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Abstract

Background: Biological systems and processes are highly dynamic. To gain insights into their functioning
time-resolved measurements are necessary. Time-resolved gene expression data captures temporal behaviour of the
genes genome-wide under various biological conditions: in response to stimuli, during cell cycle, differentiation or
developmental programs. Dissecting dynamic gene expression patterns from this data may shed light on the
functioning of the gene regulatory system. The present approach facilitates this discovery. The fundamental idea
behind it is the following: there are change-points (switches) in the gene behaviour separating intervals of increasing
and decreasing activity, whereas the intervals may have different durations. Elucidating the switch-points is important
for the identification of biologically meanigfull features and patterns of the gene dynamics.

Results: We developed a statistical method, called SwitchFinder, for the analysis of time-series data, in particular
gene expression data, based on a change-point model. Fitting the model to the gene expression time-courses
indicates switch-points between increasing and decreasing activities of each gene. Two types of the model - based on
linear and on generalized logistic function - were used to capture the data between the switch-points. Model
inference was facilitated with the Bayesian methodology using Markov chain Monte Carlo (MCMC) technique Gibbs
sampling. Further on, we introduced features of the switch-points: growth, decay, spike and cleft, which reflect
important dynamic aspects. With this, the gene expression profiles are represented in a qualitative manner - as sets of
the dynamic features at their onset-times. We developed a Web application of the approach, enabling to put queries
to the gene expression time-courses and to deduce groups of genes with common dynamic patterns.
SwitchFinder was applied to our original data - the gene expression time-series measured in neuroblastoma cell line
upon treatment with all-trans retinoic acid (ATRA). The analysis revealed eight patterns of the gene expression
responses to ATRA, indicating the induction of the BMP, WNT, Notch, FGF and NTRK-receptor signaling pathways
involved in cell differentiation, as well as the repression of the cell-cycle related genes.

Conclusions: SwitchFinder is a novel approach to the analysis of biological time-series data, supporting inference
and interactive exploration of its inherent dynamic patterns, hence facilitating biological discovery process.
SwitchFinder is freely available at https://newbioinformatics.eu/switchfinder.
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Background
Time-resolved measurements are performed to study the
dynamics of biological processes e.g. the dynamics of
gene expression in response to treatments, upon induc-
tion of a transcription factor, during cell cycle or embry-
onic development. The temporal response patterns may
shed light on coordination and regulation of the genes,
aiding the inference of gene regulatory networks. Sev-
eral methods for the analysis of the time-course gene
expression data were developed, reviewed in [1], however,
major challenges remain. The time courses are mainly
short, hindering the inference of complex models with
many parameters. The Markov model-based methods
[2, 3] rely on the assumption that the underlying pro-
cess is a) Markovian and b) stationary: a) the state of a
gene at each time-point depends only on the state of the
system at the previous time-point and b) the probability
of a transition from one time-point to the next is con-
stant for all time-points. The biological relevance of these
assumptions is questionable. The gene regulatory circuits
permanently rewire – the genes switch between different
regimes of activity, whereas the durations of the regimes
may have different length. In fact, these are the turning
points of gene behaviour that have biological relevance
and are important to elucidate. The gene expression data
is likewise sampled at the irregularly spaced time-points
with a hope to capture real biological events. The sparse
irregular sampling generates spiky, saw-toothed data, pre-
senting a difficulty for smooth interpolations. To over-
come this, in [4] the use of piecewise constant functions
was advocated.
The most common purpose of the time-resolved gene

expression data analysis was to derive groups of genes
with similar dynamical responses. Model-based cluster-
ing [5] executes simultaneously two tasks: fitting a model
to gene expression profiles and grouping the genes based
on the parameters of the fitted models. However, relations
between genes across time may have only a fragmentary
character like e.g. immediate-early responses to stimu-
lation. Modeling the expression profile of an individual
gene might be more appropriate. Even at the risk of over-
fitting, this has an advantage of capturing unique features
of the gene temporal behaviour. In [6], a mathematical
model of response dynamics - the impulse model - was
proposed for fitting the individual gene profile. Themodel
contains seven biologically relevant parameters, empha-
sizing important aspects of the gene dynamics e.g. point
of induction. In [7], the model was used in an integrative
clustering-modeling approach.
In the present approach, called SwitchFinder, a time-

series model is proposed that explicitly assumes the
existence of the switch-points (switches) between inter-
vals of increasing and decreasing activities, which are
interpolated with linear or generalized logistic function.

Fitting the model to the time-resolved gene expression
data implies the prediction of the switch-points of indi-
vidual genes.
Our approach has origin in the change-point mod-

elling, that has been widely applied in engineering, ecol-
ogy, economics and finance [8–14]. The fundamental idea
is: the model is characterized by a number of discrete
regimes, within which different model parameters apply.
The model switches from one regime to another and
the characteristics of the observations change accord-
ing to the particular regime. Assessing the locations
of the change-points (called in the literature switch-
points, breakpoints, structural breaks or thresholds) may
give valuable insights into the modelled process. Various
approaches to the change-point problem for models with
different assumptions were proposed. To mention are
diagnostic methods based on testing with e.g. Schwartz’s
Bayesian Information Criterion (BIC) [15], iterative fit-
ting procedures for segmented regressions [16, 17],
non-parametric smoothers [11] and dynamic program-
ming algorithms [18–20]. Bayesian approach to multiple
change-points problem dates back to [21] and was fur-
ther elaborated by e.g. [10, 22, 23]. In [24], the product
partition model was used in the Bayesian framework,
see also [25]. In [26], the multiple change-points model
was formulated in terms of a latent discrete-state vari-
able indicating the regimes and evolving as a discrete
time, discrete-state Markov process governed by a tran-
sition probability matrix. The model was estimated with
Markov chain Monte Carlo (MCMC) sampling. Bayesian
methodology is valuable for the inference of the change-
pointmodels, since it treats the change-points locations as
parameters to be estimated in the same framework as the
other model parameters. A MCMC technique Gibbs sam-
pling proved to be especially attractive for the Bayesian
inference [27].
The central interest of the present work was the infer-

ence of the switch-points indicating changes between the
regimes of the gene activity. Our model represents a series
of switch-points (peaks and troughs), joined by lines or
logistic curves.We developed a Gibbs sampling procedure
for the Bayesian inference of the model.
The switch-points elucidated by the analysis may indi-

cate an onset of features like Growth or Decay, introduced
here to capture substantial dynamic properties of the gene
behaviour. Knowing onset-times of the dynamic features
enables to represent the gene profiles in a qualitative
manner. This is utilized in our approach to perform par-
titioning of the genes into groups with common dynamic
patterns. The present approach inspires to put queries
to the gene set like for example: which genes have
peaks/troughs of their activity at certain time points?
Which genes exhibit growth or decay at the particu-
lar onset-times? The Web application of the approach
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provides the query interface and grants to a human expert
a possibility to query the time-resolved data, facilitating
the biological discovery process.
The present approach decouples the two tasks – sta-

tistically fitting individual genetic profiles and group-
ing of them. We do not regard the gene data set as
multivariate time-series data, as was done in [28]. The
rationale behind this is that an individual gene dynam-
ics is not only governed by the system dynamics, but
by some external factors remaining “behind the scene”
(e.g. chromatin modifications, post-transcriptional mod-
ifications, protein degradation). In [28], the authors seg-
mented multivariate biological time-series with the help
of the fused LASSO regression, based on the assumption
that the data at each time-point (response) is explained
with the preceding time-points (regressors), except at
the breakpoints, for which the preceding time-points
have negligible explanatory power. The authors then clus-
tered the gene profiles in each segment. To the con-
trary, we first seek to detect the change-points in each
gene behaviour, then the change-points can be used
to get insights into the dependency structure of the
system.
In the next section, we introduce the model and its

Bayesian formulation.

Methods
The model
Figure 1, A illustrates the model for an exemplary gene
expression profile with T = 14 measurements. The
model contains N = 5 switches at time-points 1,
6, 9, 12, 14 (switch locations) of the following types:
trough, peak, trough, peak and trough. The switches sep-
arate intervals of increasing and decreasing activities
of the gene, called regimes. The model assumes that
the data within the regimes is interpolated with lin-
ear functions. The goal of the present method is to
infer the most probable time-points of switches between
the regimes while fitting the model to the time-series
data.
Let r be the regime index: r = 1, . . . ,N − 1. We denote

the locations of the switches with Lr (N-dimensional vec-
tor) and the y-values at these locations (switch heights)
with Hr . The model assumes that the data values at time-
points between the switches are determined by the linear
interpolation. Figure 1,b displays one time interval with
time-points t ∈ {Lr , . . . , Lr+1}. The interpolated value at
the time-point t is denoted by yt . Due to the linearity prop-
erty, the following proportion is valid: t−Lr

Lr+1−Lr = yt−Hr
Hr+1−Hr

.
Solving this equation for yt , while denoting with LF :=
Lr+1−t
Lr+1−Lr (linear factor), we get:

yt = Hr · LF + Hr+1 · (1 − LF) (1)
for t ∈ [Lr , . . . , Lr+1] .

If Y = (yt)t=1,...,T is the data, the set of Eq. (1) for
all intervals r specifies a linear regression model with the
N-dimensional vector of parameters H = (Hr)r=1,...N .
So the model underlying our approach is specified as:
Y = X · H + e, where X is the (T × N)-dimensional
design matrix, defined with the help of the linear fac-
tors for all t and all r (see the matrix in Fig. 1,c for
the model in Fig. 1,a). Vector e is the error term, which
can be written as: e = σ · et , et ∼ N (0, 1), where σ

is the standard deviation of the error term. The param-
eters of the model to be estimated in course of the
model inference are: locations of the switches Lr , r =
2, . . . ,N − 1, the heights of the switches Hr , r = 1, . . . ,N
and σ . (For simplicity of the modelling, the first and the
last time-points of the time-series are always labelled as
switches).
If switch locations Lr are known, the linear regression

model is specified and can be fitted to the data Y by
the Ordinary Least Squares (OLS) method. Then, the
parameters of the model (i.e. the switch heights) can be
determined by: H=

(
XTX

)−1 XTY . The fitted values under
the model are calculated by: Yfitted = X · H .
In the following, for the sake of simplicity, we use a com-

mon notation for the linear regression model: β instead
of H. Let the linear regression model be formulated as
follows:

Y = Xβ + e, e ∼ N
(
0, σ 2I

)
. (2)

The N-dimensional vector of regression coefficients β

and the standard deviation σ are parameters to be esti-
mated.

Model inference
Probabilistic inference of the model (estimation of the
switch locations and the parameters β and σ ) was facil-
itated by the Bayesian methodology. Within a Bayesian
framework, inference about parameters of a model, θ ,
is made based on its posterior distribution given the
data, p (θ |Y ), using the proportionality: p (θ |Y ) ∝
L (θ |Y ) p(θ), where L (θ |Y ) is the likelihood function and
p(θ) is the prior distribution of the parameters. Since the
direct Bayesian inference of the present model is infeasi-
ble, the Markov chain Monte Carlo (MCMC) technique
Gibbs sampling presents an attractive possibility. Gibbs
sampling reduces a problem of sampling from a com-
plex posterior distribution to a series of more tractable
subtasks of sampling from simpler, lower-dimensional dis-
tributions, simulations from which can be done using
standard functions [29, 30]. Namely, Gibbs sampling iter-
atively generates samples from full conditional posterior
distributions as outlined below.
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Fig. 1 Illustration of the modeling. a Example of a model with four regimes and five switches. bWhen the switch locations are known, the data
within each regime is fitted with a line - linear interpolation. c Design matrix for the model in A, calculated using linear factors, specifies the linear
regression needed to determine the switch heights. d Roulette method for sampling of a switch location between the neighbouring switches,
based on the calculated probabilities of four possible locations

Suppose the model has k parameters θ = (θ1, . . . , θk).
Given an arbitrary set of starting values (θ

(0)
2 , . . . , θ(0)

k ),
consider the following steps:

Step 1. Drawθ
(1)
1 from p

(
θ1

∣∣∣θ(0)
2 , . . . , θ(0)

k ,Y
)

Step 2. Drawθ
(1)
2 from p

(
θ2

∣∣∣θ(1)
1 , θ(0)

3 , . . . , θ(0)
k ,Y

)

Step 3. Drawθ
(1)
3 from p

(
θ3

∣∣∣θ(1)
1 , θ(1)

2 , θ(0)
4 , . . . , θ(0)

k ,Y
)

...
Step k. Drawθ

(1)
k from p

(
θk

∣∣∣θ(1)
1 , . . . , θ(1)

k−1,Y
)

Steps 1 through k are repeated J times, where J
is the number of iterations, to obtain the samples
(θ

(j)
1 , θ(j)

2 , . . . , θ(j)
k ), j = 1, . . . , J . The distribution

p(θi
∣∣∣θ(j)

1 , . . . , θ(j)
i−1, θ

(j−1)
i+1 , . . . , θ(j−1)

k ,Y ) is called the full
conditional posterior distribution. If J is large enough,
after some L, the Gibbs sampler has converged [29]. Then
the joint and marginal distributions of θ1, . . . , θk can be
approximated by the empirical distributions of the simu-
lated values. E.g. the mean of the marginal distribution of
θi may be calculated by:

∑J−L
j=1 θ

L+j
i

J − L
.

In the following, we derive the conditional posterior
distributions of β and σ 2.

Conditional distribution of β, given σ 2.
Assume σ 2 is known. We prescribe a multivariate normal
distribution for the parameter β . Let the prior distribution
of β is given by:

β
∣∣σ 2 ∼ N (β0,�0) , where the vector β0 and the covari-

ance matrix �0 are known. The prior density can be
written as:

p
(
β

∣∣σ 2 ) =
(2π)−

N
2 |�0|− 1

2 exp
{
−1
2

(β − β0)�−1
0 (β − β0)

}

∝ exp
{
−1
2

(β − β0) �−1
0 (β − β0)

}
.

Because of the assumption of normality in (2), the
likelihood function is given by:

L
(
β , σ 2 |Y ) =

(
2πσ 2)− T

2 exp
{
− 1
2σ 2 (Y − Xβ)T (Y − Xβ)

}

∝ exp
{
− 1
2σ 2 (Y − Xβ)T (Y − Xβ)

}
. (3)

Combining the prior density and the likelihood func-
tion, the posterior distribution of β , conditional on σ 2, is
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specified by the following normal distribution (see [31],
Chapter 7; [32]):

β
∣∣σ 2 ,Y ∼ N (β1,�1) , where

β1 =
(
�−1

0 + σ−2XTX
)−1 (

�−1
0 β0 + σ−2XTY

)
,

�1 =
(
�−1

0 + σ−2XTX
)−1

.

In case of an uninformative prior i.e. when β0 is the
vector of nulls and �0 contains big values, the Bayesian
estimate of the probability distribution of β is analogous
to the distribution of the best linear unbiased estimator
of β obtained by the OLS method. Namely, the unbiased
estimator of β is a normally distributed random variable
[31]:

βunbiased ∼ N
((

XTX
)−1

XTY , σ 2
(
XTX

)−1
)
.

So, we can use βfitted = (
XTX

)−1 XTY and � =
σ 2 (

XTX
)−1 as the mean and the covariance matrix for

sampling the values of β .
If the mean vector μ and the covariance matrix � of the

multivariate normal distribution are known, a commonly
used method for generating values from this distribution
is the following. Identify matrix A, which is the Cholesky
decomposition i.e. AAT = �, then the sample value is cal-
culated as: μ+AE, where E is anN-dimensional vector of
standard normal variables sampled from N (0, 1).
While sampling β , rejection sampling was used to

ensure the validity of the new model: only models with
alternating troughs and peaks and non-degenerate (i.e.
with each data point as switch or with a regime having low
amplitude) are admissible.

Conditional distribution of σ 2, given β

Assume β is known. The usual specification for the distri-
bution of σ 2 is the inverted Gamma distribution (because
this is the natural conjugate prior for normal likelihood).
So, 1

σ 2 should be Gamma-distributed. Let the prior distri-
bution of 1

σ 2 has the form: 1
σ 2 |β ∼ �

(
ν0
2 ,

δ0
2

)
, where ν0

and δ0 are known, so

p
(

1
σ 2 |β

)
∝

(
1
σ 2

) ν0
2 −1

exp
(

− δ0
2σ 2

)
.

The likelihood function is given by (3). Multiplying
the prior density and the likelihood gives the following
posterior density:

p
(

1
σ 2 |β ,Y

)
∼

(
1
σ 2

) ν1
2 −1

exp
(

− δ1
2σ 2

)

that is also of a Gamma form, suggesting the following
posterior distribution of 1

σ 2 :

1
σ 2 |β ,Y ∼ �

(
ν1
2 ,

δ1
2

)
, where

ν1 = ν0 + T ,
δ1 = δ0 + (Y − Xβ)T (Y − Xβ) .

It can be shown that in case of uninformative priors
(ν0=0, δ0=1) this distribution is analogous to the distribu-
tion of the unbiased estimator of σ 2, determined by the
OLS method. If σ 2

unbiasedis the unbiased estimator of σ 2,
then it is distributed as (see [31]):

σ 2
unbiased ∼

σ 2
fitted

T − M
χ2 (T − M) ,

where M is the number of regressors in the model (here,
M=1) , χ2 is the chi-squared distribution. So, we can

use
σ 2
fitted
T−1 χ2 (T − 1) for sampling the values for σ 2, where

σfitted is calculated from data.

Sampling switch locations, given all the other information
While sampling a location for a switch r, we assume that
the locations of the previous and the subsequent switches
are known, so the possible choices lie in the interval
i ∈ {Lr−1 + 1, . . . , Lr+1 − 1} representing a finite num-
ber of possibilities. Figure 1,d illustrates the approach.
For each possible value i, by Bayes theorem, the poste-
rior probability of the switch taking the particular location
is the following: p (Lr = i |Y ) = L(Y |Lr=i )p(Lr=i)

P(Y )
,where

p (Lr = i) is the prior probability, L (Y |Lr = i ) is the like-
lihood of data, given the particular location. It can be
written: P(Y ) = ∑

j L
(
Y

∣∣Lr = j
)
p

(
Lr = j

)
. If we assume

the uninformative prior, the probabilities p
(
Lr = j

)
are the

same for all j i.e. p
(
Lr = j

) = p (Lr = i). Thus, the fol-
lowing formula for the calculation of probabilities of the
possible switch locations results:

p (Lr = i |Y ) = L (Y |Lr = i )
∑

j L
(
Y

∣∣Lr = j
) .

The likelihood of data, given the particular location, can
be calculated as the product of the probabilities of making
the error (et)t∈{Lr−1+1,...,Lr+1−1}, where each error is calcu-

lated as: et = Yt−Yt
fitted

σ
. Note that the error is standard

normal distributed: et ∼ N (0, 1), so we can use the R
function pnorm (et)to obtain the individual probabilities
(the number of probabilities is Lr+1 − Lr−1 − 1).
Once we have p (Lr = i |Y ) i.e. the probabilities of

each possible location given all the other information
(let denote them with probs), we can sample an inte-
ger value with these probabilities by the Roulette selec-
tion method (Fig. 1,d). I.e. a random value rand is
generated from the uniform distribution and i := 1 +
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max
{
m

∣∣�m
i=1probsi < rand

}
will be taken as the sampled

value for the switch location.
The workflow of the algorithm in Fig. 2 represents the

repeated sampling of the model parameters in course of
theMCMC iterations. In each run, the algorithm first allo-
cates the switch-points and then fits the model, providing
necessary quantities for the sampling of new values for
themodel parameters. Only switch locations that generate
valid models are accepted.
The number of the switch-points, with which the

MCMC procedure is initialized, is calculated with the
exploratory non-parametric technique LOESS [33],
originally LOWESS (LOcally Weighted Scatter-plot
smoother). It is a method for fitting a smooth curve
between two variables. The procedure performs weighted
polynomial regression for only a subset of observations
i.e the fitting at point t is weighted toward the data
nearest to t. The distance to t, that is considered near
to it, is controlled by the parameter span. When span
is less than 1, it represents the proportion of the total
data included within each subset. More details can be
found in the description of the R function loess, used in
this work. The polynomial for the regression equations
here was quadratic (degree 2). LOESS fits a non-linear
smoothing curve to the data, helping to reveal structural
patterns in it. We use the fitting data to calculate local
minima and maxima along the curve suggesting the
number of the switch-points. Higher values of the span
produce smoother curves, hence, the number of the
switch-points decreases. Setting for the span is found in

an iterative procedure. Starting with the small span 0.1,
a curve is fitted to the data while increasing the span
by a small amount (0.05) until none of the local minima
and maxima are located immediately adjacent. The last
number of the minima and maxima (added with 2 for the
first and the last time-points) yields the number of the
switch-points.
We call the presented model Model_Lin to distinguish

it from the Model_Logit described in the next section.

Modelingwith the generalized logistic function (Model_Logit)
Sometimes the increasing/decreasing activity of a gene
exhibits a saturated behaviour, stabilizing with time. To
model this, the generalised logistic function was used. We
assume that in each time interval

{
Ltrough, Lpeak

}
between

two switch points, which are a trough and a peak, the fit-
ted data lies on a logistic (sigmoid) curve and is calculated
as follows:

Yfitted(t) = Htrough + FL (propt) · (Hpeak − Htrough
)
(4)

where Htrough and Hpeak are switch heights, propt is the
proportional location of the time-point t with respect to
the trough and is calculated as propt := t−Ltrough

Lpeak−Ltrough . FL is
the generalized logistic function defined as (see [34]):

y(t) = K
(
1 + Qe−ab(t−t0)

)1/ b ,

Fig. 2Workflow of the algorithm. The algorithm presents the iterative sampling of the model parameters in the Gibbs procedure. Parameter values
(switch locations, heights, standard deviation) and fitted data are stored for each current model. The generated switch locations are accepted only if
they produce a valid model. The parameters of the fitted model (switch heights and covariance matrix) are used to generate new sample values for
the switch heights. Then, upon model fit, the fitted standard deviation is used to produce a sample value for the standard deviation. The next
iteration with the updated model proceeds, new switch locations will be generated
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which is the solution of the differential (Richard’s
growth equation: ∂y

∂t = ay
[
1 − ( y

K
)b] with initial condi-

tion y (t0) = y0, where Q = −1 +
(
K
y0

)b
.

The parameter b allows the shape of the sigmoid curve
to vary flexibly.K is themaximum observable value of y, in
our case K=1. In the present work, we used the following
parameterization (y0 = 0.001 is a small value):

FL (propt) :=
1(

1+
(
−1+( 1

0.001
)1/ κ

)
·exp(−1·propt ·B)

)κ

B plays a role of the growth rate. Note that the linear
transformation of a logistic curve in Eq. (4) is also a logis-
tic curve. With this transformation the lower and upper
asymptotic heights of the logistic curve FL (0 and 1) are
moved to be the trough and the peak values, respectively.
Equation (4) can be rewritten as:
Yfitted(t) = (1 − FL (propt)) ·Htrough+FL (propt) ·Hpeak .

Then

Y ∼ (1 − FL (propt)) ·Htrough + FL (propt) ·Hpeak (5)

represents a linear regression model (see Additional file
1, supplementary text). Fitting the model to the data Y (R
function lm) facilitates calculation of the switch heights,
analogously to the Model_Lin described above. The gen-
eralized logistic transformation of the proportional loca-
tion of each time-point between the neighbouring trough
and peak allows for flexible modelling of the gene expres-
sion increase/decrease within time intervals of different
length. Sampling of the logistic function parameters B and
κ was executed with the help of bootstrapping ([35]) as fol-
lows. First, when switch locations and heights are known,
Eq. (4) is rewritten as: Y (t)−Htrough

Hpeak−Htrough
= FL (propt). Denoting

the left-hand side with propyt yields:

propyt = FL (propt) . (6)

Thus, the parameters B and κ are estimated with the
nonlinear least squares method (R function nls) - by fit-
ting the nonlinear function FL to the data x = propt , y =
propyt . So, for the current model in eachMCMC iteration,
the design matrix is constructed and the linear regression
model (5) is fitted to the data Y to calculate the switch
heights H. Then Yfitted is calculated by (4). Further on, the
residuals Et = Y t − Y t

fitted are calculated and the boot-
strap samples of the residuals Eb = {

E1b , . . . ,E
T
b
}
are used

to calculate the bootstrapped values Yb = Yfitted + Eb,
which are then fitted by (6) to obtain the samples of the
parameters B and κ . Apart from that, the workflow of the
MCMC-based inference of the Model_Logit is analogous
to that of the Model_Lin depicted in Fig. 2. One-regime
models, presenting just logistic increase or decrease, are
termed here Logit_Up and Logit_Down.

SwitchFinder as Web Application
We developed a Web application of the method
SwitchFinder, which provides the user-interface for
uploading the time-series data, executing the algorithm
and performing queries to the results of the data analy-
sis, thus maintaining a feedback-loop between generation
and interpretation of the results. We propose the concept
of features, assigned to the inferred switch-points, which
capture meaningfull properties of the time-series. The
basic features peaks and troughs are the switch-points of
the genetic activities deduced by the method directly. The
queries are supported: which genes have peaks/troughs
at the given time points?. Hence, early, middle and late
responses can be elucidated. The user can input thresh-
olds on values of the peaks and troughs to select stronger
effects and focus on fewer genes. Further features –
Growth and Decay – designate those troughs and peaks
that represent onsets of significant growth or decay of the
gene activity as defined with the help of the slope (see
Fig. 3). By increasing thresholds for the slopes, stronger
effects can be selected. The next-level features - spikes and
clefts - are defined based on the previous-level features
using three switch-points (Fig. 3). The query result i.e. the
set of genes, which exhibit the given features at the given
time-points, is downloadable as the list of genes or the
plot (see Fig. 4). Single queries can be logically combined.
The default values suggested by the Web application for
the thresholds of the slopes are computed as 25%-quantile
of the distribution of the slopes over the data. With the
default thresholds, the application computes features and
represents each gene in form of a qualitative profile – as
the set of features with their respective onset-times (loca-
tions). For a location, its highest-level feature is stored.
The profiles that were fitted with a one-regime logistic
model additionally obtain features LogitUp or LogitDown.
Grouping of the genes is executed by k-means clustering
of the qualitative profiles using the Jaccard similarity [36].
Jaccard measure is especially appropriate for the calcu-
lation of similarity between two sets containing different
numbers of elements. The concepts of features and qual-
itative profiles help to reveal groups of genes, organized
around remarkable properties of the dynamic behaviour.
The suggested grouping is only a platform for further
investigations and exploration of the data set. By query-
ing the data set and grouping, meaningful patterns of the
dynamic gene expression can be deduced.

Results and discussion
Application of SwitchFinder to simulated data
To test robustness of the algorithm SwitchFinder, espe-
cially with respect to short time-series data, we generated
10 data sets, each containing 2500 synthetic gene expres-
sion profiles of the length T=7. The simulation scheme for
a data set was the following. The profiles were generated
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Fig. 3 Features of the switch-points defined in SwitchFinder: Growth, Decay, Spike and Cleft. Features are assigned to the switch-points to capture
meaningfull properties of the time-series. The feature Growth is assigned to the switches of types trough, if the corresponding Slope is greater than
the Threshold with the default value threshold_growth. The user is able to adjust the Threshold for selecting more striking Growth-effects. The
feature Decay is defined similarly. The higher-order feature Spike is assigned to the switch, designated with Decay, if its left-hand side neighbour has
the feature Growth and the absolute difference Dif in the gene expression levels of the neighbouring switches is smaller than the Threshold with
the default threshold_dif. The aim is to select a really spiking behaviour: after a rapid growth, rapid decay to almost the same level occurs. The
feature Cleft designates the opposite behaviour: after a decay, growth to almost the same level occurs

with standard deviation sigma=0.2 from the following
models: a) Logit_Up (500 samples) and Logit_Down (500
samples) using 10 different combinations of the parame-
ters κ and B: (0.4, 20), (0.5, 15), (0.5, 20), (1.5, 20), (2, 8),
(8, 5), (10, 8), (20, 5), (20, 10), (20, 18) including extreme
values that challenge the fitting procedure; b) models
Model_Lin with one internal switch point of the type peak
located at t = 2/4/6 (600 cases) and of the type trough
located at t = 2/4/5 (600 cases); c) models Model_Lin
with two internal switch points of the types (peak,trough)
located at time-points t = 2, 5 (200 cases) and of the
types (trough,peak) located at t = 2, 6 (200 cases); d)
model Model_Logit with parameters κ = 20,B = 10
and one internal switch at t = 5 (100 cases). The param-
eters (heights) of the models were simulated to obtain
realistic gene expression values as commonly produced
by Agilent technology: sampled from log-normal distribu-
tion (meanlog=2, sdlog=0.3) and truncated to the interval
(0, 20). The scheme produces biologically realistic data
sets with rich dynamic responses. Table 1 demonstrates
the results of the application of SwitchFinder to 10 arti-
ficial data sets. The goodness-of-fit of a model fitted to
a gene expression profile was assessed with the resid-
ual standard deviation (RSD). The descriptive statistics
of the RSDs for each data set is displayed. The statistics
are very stable across the data sets. For the data cases
originating from Model_Lin and Model_Logit models,
precision and recall were calculated (Prec:=TP/(TP+FP),

Recall:=TP/(TP+FN)), to evaluate the accuracy of the pre-
diction of the switch-points. The values were stably good.
A small number of functions mismatches occurred (e.g.
when data generated from one-regime logistic model was
fitted with Model_Lin by the algorithm).

Application of SwitchFinder to human cell cycle data (long
time-series)
To verify that the algorithm is suitable for long time-
series, we applied it to the gene expression data from [37]
measured at 48 time-points during cell division cycle in
human cancer cell line HeLa. We used the profiles of 66
known cell cycle regulated genes measured upon release
of double thymidine block till 46 hours. The fitting results
can be observed in Additional file 2. The mean of the
residual standard deviations was 0.14 (sd=0.06). Figure 5
demonstrates examples of the fitted profiles.
We sorted the genes by the time-points of their first

peaks over the time, peaks with expression around 0 were
neglected. The ordering revealed a clear picture of the
cyclic activity of the genes and a good separation of G1/S
and G2/M cell cycle phases (see supplementary Figure 5
in Additional file 1). Note that the present analysis did not
use the assumption of periodicity of the gene expression,
which was explicitely introduced into the analysis by [37].
Thus, the use of SwitchFinder allows for explicit tempo-
ral ordering of biological events like gene activity peaks.
The reconstructed temporal order of the gene activities
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Fig. 4 SwitchFinder query interface. Snapshot of the user interface demonstrating the result of the query - gene profiles with the feature Growth at
the switch-point at time t=5. The Slope of the Growth was greater than the Treshold. It is possible to download the result and to store the query

Table 1 Results of the application of SwitchFinder to 10
simulated data sets

Mean of SD of Precision Recall Functions
RSDs RSDs mismatches

0.17 0.09 0.93 0.94 0.07

0.17 0.09 0.92 0.94 0.06

0.17 0.10 0.92 0.94 0.06

0.17 0.09 0.93 0.94 0.06

0.17 0.11 0.92 0.94 0.06

0.17 0.10 0.92 0.94 0.06

0.17 0.09 0.91 0.94 0.07

0.17 0.10 0.91 0.93 0.06

0.17 0.09 0.92 0.93 0.06

0.17 0.10 0.92 0.93 0.06

during the cell cycle demonstrated e.g. that the genes
SLBP, MCM6, MSH2, NUCKS for their activation need
earlier signals.

Application of SwitchFinder to data from neuroblastoma
cell line treated with ATRA (short time-series)
Neuroblastoma is an embryonal tumor arising from the
neural crest precursors of the peripheral nervous sys-
tem. It is supposed that a mechanism underlying this
malignancy is the block of cell differentiation, which pro-
motes maintenance of cell stemness and cell proliferation
[38]. Differentiation therapies attempt to rescue the sup-
pressed function i.e. to induce differentiation of neurob-
lastoma cells [39]. The aim of the present application of
SwitchFinder was to identify genes involved in neuroblas-
toma differentiation and to study their expression patterns
over time.
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Fig. 5 Examples of the fit. SwitchFinder was applied to the time-series of the cell cycle regulated genes from Whitfield et al. The fitted data is
presented with dashed lines/curves, the switch-points are depicted in black. The time-course of the gene MCM6 is fitted with Model_Lin, the gene
CDC20 showed better fit with Model_Logit

We applied the approach to our original data: the gene
expression time-series measured at 1, 6, 12, 24, 48, 96, 144
hours (T=7) in neuroblastoma cell line BE(2)-C after treat-
ment with the differentiation agent all-trans retinoic acid
(ATRA). BE(2)-C (ECACC 95011817, ATCC CRL-2268,
[40]) is a clone of the SK-N-BE(2) neuroblastoma cell
line established in 1972 (ECACC 95011815, ATCC CRL-
2271). The Agilent whole genome 4x44K microarray raw
data was background-corrected and quantile-normalized
(R package limma, [41]). A probe was selected for further
analysis if the standard deviation of its expression profile
was greater than 0.5 (to exclude probes with insufficient
dynamics) and the gene expression in the respective non-
treated control was stable. In total, 4422 probes (genes)
were selected and fitted by SwitchFinder, from them 3787
probes were assigned to 8 groups representing meaning-
ful dynamic patterns (Fig. 6, Additional files 3: Additional
files A-H).
Eight groups of genes, delineated by the analysis, reflect

the time-resolved transcriptional response of neuroblas-
toma genes to the treatment with ATRA. Four groups
comprise the activated genes, which were induced: imme-
diately (Fig. 6a, 883 probes), after 12 hours (B, 869 probes),
after 24 hours (C, 184 probes) and after 48 hours (D, 149
probes). The group G (82 probes) summarizes genes with
spiked behaviour, mostly at 12 or 48 hrs. Three groups
comprise genes repressed by ATRA: the group E (1080
probes) with declining gene expression pattern, the group
F (437 probes) with a cyclic decrease and the group H (107
probes) with genes having clefts at different time-points,
mostly at 24 hrs. Each group/pattern is characterized by

one or more features e.g. onset of Growth at the first
time-point for the group A. However, the patterns were
delineated not solely by the features-based clustering, but
also by some additional considerations. Many genes from
the group F were fitted with the model Logit_Down as
the genes from E, however, their declining cyclic pattern
was further discerned by the additional condition: if the
expression value at 24 hrs. was lower than at the neigh-
bouring time-points. Further on, the Logit_Up model was
a good fit for many activated genes. However, to elu-
cidate the time of induction more precisely, we sorted
the profiles by decreasing k and decreasing B (parame-
ters of the logistic model), thus obtaining the temporal
ordering of the genes starting from steep, early responses
via S-formed (bended at 12, 24 hrs.) to convex, late
responses.
The functional annotation of the gene groups was exe-

cuted with the program DAVID [42–44]. Table 2 dis-
plays important genes from the group A of immediately
induced genes, together with their gene ontology anno-
tations. In suppl. Tables S1-S8 (Additional file 4), the
genes and their functional annotations are presented for
each group. Our results indicate that the transcriptional
response of neuroblastoma cells to the treatment with
ATRA is the time-resolved realization of the BMP, Wnt,
Notch and FGF signalling, as well as of the G-protein
coupled and neurotrophin TRK (NTRK) receptor sig-
nalling. This coincides with the gene regulatory programs
during differentiation of the neural crest (NC) cells in
course of the development of the sympathetic nervous
system [45].
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Fig. 6 Dynamic patterns of the gene expression response in neuroblastoma cell line to treatment with ATRA. a INDUCED_IMMEDIATELY Genes in
this group were induced immediately upon treatment with ATRA. b INDUCED_12 The activation of these genes by ATRA started at 12 hrs. c
INDUCED_24 Genes in this group were induced in response to ATRA after 24 hrs. d INDUCED_LATE Genes in this group showed late induction: after
48 or 96 hrs. e REPRESSED These genes responded to ATRA immediately with the decrease of expression. f REPRESSED_CYCLIC These genes,
involved in the cell-cycle, were repressed by ATRA. g SPIKED Genes in this group responded to ATRA with increase and then decrease of their
activity, revealing a peak between 12 and 48 hrs. h CLEFTED This group summarizes the genes with a transient response to ATRA i.e their expression
declined and then increased. The average gene expression profile for each group is depicted in black

The groups of immediate and early (12 hrs.) responses
are very rich on transcription factors involved in determi-
nation of cell fates and regulation of embryonic develop-
ment: HOXD-genes, SOX4/8/9, FOXC1, FOXO1A, BMP4,
TLE3, TLX2 etc., see Table 2. As expected, early induced
were the genes involved in retinoic acid metabolism
and signalling: RARA, RBP1, RDH10, SP100, CRABP2,
CYP26A1 and RDH12.
The gene SNAI2, playing a role in the epithelial-

to-mesenchymal transition (EMT), is over-expressed
(group A) accompanied with the down-regulation of
adherence junction genes like cadherins CDH4/7/22,
claudin CLDN11, cingulin CGN, catenins CTNNA1/2,
as well as of tight and gap junction genes TJP1 and
GJA5 [46]. Interestingly, the gene SNAI1, initially over-
expressed as compared to the control, decays under
the influence of ATRA. The mesenchymal markers
were induced immediately or at 12 hours: fibronectin
FN1, fibronectin receptors ITGB1/3/8, FNDC4/5, vit-
ronectin VTN and vimentin VIM. Cell polarity regulator
PPARD and a member of crumbs complex, CRB1, belong
to the group A. The metalloproteinases MMP2/11/15
and ADAM19/22/23, which facilitate degradation of
the extracellular matrix, were active immediately or at
12 hours. Thus, the results indicate a contribution of

ATRA to the migratory phenotype of neuroblastoma
cells.
Induced immediately were the receptors NTRK1 and

NGFR - regulators of the nerve growth factor signalling
known to be responsible for the maturation of the periph-
eral nervous systems through regulation of proliferation,
differentiation and survival of neurons [47]. Activated
early were the genes responsible for the axon guid-
ance, axonogenesis, neuron projection, neurite outgrowth
etc., which participate in the ephrin, semaphorin, plexin
and Roundabout signalling: EFNB2, EFNA2/4, EPHA2,
EPHB3, SEMA4C/6C, PLXNA2/4A, SLIT2, SLITRK6.
Interestingly, the semaphorin SEMA6A, known to con-
trol cell migration, was repressed, although its receptor
PLXNA2 was activated after 12 hrs. Previously, SEMA6A
was found upregulated in undifferentiated embryonic
stem (ES) cells [48]. Further observation: the neuropilin
signalling (NRP1 and NRP2, group E) was repressed,
together with the ephrin ligand EFNA1. In general, a com-
plex spatio-temporal expression of guidance molecules
and genes involved in neuron migration was observed.
Vast transcriptional changes were induced by ATRA at
genes involved in cytoskeleton organization, cell polariza-
tion and immune processes. E.g. the chemokine receptor
CXCR4 was induced at 24 hrs. It represents a positive cue
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Table 2 A. INDUCED_IMMEDIATELY

BACH2, BATF2, CREM, CSRNP3, DACH1, EBF1, EGR1/2/3, FOS, FOXC1,
GATA6, HES1, HEY1, HIC1, HIF1A, HOXD1/3/8/9/10/13, KDM5B(JARID1B),
KLF12, LEF1, MAFB, NCOA3/7, NKX3-1, NR0B1, PBX1, PPARG/D,
RARA, SMAD3, SOX4/8/9, TBX2/3, TEAD2, TLE3, TLX2, TULP4, ZFP2,
ZNF71/135/436/606/641

GO:000 3700 sequence-specific DNA binding transcription factor activity;
GO:0006355 regulation of transcription, DNA-templated; GO:0030154 cell
differentiation

AKR1C1/3, BCDO2, CRABP2, CYP26A1/B1, DHRS3, RARA, RBP1, RDH10, SDC4,
SP100, STRA6, PPARD/G

GO:0001523 retinoid metabolic process; GO:0042573 retinoic acid
metabolic process; GO:0001972 retinoic acid binding; GO:0032526
response to retinoic acid

BMP4, EGR1, GREM2, LEF1 GO:0030509 BMP signaling pathway

DACT3, LEF1, PSEN1, SOX4 GO:0016055 Wnt signaling pathway

FOXC1, HES1, HEY1, HIF1A, MDK, NCOR2, PSEN1, TLE3 GO:0007219 Notch signaling pathway; GO:0005112 Notch binding

ERBB2, IRS2, KITLG, PDGFRA/B, SPRY2/4 GO:0007173 epidermal growth factor receptor signaling

PDGFRA/B, PLAT GO:0048008 platelet-derived growth factor receptor signaling pathway

NGFR, NTRK1, PCSK5, PLEKHG2, RALB, RIT1 GO:0048011 neurotrophin TRK receptor signaling pathway; GO:0038180
nerve growth factor signaling pathway

DISP1 GO:0007224 smoothened signaling pathway; GO:0008158 hedgehog
receptor activity; GO:0009880 embryonic pattern specification

APC2, EML4, KIFAP3, LYST, NEIL2, SPTAN1 GO:0015630 microtubule cytoskeleton

AHNAK, ARPC1B, AVIL, CORO2A, CTTNBP2NL, FAM129B, FGD4/6, FHL2,
FLNB, KALRN, LCP1, MYRIP, PDLIM5/7, PPP1R12B, SYNPO/2, TRIOBP, VCL

GO:0015629 actin cytoskeleton

ARHGDIB, CLASP2, CNN2, LIMK1, NUAK2, PAK1, PALM, PFN2, PLK2, RND3,
SDCBP, SOX9

GO:0007010 cytoskeleton organization

CEACAM1, GAB2, ITGA1, ITGB8; ADD3, LIMK1, MYADM, MRCL3(MYL12A),
TRIO

GO:0007229 integrin-mediated signaling pathway; GO:0005911 cell-cell
junction; GO:0040011 locomotion; GO:0016477 cell migration

ANTXR1, ATP1B1, BVES, CALCA, CDH23, CEACAM1, CLSTN3, COL12A1,
COMP, FBLIM1, KITLG, NCAM2, NEO1, PCDHB2/4/6/9-11/13/14, PPFIBP1,
PSEN1, PVRL2, RET, RND3, SPP1, TGFB1I1, TPBG, TRO,VTN

GO:0007155 cell adhesion; GO:0007411 axon guidance

HIF1A, HTR2B, KITLG, LEF1, RET, SOX8 GO:0001755 neural crest cell migration

EGR2/EGR3, ERBB2, SOX8 GO:0007422 peripheral nervous system development

JARID1B, JARID2 GO:0016568 chromatin modification; GO:0048863 stem cell differentiation

SLIT2, SLITRK6, FLOT1 GO:0035385 Roundabout signaling pathway; GO:0050772 positive
regulation of axonogenesis

EPHA2, EPHB3; SEMA6C, SEMA6D GO:0048013 ephrin receptor signaling pathway; GO:0030215 semaphorin
receptor binding; GO:0007411 axon guidance

DCX, DPYSL3, ERBB2, KCNQ2, PSEN1, PTPRO, RRAS, SPTAN1, ST8SIA4;
STMN2, TEAD2

GO:0007411 axon guidance; GO:0030426 growth cone; GO:0048666 neuron
development

LAMB2, LAMC1 GO:0005605 basal lamina; GO:0031175 neuron projection development

DLG2, GLS, GNG2/8, HCN1, KCNQ2, PANX, RRAS, SDCBP, SST, SYNJ2, SYT2;
STX7, STXBP5/6

GO:0007268 synaptic transmission; GO:0019905 syntaxin binding;
GO:0045202 synapse

HTR2B, FOS,KALRN, NAB2, NAV2, DCX, RGS9, RTN4, VCL GO:0007399 nervous system development; neurite branching; GO:0030334
regulation of cell migration

CDKL5 GO:0001764 neuron migration; GO:0050773 regulation of dendrite
development; GO:0051726 regulation of cell cycle

BCL2, BOK, CASP4/9, CTSB, NLRP1, SKIL; ANGPT1, CPEB4, CRLF1, F2R, HIF1A,
MDK, NTRK1, PSEN1

GO:0006915 apoptotic process; GO:0043524 negative regulation of neuron
apoptotic process

ADAM12, ADAMTS9, MMP2/11 GO:0008237 metallopeptidase activity

F2R, GALR1, GPR161, HTR2B, IGF2R, P2RY2, PTGER2, PTGIR GO:0004930 G-protein coupled receptor activity; GO:0004966 galanin
receptor activity; GO:0007218 neuropeptide signaling pathway;
GO:0007189 adenylate cyclase-activating G-protein coupled receptor
signaling pathway

CRLF1 GO:0005127 ciliary neurotrophic factor receptor binding

The table displays exemplary the genes from the group A and their functional annotations. The group A contains genes that demonstrated immediate increase of expression
in response to ATRA
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for the migration of the NC cells (its ligand CXCL12 was
active after 48 hours). We suppose that canonical Wnt
signalling is repressed or delayed upon treatment with
ATRA, with non-canonical Wnt signalling taking place:
PPARD/G and TLE3 were induced, TCF7 and TCF19
were repressed, DACT3 (antagonist of beta-catenin) and
further genes annotated with negative regulation of canon-
ical Wnt signaling pathway were induced: ANKRD6,
DKK1/2, SFRP1. The gene WNT11 was activated lately
(group D).
A clearly observable effect of ATRA-treatment on NB

cells is the repression of genes involved in cell cycle regula-
tion, particularly in G1/S and G2/M transitions of mitotic
cell cycle, in cell proliferation, DNA metabolic process,
DNA damage response, DNA repair signalling: MYCN,
AURKA/B, BIRC5, CDC2/6, CENPF, PCNA, PLK1/4 etc.
(Group F). Furthermore, genes responsible for negative
regulation of cell proliferation e.g. CDKN1A were active
at 12 or 24 hrs. Notably, the gene ALK, an important
unfavourable prognostic marker in neuroblastoma, was
repressed.
To summarize, our study documented a powerful tran-

scriptional effect of ATRA on NB cells. A complex
gene regulatory machinery controls the two properties
of neural crest cells: ability to extensively migrate and
differentiate into numerous derivatives and to maintain
multipotency [45]. The role of retinoic acid hereto even
in normal organism is still not well understood. In neu-
roblastoma, the normal properties interfere with the
abnormal EMT andmigratory characteristics, acquired by
tumor cells due to the genomic lesions in several devel-
opmental and guidance molecules genes [49]. We suppose
that the dynamics of gene expression in neuroblastoma
neurogenesis is influenced by the genetic aberrations
inherent to this malignancy.

Conclusions
Identifying dynamic patterns under various biological
conditions is crucial for the understanding of a biological
system. The patterns reflect the coordination, co-
regulation and control of the system components. Identi-
fying temporal changes and patterns of gene expression is
important for the inference of gene regulatory networks.
We developed a method SwitchFinder for the analysis
of time-resolved data, applicable to the gene expression
data. The change-point model at the core of the method
represents a series of the switch-points between regimes
of increasing and decreasing activities, captured by lin-
ear or generalized logistic functions. SwitchFinder fits
the model to the gene-expression profiles, inferring the
switch-points inherent to the gene dynamics. The method
exploits Bayesian model inference with the MCMC tech-
nique Gibbs sampling. To note, the method is suitable for
long, as well as for short time-series.

The advantage of the present approach is the inference
of biologically justified and interpretable features of the
genetic activity, as well as the possibility of their subjec-
tive exploration by researchers with different goals and
background knowledge, in different biological scenarios.
The Web application of the approach provides the user
interface for querying the gene time-series. A flexibility
is given to the user to adjust the selection criteria for
restricting the results to substantial dynamic phenomena.
Actively guiding the data analysis is valuable for biologists,
as opposite to an automatic, unsupervised application of
a statistical/bioinformatics method. Some features of the
data might be designated as important by an expert sub-
jectively - beyond those obtained by statistical learning
based on statistical characteristics. The features, in a next
level of abstraction, can constitute further features or pat-
terns. Such a qualitative approach should overcome over-
fitting and lead towards biologically meaningful results.
The features-based clustering is preferrable than clus-

tering methods based on distance measures like Euclidian
distance or correlation. The latter ignore the dynamic
nature of the temporal data and overlook single data
points, which represent important changes in the gene
behaviour associated with the events of the gene regula-
tory control.
To mention, the present method is independent of the

quantitative expression levels of different genes. It would
not miss a relation between the genes with different abun-
dance, but with the same qualitative pattern.
Previously, a platform PESTS was created, making the

analysis of some statistical features of the gene profiles
accessible via the user interface [50]. Qualitative repre-
sentation of the gene expression profiles was performed
in [51] by the Trend Temporal Abstraction, which trans-
forms the time-series into series of intervals with increas-
ing, decreasing or steady trends. However, the dominant
points, defining the intervals, were determined by the
approximation of the data curves based on thresholds
chosen by the user. This makes the algorithm sensi-
tive to noise. The method concentrated on shapes of
the gene profiles, rather than on proper timing of the
dynamic events. To emphasize, the statistical inference
of the prominent time-points in the temporal profiles is
of advantage. The Temporal Abstraction clustering was
implemented in the software TimeClust [52], together
with other clustering methods. Also, Hvidsten et al. [53]
performed qualitative representations of the gene expres-
sion profiles in terms of templates (increasing, decreas-
ing and constant) over sub-intervals. The authors used
such descriptions as attributes in the rough-sets based
classification system to relate genes to biological pro-
cesses. Parameter values for the identification of the
templates were chosen experimentally with a purpose to
maximize the performance of the whole system. Unlike
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previous approaches, our qualitative descriptions of the
gene-expression profiles are based on the labelling of the
switch-points – not of the intervals. With this, gene pro-
files with activity intervals starting at the same time-point,
but having different durations would still have a chance
to be assigned to the same group. This might be impor-
tant for the elucidation of those gene regulatory events like
e.g. when the gene group is controlled by a transcription
factor. Furthermore, we are able to define higher-order
qualitative features of the switch-points like spikes and
clefts.
The present method combines quantitative and qual-

itative characteristics: statistically inferred timing of
dynamic events and the qualitative dynamic features.
The approach offers a great flexibility in the induc-

tion of biological knowledge from time-series data: the
user may explore the gene set by clustering (unsuper-
vised) or interactively (supervised) by putting queries and
experimenting with the qualitative features of particular
time-points.
The results of the method provide a platform for study-

ing temporal relations like e.g. time delays with the goal
to deduce dependencies between the genes. Modelling
cellular dynamic responses on the level of pathways and
networks can be considered as possible extensions of the
approach. Our next goal is to adapt the SwitchFinder to
the analysis of RNA-seq time-series.

Additional files

Additional file 1: This file contains supplementary text and figures with
additional explanations to the Model_Logit, as well as the supplementary
Figure 5 with the heatmap, displaying the profiles of the cell cycle regulated
genes ordered based on the results of the SwitchFinder. (PDF 64 kb)

Additional file 2: Results of the application of SwitchFinder to the cell
cycle regulated genes. The gene expression profiles are plotted in black,
the fitted lines - in blue, the fitted logistic curves - in red. The switch-points
are depicted as dots. (PDF 106 kb)

Additional file 3: Additional file A-H. These files contain the fitting results
for the genes from the groups A-H, deduced by SwitchFinder, which
represent eight dynamic patterns of the gene expression response to ATRA
in neuroblastoma cell line. (ZIP 2457 kb)

Additional file 4: Tables S1-S8. Demonstrating genes from the groups
A-H and their functional annotations. (PDF 63 kb)
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