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Predicting potential drug-drug interactions
by integrating chemical, biological,
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Abstract

Background: Drug-drug interactions (DDIs) are one of the major concerns in drug discovery. Accurate prediction of
potential DDIs can help to reduce unexpected interactions in the entire lifecycle of drugs, and are important for the
drug safety surveillance.

Results: Since many DDIs are not detected or observed in clinical trials, this work is aimed to predict unobserved
or undetected DDIs. In this paper, we collect a variety of drug data that may influence drug-drug interactions, i.e.,
drug substructure data, drug target data, drug enzyme data, drug transporter data, drug pathway data, drug
indication data, drug side effect data, drug off side effect data and known drug-drug interactions. We adopt three
representative methods: the neighbor recommender method, the random walk method and the matrix
perturbation method to build prediction models based on different data. Thus, we evaluate the usefulness of
different information sources for the DDI prediction. Further, we present flexible frames of integrating different
models with suitable ensemble rules, including weighted average ensemble rule and classifier ensemble rule, and
develop ensemble models to achieve better performances.

Conclusions: The experiments demonstrate that different data sources provide diverse information, and the DDI
network based on known DDIs is one of most important information for DDI prediction. The ensemble methods
can produce better performances than individual methods, and outperform existing state-of-the-art methods. The
datasets and source codes are available at https://github.com/zw9977129/drug-drug-interaction/.

Keywords: Drug-drug interaction, Ensemble learning, Missing link prediction, Random walk

Background
Drugs may interact when multiple drugs are co-
prescribed. Drug-drug interactions (DDIs) may exert dif-
ferent effects, and adverse drug-drug interactions can
lead to patient death or drug withdrawal [1–4]. DDI
prediction can help to reduce unexpected effects as well
as optimize the treatments in the drug design, clinical
trials, and post-marketing surveillance.
Silico methods, in vitro methods, vivo experiments

and clinical trials can identify DDIs, but they are labor-
intensive and time-consuming. Statistical methods [5–9]
were developed to detect whether the combination of

two drugs is associated with an increased risk of certain
adverse events, by analyzing spontaneous reports, insur-
ance claim databases and electronic medical records.
In recent years, researchers collected drug data from lit-

eratures, reports and etc., and constructed public data-
bases [10–17] which facilitate the development of
computational prediction methods. To the best of our
knowledge, a great number of machine learning methods
were proposed to predict DDIs. Existing methods are
roughly classified into two types: similarity-based methods
and classification-based methods. The similarity-based
methods employed the assumption that similar drugs may
interact with a same drug. Gottlieb et al. [18] built
prediction models by considering seven kinds of drug-
drug similarities. Vilar et al. proposed the substructure
similarity-based prediction method [19] and the inter-
action profile fingerprint similarity-based prediction
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method [20]. Li et al. [21] developed a Bayesian network
of combining drug molecular similarity and phenotypic
similarity to predict the combination efficacy of drugs. By
using drug-drug similarity indirectly, Park et al. [22] ap-
plied a random walk with restart to simulate signaling
propagation from drug targets and make predictions;
Zhang et al. [23] adopted the label propagation method to
build prediction models based on drug chemical substruc-
tures, drug side effects and drug and off side effects.
Classification-based methods formulate the drug-drug
prediction as binary classification tasks. Cami et al. [24]
represented drug-drug pairs as feature vectors, and use
presence or absence of interactions as labels, and then
built logistic regression models. Cheng et al. [25] applied
five predictive models (naive Bayes, decision tree, k-near-
est neighbor, logistic regression, and support vector ma-
chine) to build prediction models. Besides similarity-based
methods and classification-based methods, there are sev-
eral methods designed for specific purposes. Takarabe et
al. [26] constructed a multi-level drug-drug interaction
network, and analyzed, characterized and classified ad-
verse drug-drug interactions. Huang et al. [27] developed
a target-center system for each drug, which consists of
drug targets and their neighbors in the PPI network and
human tissue gene expression.
Since many DDIs are not detected or observed in clin-

ical trials, this work is aimed to predict undetected or un-
observed drug-drug interactions. Classification methods
utilize two classes of data: annotated drug-drug inter-
action pairs and annotated non-interaction pairs to build
classification models. In the binary classification, known
interactions are used as positive instances, but other drug
pairs may have undetected or unobserved interactions,
which need to be predicted. In machine learning, similar
problems are transformed as semi-supervised learning
tasks. For this reason, we build DDI prediction models
under the frame of semi-supervised learning.
In this paper, we collect drug substructure data, drug

target data, drug enzyme data, drug transporter data,
drug pathway data, drug indication data, drug side effect
data, drug off side effect data and known drug-drug in-
teractions. Multi-source data provide biological informa-
tion, chemical information, phenotypic information and
known interactions to characterize drug-drug interac-
tions. To make use of diverse information, we adopt
three representative methods, i.e., the neighbor recom-
mender method [28, 29], the random walk method and
the matrix perturbation method [30], to build different
prediction models. According to performances of
prediction models, we evaluate the usefulness of differ-
ent information sources for the DDI prediction. The
study reveals that DDI network based on known DDIs
can provide the important information for DDI predic-
tion. Further, we present flexible frames of integrating

different models with suitable ensemble rules, including
the weighted average ensemble rule and the classifier en-
semble rule, and develop ensemble models to achieve
better performances. The experiments demonstrate that
ensemble methods can combine diverse information to
produce the high-accuracy performances, and outper-
form existing state-of-the-art methods.

Methods
Datasets
The FDA Adverse Event Reporting System (FAERS) is a
database which contains adverse event reports and
medication error reports submitted to FDA. Tatonetti
processed adverse event reports in the AERS, and con-
structed a database named “TWOSIDES” [31] which
contains side effects caused by the combination of drugs.
There are 645 drugs and 63,473 distinct pairwise DDIs
from unsafe co-prescriptions in TWOSIDES.
The biological information, chemical information and

phenotypic information about drugs may be associated
with drug-drug interactions. PubChem Compound data-
base [12, 15] can provide drug structures. DrugBank
database [10, 11, 16, 17] is a bioinformatics resource
with drug targets, drug enzymes and drug transporters.
KEGG database [13] is an information resource for
protein pathways. Drug targets are mapped to KEGG to
obtain drug pathways. SIDER database [14] contains
1430 drugs and 5880 side effect terms which are com-
piled from public documents and package inserts. Drug
side effects and indications are available in SIDER. OFF-
SIDES database [31] contains 1332 drugs and 10,093
“off-label” side effects.
We map drugs in TWOSIDES to SIDER, OFFSIDES,

PubChem and DrugBank. As shown in Table 1, we ob-
tain 548 drugs and 48,584 pairwise DDIs, and substruc-
ture data, target data, enzyme data, transporter data,
pathway data, indication data, side effect data, off side
effect data of these drugs are available. Based on the
data, we conduct the comprehensive study to evaluate
the usefulness of different data sources for DDI predic-
tion, and discuss how to combine them for the high-
accuracy prediction.

DDI prediction based on multi-source data
Multi-source data provide different information for the
DDI prediction. Here, we describe how to build models
based on different data.
Drug-drug similarities bring important clues for the

DDI prediction, and different similarities can be ex-
tracted from multi-source data. Drug data are classified
as four types, i.e., chemical data, biological data, pheno-
typic data and the drug-drug interaction network data
(formed by known drug-drug interactions). On one
hand, we calculate the drug-drug similarities in the
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biological space, chemical space and phenotypic space, by
using drug substructures, drug targets, drug enzymes,
drug transporters, drug pathways, drug indications, drug
side effects and drug off side effects. On the other hand,
we calculate the drug-drug similarities in the drug-drug
interaction network. In order to utilize drug-drug similar-
ities, we consider two representative methods [28, 32]: the
neighbor recommender method and random walk
method, and build DDI prediction models.
We take drugs as nodes and known interactions as

edges in the DDI network, and transform the DDI pre-
diction problem as a missing link prediction task. The
missing link prediction is an important topic of theoret-
ical interest and practical significance in the complex
network [33]. Recently, a novel method named “matrix
perturbation method” [30] is proposed, which utilize the
network to predict missing links (unobserved DDIs).
The studies demonstrated that this method outperforms
other missing link prediction methods. Therefore, we
adopt the matrix perturbation method to predict poten-
tial DDIs based on the DDI network.
In the following context, Similarity-based DDI pre-

diction based on multi-source data presents how to
extract different drug-drug similarities from different
data and how to develop similarity-based models;
Matrix perturbation method for DDI prediction
presents the missing link prediction method (matrix
perturbation method).

Similarity-based DDI prediction based on multi-source data
Drug-drug similarity based on biological data, chemical
data and phenotypic data
A drug can be represented as a binary feature vector, by
using drug substructures, drug targets, drug enzymes,
drug transporters, drug pathways, drug indications, drug
side effects, or drug off side effects. Dimensions of the
feature vector respond to presence or absence of compo-
nents with values 1 or 0. For example, there are 881
types of drug substructures, and a drug can be trans-
formed as an 881-dimensional vector.

Given a drug x and a drug y, their feature vectors are
Vx and Vy, and the similarity between x and y is then cal-
culated by Jaccard formula:

S V x;Vy
� � ¼ M11

M01 þM10 þM11

where M11 is the number of dimensions where Vx and
Vy both have a value of 1; M01 is the number of dimen-
sions where Vx has a value of 0 and Vy has a value of 1;
M10 is the number of dimensions where Vx has a value
of 1 and Vy has a value of 0.
Therefore, we can obtain 8 drug feature-based drug-drug

similarities, including substructure-based similarity, target-
based similarity, enzyme-based similarity, transporter-based
similarity, pathway-based similarity, indication-based simi-
larity, side effect-based similarity and off side effect-based
similarity.

Drug-drug similarity based on known drug-drug
interactions
By considering drugs as nodes and interaction as edges,
known DDIs can form a DDI network. We calculate drug-
drug similarities in the DDI network [33]. The adjacent
matrix of the DDI network is denoted as A = (aij), and de-
notes the set of nodes linked to node. Several similarities
between a drug x and a drug y can be defined.
Common neighbor similarity SCN(x, y) takes the num-

ber of common neighbors between two nodes,

SCN x; yð Þ ¼ Γ xð Þ∩Γ yð Þj j

Adamic-Adar similarity SAA(x, y) is the counting of
common neighbors by assigning the less connected
neighbors more weights,

SAA x; yð Þ ¼
X

z∈Γ xð Þ∩Γ yð Þ

1
log Γ zð Þj j

Resource Allocation similarity SRA(x, y) is based on the
complex network resource allocation dynamics,

Table 1 The descriptions about multi-source drug data

Data type Data Data Source Description

Chemical Substructures PubChem 881 substructure types

Biological Targets DrugBank 780 target types

Biological Transporters DrugBank 78 transporter types

Biological Enzymes DrugBank 129 enzyme types

Biological Pathways KEGG 253 pathway types

Phenotypic Indications SIDER 4897 indication types

Phenotypic Side effects SIDER 4897 side effect types

Phenotypic Off side effects OFFSIDES 9496 off side effects types

Network Drug-drug interaction network TWOSIDES 548 drugs and 48,584 DDIs
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SRA x; yð Þ ¼
X

z∈Γ xð Þ∩Γ yð Þ

1
Γ zð Þj j

Katz similarity SKatz(x, y) sums over the collection of
paths with exponential damping according to path
lengths,

SKatz x; yð Þ ¼ αAxy þ α2A2
xy þ α3A3

xy þ⋯
¼ I−αAð Þ−1−I

where α is a parameter, and I is the identity matrix. |α|
< 1/λmax is the condition for the compact form, and λmax

is the largest eigenvalue of A.
Average Commute Time similarity SACT(x, y) is the

average number of steps required by a random walker
starting from one node to reach another,

SACT x; yð Þ ¼ 1

lþxx þ lþyy−2l
þ
xy

where L+ is the pseudoinverse of the Laplacian matrix
for the network.
The random walk with restart similarity SRWR(x, y) is

the probability that a random walker starting from an
initial node x reaches y. The walker moves with the
probability μ of returning to the initial node and the
probability 1 − μ going to adjacent nodes,

SRWR x; yð Þ ¼ qxy þ qyx

where q = (1 − μ)(1 − μPT)− 1A, and P =D− 1A is the nor-
malized transition matrix of the adjacency matrix A, and
D is the degree matrix of A.
Therefore, we obtain 6 DDI network-based drug-drug

similarities, including common neighbor similarity,
Adamic-Adar similarity, resource allocation similarity,
Katz similarity, average commute time similarity and
random walk with restart similarity.

Similarity-based methods for DDI prediction
Given a N ×N similarity matrix S = (sij) for N drugs,
known pairwise DDIs are denoted by an adjacent matrix
A = (aij). The neighbor recommender method and the
random walk method are briefly introduced as follows.
The neighbor recommender method [28, 34] is one of

most popular methods in recommender systems, which
recommends items (movies, music, books, et al.) to
users, or predicts the ‘rating’ or ‘preference’ that users
would give to items. The neighbor recommender
method takes the weighted average information of
neighbors for prediction. Yij = ∑k = 1,k ≠ j

N sikakj/∑k = 1,k ≠ j
N sik is

calculated for drugi and drugj which don’t have known
interaction, where sik is the similarity between drugi and
drugk, and akj = 1 or 0 means interaction or non-
interaction between drugk and drugj. We can calculate

Yji in this same way. The probability that drugi interacts
with drugj scoreji = scoreij = Yij + Yji.
A random walk is a mathematical formalization of a

path that consists of a succession of random steps.
There are a great number of successful applications in
the network analysis [35–38]. In random walk, a random
walker starts from an initial node, and moves to neigh-
bors with the probability μ and moves back to the initial
node with the probability 1 − μ. The similarity matrix S
is normalized as W =D− 1S, where D is the degree matrix
of S. The matrix form of the update is summarized as Y
= μWY + (1 − μ)A, and it will converge to the solution: Y
= (1 − μ)(I − μW)− 1A. The probability that drugi interacts
with drugj scoreji = scoreij = Yij + Yji.

Matrix perturbation method for DDI prediction
The matrix perturbation method assumes that ran-
dom removal of a small proportion of links from a
network will not change the network structure [30],
which is reflected by eigenvectors of its adjacent
matrix.
Let’s introduce notations for the matrix perturbation

method. Given the drug-drug interaction network G(V, E),
V is the set of nodes, and E is the set of edges. The adja-
cent matrix is A = (aij), and the eigenvectors and
eigenvalues of the adjacent matrix are denoted by xk and
λk, k = 1, 2,⋯,N.
A fraction of links ΔE are randomly removed from E,

and the set of remaining links ER = E −ΔE. Thus, we ob-
tain the new network GR(V, ER) with the adjacent matrix
AR =A −ΔA, where ΔA is the adjacent matrix for re-
moved links. Then, we calculate the eigenvectors xk

R and
eigenvalues λk

R of AR, k = 1, 2,⋯,N. We denote that A =
AR +ΔA, xk = xk

R +Δxk and λk = λk
R + Δλk.

In the network G(V, E), the relation of eigenvectors,
eigenvalues and the adjacent matrix is written as,

AR þ ΔA
� �

xRk þ Δxk
� � ¼ λRk þ Δλk

� �
xRk þ Δxk
� �

By left multiplying (xk
R)T in above equation, we can ob-

tain Δλk≈
xRkð ÞTΔAxRk
xRkð ÞT xRk

.

We estimate eigenvalues λk = λk
R+Δλk, and keep eigenvec-

tors xk
R unchanged. Then, we reconstruct the adjacent

matrix of G(V, E) by summing eigenvalues and eigenvectors,

~A ¼
XN

i¼1

λRk þ Δλk
� �

xRk xRk
� �T

The probability that drugi interacts with drugj scoreij =
scoreji =Ãij +Ãji. More details are available in the publi-
cation [30].
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Combining multi-source data for DDI prediction
Since we build different prediction models based on
different data, it is natural to combine them for better
performance. Ensemble learning is a useful technique
that aggregates multiple machine learning models to
achieve overall high prediction accuracy as well as
good generalization [39]. Ensemble learning has been
applied to a great number of applications in bioinfor-
matics [29, 40, 41].
An ensemble learning system usually has two com-

ponents: base predictors and ensemble rules. In our
ensemble system, we adopt heterogeneous models
{fi}i = 1

n based on multi-source data as base predictors.
To integrate base predictors, we consider two popu-
lar ensemble rules: the weighted average ensemble
rule and the classifier ensemble rule. Figure 1 dem-
onstrates the flowchart of ensemble systems.
The weighted average ensemble rule takes the

weighted average of outputs from base predictor. For a
new input xnew, base predictors give out the predictions
{fi(xnew)}i = 1

n , and their weighted average ∑i = 1
n wifi(xnew) is

adopted as the prediction of the ensemble model, where
∑i = 1
n wi = 1 and wi ≥ 0. We adopt the genetic algorithm

(GA) to determine weights in the ensemble model. In
the GA optimization, candidate weights are represented
as chromosomes, and the fitness of a chromosome is the
area under the precision-recall curve (AUPR) score of
the ensemble model on the validation data. The object-
ive function of GA optimization is to maximize the
AUPR score.
The classifier ensemble rule is to seek a classification

function G : (f1(x), f2(x),⋯, fn(x))→ {0, 1}, which maps
outputs of n base predictors to a label. For a new input
xnew, outputs of base predictors are {fi(xnew)}i = 1

n , and the
prediction of the classifier ensemble model is G(f1(xnew),

f2(xnew),⋯, fn(xnew)). Here, we adopt logistic regression
as the classification function.

Results and discussion
Evaluation metrics
We adopt k-fold cross validation (k-CV) to evaluate pre-
diction models. Known interactions are randomly split
into k subsets with equal size. In each fold, one subset is
used as the testing set; 80 and 20% of other interactions
(k-1 subsets) are used as the training set and validation
set. Base predictors are constructed on the training set,
and parameters in the ensemble system are tuned by
using the validation set. Then, the ensemble model
makes predictions for the testing set. This procedure is
repeated until each subset is ever used for testing. To
avoid the bias of data split, we implement 20 independ-
ent runs of k-CV for each model, and average perfor-
mances are adopted.
Here, we adopt several evaluation metrics to measure

performances of prediction models, i.e., accuracy (ACC),
precision, recall, F-measure (F), area under ROC curve
(AUC) and the area under the precision-recall curve
(AUPR). In our task, DDIs take a small proportion of all
drug pairs, and thus AUPR, which takes into account
both recall and precision, is used as the primary evalu-
ation metric.

Performances of different models based on multi-source
data
We extract 14 different similarities from multi-source
data, and respectively adopt the neighbor recommender
method and the random walk method to build 28
similarity-based prediction models. By formulating the
original problem as a missing link prediction task, we
adopt the matrix perturbation method to build the

Fig. 1 The scheme of integrating multi-source data for DDI prediction
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prediction model based on known DDIs. Therefore, we
construct 29 prediction models based on multi-source
data. Since different models utilize different information
for DDI prediction, performances of the models are indi-
cators for the usefulness of information sources.
As shown in Table 2, these models produce different

performances on the benchmark dataset in the cross val-
idation. Among eight feature-based similarities, sub-
structure similarity, side effect similarity, off side effect
similarity and indication similarity lead to better perfor-
mances than other similarities, indicating that drug sub-
structures, drug side effects, drug off side effects and
drug indications provide important information for the
drug-drug interactions. Among the network topology-
based similarities, RA and RWR can produce better re-
sults. The comparison shows that drug feature-based

similarities as well as topological similarities can provide
useful information to characterize drug-drug interactions
and lead to useful models. The matrix perturbation
method utilizes the DDI network as a whole to make
predictions. Among all prediction models, the matrix
perturbation method produces the best results, indicat-
ing that known DDIs provide one of most useful infor-
mation to identify potential DDIs.
We also conduct 20 runs of 3-CV to evaluate predic-

tion models, and results are shown in Table 3. The com-
parison between 3-CV results and 5-CV results
demonstrates that prediction models have different per-
formances under different experimental conditions, and
a model cannot produce the best results in all cases. For
example, the matrix perturbation method assumes that
the topology of a network will not change if only a small

Table 2 Performances of different models evaluated by 20 runs of 5-CV

Method Similarity Index AUC AUPR Recall Precision Accuracy F

Neighbor recommender
Method

Substructure 1 0.936 0.759 0.765 0.617 0.950 0.683

Target 2 0.820 0.365 0.338 0.548 0.867 0.418

Transporter 3 0.714 0.329 0.290 0.389 0.862 0.331

Enzyme 4 0.756 0.377 0.471 0.346 0.909 0.399

Pathway 5 0.812 0.571 0.657 0.474 0.932 0.550

Indication 6 0.912 0.599 0.555 0.591 0.923 0.572

Label 7 0.936 0.754 0.750 0.618 0.949 0.678

Off label 8 0.940 0.768 0.765 0.629 0.951 0.691

CN 9 0.941 0.767 0.745 0.635 0.949 0.685

AA 10 0.941 0.767 0.747 0.634 0.949 0.686

RA 11 0.943 0.770 0.752 0.634 0.950 0.688

Katz 12 0.937 0.735 0.707 0.608 0.944 0.653

ACT 13 0.931 0.752 0.723 0.618 0.947 0.667

RWR 14 0.941 0.766 0.746 0.634 0.949 0.685

Random walk
Method

Substructure 15 0.936 0.758 0.763 0.616 0.950 0.681

Target 16 0.852 0.559 0.596 0.501 0.927 0.544

Transporter 17 0.713 0.363 0.297 0.381 0.864 0.329

Enzyme 18 0.760 0.470 0.657 0.344 0.927 0.451

Pathway 19 0.811 0.594 0.709 0.479 0.937 0.572

Indication 20 0.941 0.777 0.768 0.641 0.952 0.699

Label 21 0.936 0.760 0.764 0.621 0.950 0.685

Off label 22 0.937 0.763 0.761 0.627 0.950 0.688

CN 23 0.938 0.757 0.736 0.625 0.948 0.676

AA 24 0.938 0.755 0.734 0.624 0.947 0.675

RA 25 0.937 0.748 0.729 0.616 0.946 0.667

Katz 26 0.937 0.750 0.730 0.619 0.946 0.669

ACT 27 0.930 0.748 0.727 0.632 0.938 0.671

RWR 28 0.939 0.764 0.742 0.635 0.949 0.684

Matrix perturbation method 29 0.948 0.782 0.755 0.666 0.952 0.707
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proportion of links are removed. In 3-CV, more links are
kept for testing, and the predictive power may be af-
fected. Therefore, the matrix perturbation method is not
the best predictor in 3-CV experiments. For this reason,
we integrate different models to make robust
predictions.

Performances of ensemble models
Based on multi-source data, we construct 29 prediction
models including 28 similarity-based models and one
perturbation matrix model. We use these models as base
predictors, and respectively adopt the weighted average
ensemble rule and the classifier ensemble rule to build
ensemble models.
We apply the genetic algorithm (GA) to determine op-

timal weights in the weighted average ensemble models.
GA is implemented by using python package “deap”.

The initial population has 100 chromosomes. In the
population update, the elitist strategy is used for the se-
lection operator, and default parameters are adopted for
the mutation probability and crossover probability. The
population update terminates when the change of best
fitness scores is less than the default value of 1E-6 or the
max generation number of 50 is reached.
To build classifier ensemble models, we train the logis-

tic regression classifier to combine outputs of base pre-
dictors. The logistic regression is implemented by using
python package “scikit-learn”. Default parameters are
used; L1 regularization and L2 regularization are re-
spectively considered. In the following context, classifier
ensembles models refer to logistic regression ensemble
models.
Table 4 shows 3-CV results and 5-CV results. In 5-CV

experiments, the weighted average ensemble model, the

Table 3 Performances of different models evaluated by 20 runs of 3-CV

Method Similarity Index AUC AUPR Recall Precision Accuracy F

Neighbor recommender
Method

Substructure 1 0.935 0.808 0.772 0.669 0.927 0.717

Target 2 0.806 0.425 0.420 0.579 0.831 0.486

Transporter 3 0.714 0.405 0.344 0.495 0.800 0.406

Enzyme 4 0.753 0.437 0.466 0.424 0.853 0.443

Pathway 5 0.810 0.624 0.674 0.510 0.898 0.581

Indication 6 0.903 0.640 0.584 0.658 0.888 0.618

Label 7 0.935 0.803 0.758 0.673 0.925 0.713

Off label 8 0.939 0.815 0.771 0.684 0.928 0.725

CN 9 0.940 0.816 0.761 0.691 0.927 0.724

AA 10 0.941 0.816 0.761 0.690 0.927 0.724

RA 11 0.942 0.819 0.763 0.691 0.928 0.725

Katz 12 0.933 0.782 0.715 0.666 0.917 0.689

ACT 13 0.866 0.721 0.629 0.574 0.915 0.600

RWR 14 0.940 0.814 0.760 0.688 0.927 0.722

Random walk
Method

Substructure 15 0.935 0.807 0.768 0.670 0.927 0.716

Target 16 0.844 0.608 0.601 0.555 0.888 0.576

Transporter 17 0.713 0.437 0.339 0.504 0.795 0.404

Enzyme 18 0.760 0.533 0.655 0.374 0.886 0.476

Pathway 19 0.810 0.648 0.724 0.515 0.906 0.601

Indication 20 0.939 0.820 0.773 0.693 0.930 0.731

Label 21 0.936 0.809 0.771 0.674 0.927 0.719

Off label 22 0.937 0.811 0.771 0.680 0.928 0.722

CN 23 0.937 0.807 0.748 0.685 0.925 0.715

AA 24 0.937 0.806 0.747 0.683 0.924 0.714

RA 25 0.936 0.799 0.741 0.675 0.923 0.706

Katz 26 0.936 0.801 0.743 0.677 0.923 0.708

ACT 27 0.866 0.706 0.658 0.699 0.834 0.643

RWR 28 0.938 0.813 0.759 0.690 0.927 0.723

Matrix perturbation method 29 0.941 0.813 0.755 0.709 0.928 0.731
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classifier ensemble model (L1 regularization) and classi-
fier ensemble model (L2 regularization) produce the
AUPR scores of 0.795, 0.807 and 0.806; in 3-CV experi-
ments, three models yield the AUPR scores of 0.832, 0.841
and 0.839. The comparison demonstrates that the classi-
fier ensemble models produce better results than the
weighted average ensemble model. The possible reason is
that the weighted average ensemble method uses the lin-
ear function for ensemble learning and classifier ensemble
method trains nonlinear function. Moreover, the classifier
ensemble method with L1 regularization can produce bet-
ter results than the classifier ensemble method with L2
regularization, for L1 regularization can produce the
sparse model and enhance the generalization capability.
Clearly, ensemble models produce better results than base

predictors. In 5-CV experiments, the classifier ensemble
method (L1) can improve the AUPR score of 0.782 (pro-
duced by the matrix perturbation model) to 0.806. Since we
implement 20 runs of 5-CV for ensemble models and
matrix perturbation models, we conduct t-test to test the

difference of their performances in terms of AUPR score,
and the statistical significance is observed (p-value =1.21E-
39). In 3-CV experiments, the classifier ensemble method
(L1) can enhance the AUPR score from 0.820 (produced by
the indication-based random walk model) to 0.839, and we
also observe the statistical significance of improvement be-
tween the classifier ensemble model (L1) and the indication-
based random walk model (p-value =3.12E-41).
Further, we investigate into details of the ensemble

models based on 3-CV results and 5-CV results. Firstly,
we analyze weights in the weighted average ensemble
models determined by GA. There are 100 sets of weights
for 20 runs of 5-CV; there are 60 sets of weights for 20
runs of 3-CV. We calculate the average weights for each
predictor, and visualize the normalized weights in Fig. 2.
Base predictors with high AURP scores may be assigned
great weights. For example, the matrix perturbation
model produces best 5-CV results, and thus gains the
greatest weight in the ensemble models. We observe that
several base predictors (such as RWR-based random

Table 4 Performances of ensemble model evaluated by 20 runs of 3-CV and 5-CV

Evluation Method AUC AUPR Precision Recall Accuracy F-measure

3-CV evaluation Weighted average ensemble method 0.947 0.832 0.782 0.703 0.932 0.740

Classifier ensemble method(L1) 0.954 0.841 0.788 0.717 0.934 0.751

Classifier ensemble method(L2) 0.952 0.839 0.784 0.712 0.933 0.746

5-CV evaluation Weighted average ensemble method 0.951 0.795 0.775 0.659 0.953 0.712

Classifier ensemble method(L1) 0.957 0.807 0.785 0.670 0.955 0.723

Classifier ensemble method(L2) 0.956 0.806 0.783 0.665 0.955 0.719

Fig. 2 Weights for base predictors in the weighted average ensemble models (a) 3-CV experiments; (b) 5-CV experiments
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walk model) are not used in the ensemble models. The
classifier ensemble method (L1) produces the sparse
models, which integrate the subset of base predictors.
According to 5-CV results, several base predictors
(index: 1, 10, 15, 21, 22, 27, 28, 29) are not used in the
classifier ensemble model. In the view of computer sci-
ence, multi-source data provide diverse information but
also bring the redundant information. Combining base
predictors is a combinatorial optimization problem.
Therefore, the weighted average ensemble method and
the classifier ensemble method (L1) use a subset of base
predictors to develop ensemble models.

Comparison with existing state-of-the-art methods
Since this work is designed to predict undetected or un-
observed DDIs, we adopt methods of the same type for
comparison. Vilar used known interactions of most simi-
lar drugs to predict DDIs, and proposed the substructure
similarity-based model [19] and interaction profile fin-
gerprint (also known as common neighbors, CN)
similarity-based model [20]. Zhang [23] adopted the
label propagation algorithm to build substructure
similarity-based model, side effect similarity-based
model and off side effect similarity-based model. We
name these models as Vilar’s substructure-based model,
Vilar’s CN index-based model, substructure-based label
propagation model, side effect-based label propagation
model and off side effect-based label propagation model.
These prediction models are implemented according to
details in publications. All models are evaluated by 20
runs of cross validation under the same conditions.

As shown in Table 5, our ensemble methods produce bet-
ter results than other state-of-the-art methods in terms of
different metrics. The classifier ensemble method (L1) pro-
duces the best results in both 3-CV experiments and 5-CV
experiments. Further, we adopt t-test to compare the ensem-
ble methods with other state-of-the-art methods in terms of
AUPR scores. Table 6 demonstrates that our ensemble
methods produce significantly better results (p < 0.05 in
terms of AUPR scores).
In one fold of 5-fold cross validation, we adopt 80% inter-

actions (38,868) as the training set and the validations set,
and use other interactions (9716) as the testing set. We build
the prediction model based on the training set and the vali-
dations set, and then make predictions for non-interaction
drug-drug pairs (111,010) to identify testing interactions
(9716). Based on the result, we respectively count how many
testing DDIs are identified in the top 10,000 predictions and
top 15,000 predictions. As shown in Fig. 3, the classifier en-
semble model (L1) can identify 7027 testing interactions
when verifying top 10,000 predictions, and identify 7842
testing interactions when verifying top 15,000 predictions.
In general, our ensemble models can identify 300 ~ 400
more interactions than other methods do.

Predicted novel interactions
In this paper, we use the benchmark dataset with 548
drugs and 48,584 pairwise drug-drug interactions
from TWOSIDES database. There are 149,878 drug-
drug pairs between these drugs. Besides 48,584 known
pairwise DDIs, 101294 remaining drug pairs (“non-
interaction pairs”) may contain undetected or

Table 5 Performances of the ensemble method and benchmark methods evaluated by 20 runs of 3-CV and 5-CV

Evluation Method AUC AUPR Precision Recall Accuracy F-measure

3-CV evaluation Vilar’s substructure-based model 0.670 0.273 0.145 0.535 0.684 0.229

Vilar’s CN index-based model 0.872 0.413 0.377 0.553 0.880 0.447

Substructure-based label propagation model 0.935 0.807 0.768 0.670 0.927 0.716

Side effect-based Label propagation model 0.936 0.809 0.771 0.674 0.927 0.719

Off side effect-based label propagation model 0.937 0.811 0.771 0.680 0.928 0.722

Weighted average ensemble method 0.947 0.832 0.782 0.703 0.932 0.740

Classifier ensemble method (L1) 0.954 0.841 0.788 0.717 0.934 0.751

Classifier ensemble method (L2) 0.952 0.839 0.784 0.712 0.933 0.746

5-CV evaluation Vilar’s substructure-based model 0.670 0.273 0.145 0.535 0.684 0.229

Vilar’s CN index-based model 0.872 0.413 0.377 0.553 0.880 0.447

Substructure-based label propagation model 0.936 0.758 0.763 0.616 0.950 0.681

Side effect-based Label propagation model 0.936 0.760 0.764 0.621 0.950 0.685

Off side effect-based label propagation model 0.937 0.763 0.761 0.627 0.950 0.688

Weighted average ensemble method 0.951 0.795 0.775 0.659 0.953 0.712

Classifier ensemble method (L1) 0.957 0.807 0.785 0.670 0.955 0.723

Classifier ensemble method (L2) 0.956 0.806 0.783 0.665 0.955 0.719
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unobserved DDIs, which are not available in TWO-
SIDES. We train the prediction models based on 548
drugs and 48,584 known DDIs, and predict unob-
served DDIs. In the prediction, great scores of drug
pairs indicate high probabilities of having interactions,
and the prediction results are transformed as a rec-
ommendation list of unobserved interactions or novel
interactions. To confirm novel interactions, we look
up them in the latest online version of DrugBank
database. Table 7 lists top 20 novel interactions pre-
dicted by our method, and a significant fraction of
novel interactions (7 out of 20) are confirmed in
DrugBank database.
Further, we compare the ensemble model and the

matrix perturbation model by testing their capability of
finding out novel interactions. The top 1000 novel inter-
actions predicted by the ensemble model and the matrix
perturbation model are provided in supplementary ma-
terial (see Additional file 1). For each method, we find

evidences in DrugBank to confirm novel interactions. If
we look up all 1000 interactions of the matrix perturb-
ation model and the ensemble model, we can confirm
297 novel interactions and 318 novel interactions re-
spectively (252 common interactions are shared). Fur-
ther, based on the top 1000 novel interactions, we use
the number of predictions as X-axis and the number of
confirmed novel interactions in the predictions as Y-axis,
and then visualize performances of two models (see
Additional file 2). In general, the ensemble model can
find out more novel interactions than the matrix per-
turbation model, indicating the usefulness of integrating
multi-source data.

Conclusions
The prediction of drug-drug interactions is an import-
ant task in the drug discovery, which helps to reduce
potential risks and understand the mechanism of

Fig. 3 The number of identified testing interactions (a) top 10,000 predictions; (b) top 15, 000 predictions. 1: Vilar’s substructure-based model
(6626, 7527); 2: Vilar’s CN index-based model (6667, 7639); 3: Substructure-based label propagation model (6597, 7515); 4: Side effect-based Label
propagation model (6641, 7573); 5: Off side effect-based label propagation model (6693,7591); 6: Weighted average ensemble method (6923,
7842); 7: L1 Classifier ensemble method (7027, 7972); 8: L2 Classifier ensemble method (6980, 7942)

Table 6 The statistical significance of performance improvements achieved by our ensemble methods

Evaluation Methods Weighted average
ensemble method

Classifier ensemble
method(L1)

Classifier ensemble
method(L2)

3-CV Vilar’s substructure-based model 1.05E-94 2.67E-78 1.18E-86

Vilar’s CN index-based model 4.12E-74 7.32E-67 1.14E-71

Substructure-based label propagation model 1.02E-45 8.30E-34 2.96E-41

Side effect-based Label propagation model 1.61E-44 8.86E-33 3.28E-40

Off side effect-based label propagation model 3.32E-42 1.94E-31 1.17E-38

5-CV Vilar’s substructure-based model 4.76E-52 3.12E-48 5.42E-54

Vilar’s CN index-based model 2.27E-48 2.34E-44 1.14E-48

Substructure-based label propagation model 1.68E-31 1.71E-29 1.28E-36

Side effect-based Label propagation model 1.27E-30 6.71E-29 3.04E-36

Off side effect-based label propagation model 4.03E-30 2.43E-28 1.67E-35
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drug-drug interactions. This paper collects a wide var-
iety of drug data, and designs the models based on
multi-source data for the DDI prediction. Compared
with existing DDI prediction methods, our methods
produce better performances, and the statistical
analysis demonstrates that the performance improve-
ments achieved by our method are statistically signifi-
cant. In conclusion, the proposed methods are
promising for the DDI prediction.

Additional files

Additional file 1: Top 1000 novel interactions predicted by the
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Additional file 2: Visualization of the number of predictions vs. number
of confirmed interactions. (TIF 519 kb)
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