time 1H-
MRSI of the human brain at 3 T with minimal chemical shift displacement
errors using adiabatic refocusing pulses. Magn Reson Med. 2008;59(1):1–6.

9. Mlynárik V, Gambarota G, Frenkel H, Gruetter R. Localized short-echo-time
proton MR spectroscopy with full signal-intensity acquisition. Magn Reson
Med. 2006;56(5):965–70.

10. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance
spectroscopy and a gallery of artifacts. NMR Biomed. 2004;17(6):361–81.

11. Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O,
Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D.
Quantitation of magnetic resonance spectroscopy signals: the jMRUI
software package. Meas. Sci. Technol. 2009;20:104035.

12. Provencher SW. Estimation of metabolite concentrations from localized in
vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.

13. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC. A constrained
least-squares approach to the automated quantitation of in vivo (1)H
magnetic resonance spectroscopy data. Magn Reson Med. 2011;65(1):1–12.

14. Graveron-Demilly D. Quantification in magnetic resonance spectroscopy
based on semi-parametric approaches. MAGMA. 2014;27(2):113–30.

15. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for
accurate and efficient quantification of MRS data with use of prior
knowledge. J Magn Reson. 1997;129:35–43.

16. Poullet JB, Sima DM, Simonetti AW, de Neuter B, Vanhamme L, Lemmerling
P, Van Huffel S. An automated quantitation of short echo time MRS spectra
in an open source software environment: AQSES. NMR Biomed. 2007;20(5):
493–504.

17. Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-
Demilly D. Time-domain semi-parametric estimation based on a metabolite
basis set. NMR Biomed. 2005;2005(18):1–13.

18. Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D. SVD-based
quantification of magnetic resonance signals. J Magn Reson. 1992;97:122–34.

19. Starcuk Z, Starcukova J, Strbak O, Graveron-Demilly D. Simulation of
coupled-spin systems in the steady-state free precession acquisition mode
for fast magnetic resonance (MR) spectroscopic imaging. Meas Sci Technol.
2009;20:104033.

20. By: in ’t Zandt, H; van Der Graaf, M; Heerschap, A, Common processing of in
vivo MR spectra. NMR in biomedicine doi: 10.1002/nbm.707

21. H2 Database Engine http://www.h2database.com/html/main.html 15 July
2016

22. Mocioiu V, Ortega-Martorell S, Olier I, Jablonski M, Starcukova J, Lisboa P,
Arús C, Julià-Sapé M. From raw data to data-analysis for magnetic
resonance spectroscopy – the missing link: jMRUI2XML. BMC Bioinformatics.
2015. doi:10.1186/s12859-015-0796-5.

Jabłoński et al. BMC Bioinformatics (2017) 18:56 Page 11 of 11

http://www.jmrui.eu/
http://www.jmrui.eu/
http://dx.doi.org/10.1111/j.1749-6632.1987.tb32915.x
http://dx.doi.org/10.1111/j.1749-6632.1987.tb32915.x
http://dx.doi.org/10.1016/0022-2364(87)90154-5
http://dx.doi.org/10.1016/0022-2364(87)90154-5
http://dx.doi.org/10.1002/nbm.707
http://www.h2database.com/html/main.html
http://dx.doi.org/10.1186/s12859-015-0796-5

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Database organization
	Database SQL tables
	ACTIONS
	PARAMS
	RESULTS
	FILES
	FILES_ACTIONS
	MACRO_contents and MACRO
	RESULTS_comment and ACTIONS_comment

	Database operation
	History processing storage
	History processing extraction
	Database interface
	Menu item commands
	Database graphical user interface (GUI)

	Implementation notes

	Results
	Discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

