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Abstract

Background: Next-generation sequencing (NGS) technologies have accelerated considerably the investigation into
the composition of genomes and their functions. Genotyping-by-sequencing (GBS) is a genotyping approach that
makes use of NGS to rapidly and economically scan a genome. It has been shown to allow the simultaneous
discovery and genotyping of thousands to millions of SNPs across a wide range of species. For most users, the
main challenge in GBS is the bioinformatics analysis of the large amount of sequence information derived from
sequencing GBS libraries in view of calling alleles at SNP loci. Herein we describe a new GBS bioinformatics
pipeline, Fast-GBS, designed to provide highly accurate genotyping, to require modest computing resources and to
offer ease of use.

Results: Fast-GBS is built upon standard bioinformatics language and file formats, is capable of handling data from
different sequencing platforms, is capable of detecting different kinds of variants (SNPs, MNPs, and Indels). To
illustrate its performance, we called variants in three collections of samples (soybean, barley, and potato) that cover
a range of different genome sizes, levels of genome complexity, and ploidy. Within these small sets of samples, we
called 35 k, 32 k and 38 k SNPs for soybean, barley and potato, respectively. To assess genotype accuracy, we
compared these GBS-derived SNP genotypes with independent data sets obtained from whole-genome sequencing or

SNP arrays. This analysis yielded estimated accuracies of 98.7, 95.2, and 94% for soybean, barley, and potato,

respectively.

Conclusions: We conclude that Fast-GBS provides a highly efficient and reliable tool for calling SNPs from GBS data.
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Background

Currently, genomics lies at the heart of an extraordinary
number of discoveries, innovations and applications.
This revolution is a direct result of the rise of next-
generation sequencing (NGS) technologies [1-4]. In the
area of genotyping, the combination of NGS and re-
duced representation methods, which focus the sequen-
cing effort on a small subset of the genome, has made it
possible to simultaneously perform genome-wide single
nucleotide polymorphism (SNP) discovery and genotyp-
ing in a single step even in species with large genomes
[5]. This has facilitated greatly the genotyping of very
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large numbers of SNPs using a number of related
methods (e.g. CRoPS, RAD-seq, GBS, double-digest
RAD-seq, and 2bRAD) [6-11]. These various methods
make it possible to study important questions in mo-
lecular breeding, population genetics, ecological genetics
and evolution using thousands to millions of genetic
markers in a wide array of species [5]. Genotyping-by-
sequencing (GBS) is a particularly attractive complexity
reduction method that offers a simple, robust, low-cost,
and high-throughput method for genotyping in both
model and non-model species [8].

Advanced sequencing technologies (NGS) have re-
duced both the cost and the time required to generate
sequence data. The efficient and accurate computational
processing, variant and genotype calling of large-scale
NGS data is the new bottleneck in genomics. To meet
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this need, numerous bioinformatics pipelines have been
developed [12-16] and all need to accomplish a similar
set of steps such as: 1) acquiring raw sequence data, 2)
demultiplexing pooled sequence read data, 3) filtering
out low-quality reads, 4) assembling or aligning reads,
and finally 5) discovering polymorphic loci and inferring
actual genotypes at these loci. Each step represents a set
of specific challenges and ambiguities. Generally, various
genomic characteristics such as the number of detected
variants, the complexity of the genome, the degree of
heterozygosity, the proportion of repetitive sequences
throughout the whole genome, the level of polymorph-
ism and divergence among populations can contribute
to these challenges [12]. On the other hand, technical
factors such as DNA quality, the degree of sample multi-
plexing, the total number of reads per sample, the length
of reads, and the sequencing error rate interact with
these biological factors [17-19]. Therefore, it is neces-
sary to select appropriate parameters such as the re-
quired depth of coverage, the quality of read mapping or
the allowable degree of divergence for successful map-
ping. Finally, because of these two different sources of
variation (biological and technical) in GBS data, the op-
timal parameters need to be adjusted for each species
and desired marker coverage and throughput.

Conventionally, bioinformatics pipelines for handling
GBS data are categorized in two groups: de novo-based
and reference-based. In the presence of a reference gen-
ome, the reads from reduced-representation sequencing
can be mapped to the reference genome and SNPs can
be called [12, 20]. Up to now, several reference-based
GBS analysis pipelines have been developed. The most
widely used reference-based GBS analysis pipelines are:
TASSEL-GBS (vl and v2), Stacks, and IGST [13-15, 21].
But when a reference genome is not available, pairs of
nearly identical reads (presumed to represent alternative
alleles at a locus) need to be identified. The most highly
used pipelines for such a de novo-based approach are
UNEAK and Stacks [15, 16].

Herein, we describe a new reference-based pipeline,
Fast-GBS, and we benchmark the pipeline based upon a
large-scale, species-wide analysis of soybean, barley and
potato. It is easy to use with various species, in different
contexts, and provides an analysis platform that can be
run with different types of sequencing data and modest
computational resources.

Test datasets

To test the performance of Fast-GBS, we used existing
sequence datasets for panels of 24 unrelated accessions/
clones for three species covering a range of genomic sit-
uations: soybean [22], barley [Abed et al., unpublished],
and potato [Bastien et al., unpublished]. Table 1 shows the
species which we used in this study. These vary in terms
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of their ploidy, genome size and mode of reproduction
(which relates to the expected zygosity). We used se-
quence datasets composed of 24 samples for each species.

Genotype validation

To estimate genotype accuracy for Fast-GBS calls, we
compared the called SNPs with independently derived
genotypic data resulting from either whole-genome rese-
quencing (soybean and barley) or genotyping on a SNP
array (potato) for the same samples. For soybean, we
compared the GBS-called SNPs with whole genome
resequencing data for the same 24 samples. In the case
of barley, GBS-derived genotypic data for one of the 24
barley samples (cv. Morex) was compared to the barley
reference genome produced using this same cultivar. For
potato, we compared the GBS-derived genotypes with
those obtained for the same 24 samples at a set of 122
SNPs that were in common with the SolCAP Infinium
Chip (8.3 k SNPs) [23].

Implementation

The Fast-GBS analysis pipeline was developed by inte-
grating public packages with internally developed tools.
The public packages include Sabre (demultiplexing) [24],
Cutadapt (read trimming and cleaning) [25], BWA (read
mapping) [26], SAMtools (file conversion and indexing)
[27], and Platypus (post-processing of reads, haplotype
construction and variant calling) [28]. Fast-GBS func-
tions and software tools are presented in Fig. 1.

Creating directory structure

We developed a Bash script to create the directory
structure before running the Fast-GBS pipeline. This
command line creates the directories for data (FASTQ
files), barcodes (key file), reference genome, and results
(Fast-GBS outputs).

Input

The input data are sequenced DNA fragments from any
restriction enzyme—based GBS protocol. Fast-GBS han-
dles raw sequencing data in FASTQ format.

Preparing the parameter file

The parameter file is a text file containing key informa-
tion about the analysis including the path to the FASTQ
files, barcodes and reference genome. It also contains in-
formation about the type of sequence (paired or single-
end), the adaptor sequence and the sequencing technol-
ogy. In this file we can define critical filtering options
such as the minimal quality scores for reads, minimal
number of reads required to call a genotype, and max-
imal amount of missing data allowed. Number of CPU,
names of output files are also defined in this file. This
file comes with the Fast-GBS pipeline.
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Table 1 List of species genotyped using a GBS approach and analyzed using Fast-GBS. For the three different species used in this
work, relevant characteristics (ploidy, genome size, reproduction mode and chromosome number) influencing GBS analysis are

shown

Name Species Ploidy Genome size (Mb) Mode of reproduction Number of chromosomes
Soybean Glycine max Paleotetraploid 1,100 Selfing 20 [40]

Barley Hordeum vulgare Diploid 5,300 Selfing 7 141]

Potato Solanum tuberosum Autotetraploid 844 Clonal 12 [42]

Data demultiplexing

The cost efficiency of GBS is partly due to the multiplex-
ing of samples and the resulting pooled reads will need
to be demultiplexed prior to SNP calling. Fast-GBS uses
Sabre [24] to demultiplex barcoded reads into separate
files. It simply compares the provided barcodes with the
5" end of each read and separates the reads into the ap-
propriate barcode files after having clipped the barcode
from the read. If a read does not have a recognized bar-
code, it is put into an “unknown” file. Sabre also has an
option (-m) to allow mismatches within barcodes. Sabre
supports gzipped input files. After demultiplexing, Sabre
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Fig. 1 Schematic representation of the analytical steps in the Fast-
GBS pipeline. The main steps in the analytical process are indicated
in the central portion of the diagram, while the different software

tools used are indicated to the left and inputs and outputs of each

step to the right

outputs a BC summary log file of how many reads went
into each barcode file.

Trimming and cleaning

After demultiplexing, Fast-GBS uses Cutadapt to find
and remove adapter sequences, primers, and other types
of unwanted sequence from high-throughput sequencing
reads [25].

Read mapping algorithms

Fast-GBS uses the MEM (maximal exact matches) algo-
rithm implemented in BWA that works by seeding align-
ments and then extending seeds with the Smith-
Waterman (SW) algorithm using an affine gap penalty
[26]. This algorithm can perform local alignment for
reads of 70 bp up to 1Mbp. This algorithm can perform
parallel alignment, thus markedly increasing the speed
of the analysis. The ability to align reads of variable size
allows the use of data obtained using different sequen-
cing platforms (Illumina, Ion Torrent, etc). Aligned
reads may be gapped to allow for Indels.

Post-processing of mapped reads

After initial alignment, the mapped reads are further
processed by Platypus [28] in order to improve the sen-
sitivity and specificity of variant calling. This post-
processing seeks to improve the quality of mapping by
performing a re-examination of poorly mapped reads
and reads mapping to multiple locations. Platypus classi-
fies poorly mapped reads in three categories: 1) reads
with numerous mismatches (high level of sequencing er-
rors), 2) reads mapping to multiple locations in the gen-
ome, and 3) any remaining linker or adaptor sequences
(causing poor mapping). Variants called using such po-
tentially incorrectly mapped reads (see next step) are
highlighted using a BadReads flag.

Haplotype construction and variant calling

In Fast-GBS, variants are called using Platypus. Unlike
alignment-based variant callers which focus on a single
variant type (SNP or indel), Platypus uses multi-sample
variant calling that helps to exploit information from
multiple samples to call variants that may not look reli-
able in a single sample. This approach decreases the er-
rors around indels and larger variants (MNPs). At first,
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the local assembler looks at a small window (~few kb) at
a time and uses all the reads in the window to gener-
ate a colored de Bruijn graph, then using all candi-
date variants, it generates an exhaustive list of
haplotypes. Candidate haplotypes are generated by
clustering the candidate alleles across windows.
Haplotype frequencies are estimated by the expectation-
maximization (EM) algorithm. Then variants are
called using the estimated haplotype frequencies. This
approach works on the local haplotype level rather
than on the level of individual variants and does well
on highly divergent regions. This also decreases com-
putational requirements.

Variant and individual-level filtering

Platypus was originally designed and used to detect
variants in human, mouse, rat and chimpanzee sam-
ples. To optimize Platypus options in the context of
the analysis of GBS-derived single-end reads, we
modified several options (see [29] for details of
Platypus options). Some of the filters used in Fast-
GBS variant calling steps are: number of reads (NR)
per locus (default = 2), mapping quality score of
reads to call a variant (MQ = 10), minimum base
quality (default = 10), MNPs distance (minFlank = 5), and
maximum missing data (MaxMD) allowed (default < 80%).
See Fast-GBS user manual for a full description of all filter-
ing options.

Output data

The main output file of Fast-GBS is a.vcf file [30]
containing detailed information on each of the vari-
ants. In addition, Fast-GBS also generates a simple
text file containing only the genotypic data. The Fast-
GBS log file contains the completed steps of the pipe-
line as it is running. In cases where an error occurs
and prematurely terminates the running of the pipe-
line, the log file shows the step at which the analysis
stopped. An analysis can be started at any point on
the existing intermediate files simply by creating a log
file in which the previously completed steps are listed.
Fast-GBS will re-initiate the analysis starting from
that point onwards.
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Results and Discussion

Performance of Fast-GBS

To assess the performance of the Fast-GBS analysis
pipeline, we used it to analyze existing GBS-derived read
data from sets of 24 soybean, barley, and potato samples.
Table 2 presents a summary of this analysis. As can be
seen, a total of 35 k SNPs were called using 42 M
100-bp Illumina reads on ApeKI-digested DNA from
24 different soybean lines. Similarly, for barley, 32 k
SNPs were successfully called from 72 M Ion Torrent
reads (50-150 bp in length) derived from a 24-plex
Mspl/Pstl library. Finally, in potato, 38 k SNPs were
obtained from sequencing a 24-plex Mspl/Pstl library
(43 million 100-bp Illumina reads).

GBS was originally demonstrated for soybean by
Sonah et al [21] using the IGST pipeline. Using 8 diverse
soybean lines, they called ~10 k SNPs. Later work by the
same group lead to the calling of 45 k SNPs on a large
collection of 304 soybean lines for the purpose of con-
ducting a GWAS study [31]. Analysis of this dataset
using IGST took four days while the same analysis using
Fast-GBS at the same sample size and condition took
only 11 h and called ~60 k SNPs (data not shown). As
can be seen Fast-GBS present a high level of perform-
ance for soybean samples.

Barley has one of the larger genomes (>5 Gb) among
cultivated plant species. Because of the huge size and
high level of complexity of its genome, complexity re-
duction is highly recommended in barley, an important
crop species for which a draft genome has been pub-
lished [32]. Mascher et al [33] genotyped 94 barley RIL
lines using GBS (Mspl/Pstl-digested library) and they
called 34 k and 19 k SNPs using either the reference
genome (with SAMtools) or a de mnovo pipeline
(TASSEL), respectively. In this study we used Fast-GBS
for SNP calling in barley and, as can be seen in Table 2,
Fast-GBS called 32 k SNPs for a small number of sam-
ples (24). This showed the capability of Fast-GBS to run
with large and complex genomes.

Because of the high level of ploidy and heterozygosity,
potato is a challenging species for genotyping. The most
often used method for genotyping in potato is a SNP
array. Two SNP arrays have been developed so far, the

Table 2 Number of variants detected among 24 soybean, barley, and potato samples. The sequencing platform, number of reads,
filtering options, and genotype accuracy for each dataset are also provided

Filtering options®

Name Sequencing platform  Restriction enzyme ~ Number of reads  minNR ~ MinMAF ~ MaxMD (%)  Number of variants  Accuracy (%)
Soybean  lllumina ApeKl 42 M 2 0.04 80 35k 98.7
Barley lon Torrent Mspl/Pstl 72 M 2 0.04 80 32k 95.2
Potato lllumina Mspl/Pstl 43 M 11 0.04 20 38k 94.0

“Filtering options: minNR minimum number of reads to call a variant (depth), MinMAF minimum minor allele frequency, and MaxMD maximum missing

data allowed
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SolCAP 8 k and 20 k arrays [23, 34, 35]. Recently,
Endelman [36], genotyped 96 F2 diploid potato samples
using GBS. Using an R-based bioinformatics pipeline to
filter the GBS variants, they identified 11 k SNPs. In this
study, we called 38 k SNPs from 24 samples which had
also been genotyped using the SolCAP 8 k SNP array.
Using a simplified genotyping mode (“diploid mode”) in
which only three genotypic classes were distinguished
(0/0, 0/1 and 1/1), 5.5 k SNPs on this array had been
found to be polymorphic among this set of 24 potato
samples [37]. As can be seen in Table 2, using Fast-GBS
to call SNPs in an equivalent diploid mode, we called al-
most seven times more polymorphisms than using a
SNP array (38 k vs 5.5 k SNPs).

Validation of Fast-GBS data

An important aspect to consider for any variant calling
tool is the accuracy of called genotypes. In this study, we
estimated the accuracy of genotypes called by Fast-GBS
(Table 2) by comparing them to the “true” genotypes
(obtained from either whole-genome resequencing or
SNP array data). For soybean, for all 24 samples, we
compared the SNP genotypes called by Fast-GBS to the
genotypes assigned to the same loci following whole-
genome sequencing. We found a very high level of con-
cordance, as almost all genotypes (98.7%) proved identi-
cal. For barley, we compared the SNP genotypes called
by Fast-GBS with the true genotypes for one of the 24
lines (cv. Morex), the only one for which we had whole
genome sequencing data. Again, a high degree of agree-
ment between the two datasets (97%) was obtained.
Finally, for potato, we used data obtained on the SolCAP
8 k Infinium Chip for the same 24 samples used to per-
form GBS. These two datasets shared 122 SNP loci. In
our initial comparison, only 87.7% were in agreement.
When we examined the proportion of concordant calls,
we discovered that more than 50% of all discordant calls
came from only three samples and the degree of discord-
ance in these was so great that it suggested we were not
comparing the same clones. After removing these out-
liers from the analysis, 94% of genotypes called by Fast-
GBS and the SNP array were in agreement in the
remaining 21 clones. We conclude that Fast-GBS can ac-
curately call SNPs in species with different characteris-
tics (genome size, ploidy, zygosity).

Flexibility to run different sequencing platforms

In this study, to assess the performance of Fast-GBS, we
used both Illumina and Ion Torrent reads. Soybean and
potato samples were sequenced using an Illumina Hiseq
platform and barley samples on an Ion Torrent (Proton)
platform. Typically for GBS, Illumina sequencing gener-
ates reads of uniform length (100 bp), while Ion Torrent
reads are in 50 to 150 bp. Ion Torrent sequencing
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usually leads to a higher rate of sequencing errors
[38, 39]. Thus, it is preferable for an analytical pipe-
line to be versatile and capable of using reads derived
from either technology (or new technologies in devel-
opment). Most GBS bioinformatics pipelines are able
to proceed with Ion Torrent reads, but often need to
be modified to be suitable for this type of read data.
TASSEL, UNEAK, and Stacks generate tags of a fixed
length (e.g. 64 bp). This will lead to an important loss
of sequence information and can lead to inaccurate
or ambiguous mapping of reads. Also, because of the
increased amount of sequencing errors, these pipe-
lines can generate false tags which produce false
SNPs. As shown above, Fast-GBS proved the capacity
of accurately proceed maximum SNP calling using
reads obtained from both sequencing platforms (Ion
Proton and Illumina).

Conclusions

GBS provides an extremely powerful and versatile tool
for identifying and calling genetic markers to be used
by researchers working in numerous species and fields
of study. This genotyping approach, like all applica-
tions based on NGS, generates a huge amount of raw
data. These data need to be analyzed as quickly and
efficiently as possible, all the while yielding SNP data
that is highly accurate. Fast-GBS showed itself to be a
powerful pipeline to generate large numbers of highly
accurate SNPs using sequence read data obtained
from different sequencing platforms and diverse spe-
cies characterized by different levels of ploidy, zygos-
ity, and genome complexity. By combining efficiency
and accuracy in this way, Fast-GSB constitutes a use-
ful tool for a broad array of users in different re-
search communities.

Availability and requirements

Project name: Fast-GBS

Project home page: https://bitbucket.org/jerlar73/fast-gbs

Operating system: Linux

Programming language: Bash and Python

License: GNU GPL v

Any restrictions to use by non-academics: No
Sequence data are available in NCBI Sequence

Read Archive (SRA) with the SRP# Study accession,

SRP059747.
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CRoPS: Complexity reduction of polymorphic sequences; GBS: Genotyping-
by-sequencing; Indel: Insertion-deletion; MaxMD: Maximum missing data;
MIinMAF: Minimum minor allele frequency; minNR: Minimum number of
reads; MNP: Multiple nucleotide polymorphism; MQ: Mapping quality;

NGS: Next-generation sequencing; RAD-seq: Restriction site associated DNA
sequencing; SNP: Single nucleotide polymorphism
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