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Abstract

Background: Advances in computing have enabled current protein and RNA structure prediction and molecular
simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number
of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale
structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of
structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that
necessitates further algorithmic improvements and development of efficient software solutions.

Results: uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures.
uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for
implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a
low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA
molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of
arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a
typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The
uQlust package is freely available under the GNU General Public License at https://github.com/uQlust.

Conclusion: uQlust represents a drastic reduction in the computational complexity and memory requirements with
respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while
yielding results on par with traditional approaches for both proteins and RNAs.

Keywords: Protein structure, RNA structure, Profile hashing, Hierarchical clustering, Model quality assessment,
Macromolecular structure analysis

Background
Clustering techniques are widely used in the analysis and
interpretation of molecular simulations for biological mac-
romolecules, such as proteins and nucleic acids. For ex-
ample, Markov state and related approaches for
conformational space partitioning [1] are being used to
analyze trajectories generated by Molecular Dynamics, e.g.,
to identify important folding intermediates [2]. Clustering is
also used, either explicitly or implicitly, in order to identify
high quality models generated by protein or RNA structure
prediction methods [3]. In particular, geometric consensus

methods for Model Quality Assessment (MQA) rank
models by comparing their pairs, e.g., by 3D superposition,
to find frequently sampled and hence likely well predicted
substructures [4].
A number of methods have been developed recently to

enable fast ranking and clustering of very large sets of
protein models that can be generated by using current
hardware in conjunction with simulation and structure
prediction methods. Assessing structural similarity for
pairs of models constitutes the major computational
bottleneck in clustering and consensus-based MQA
methods. Consequently, many ranking and clustering
methods attempt to simplify structure-to-structure com-
parison to avoid 3D superposition, e.g., by projecting the
structure into a structural motif frequency profile using
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a fragment library [5], by using parallelization to speed-
up the loop over pairs of models [6], or by relying on
traditional K-means clustering to limit the computa-
tional complexity [7], as only the distances to K
centroids need to be computed.
For example, Pleiades [7] uses a projection of the back-

bone into 21-dimensional vectors using Gauss integrals,
resulting in a fast K-means-based algorithm that compares
structures in terms of their 21-dimensional backbone pro-
files. The FragBag approach [5], on the other hand, projects
3D structures into a frequency profile to enable fast
structure-to-structure comparison and similarity search
with a representative library of structural fragments.
PconsD [8], a successful MQA method, computes model
ranking by assessing similarity between protein models in
terms of their distance matrices while using GPUs to
speed-up comparison of all pairs of models. Parallelization
is also used in ClusCo [6] to enable large scale all-vs-all
comparison and enhance both hierarchical and K-means
clustering in conjunction with the traditional Root Mean
Square Deviation (RMSD) superposition.
Importantly, since K-means approaches do not imply a

loop over pairs of models, the overall computation can
be broken into data ‘slices’ and therefore easily imple-
mented on modern distributed computing platforms for
‘big data’, such as Hadoop or Spark implementations of
the Map/Reduce framework. In contrast, traditional
hierarchical clustering techniques require that all pairs
of structures are compared, making it incompatible with
these distributed platforms. In addition, the overall
distance matrix needs to be stored in memory, greatly
limiting the size of data that can be analyzed using trad-
itional hierarchical clustering approaches. Here, we
address both of these challenges by combining structural
profiles with a linear time geometric consensus-based
ranking algorithm and profile hashing.
As shown in [9], by projecting 3D coordinates into a

suitable 1D structural profile that assigns each residue to
a distinct state, e.g. exposed vs. buried, the 1D-jury
method implicitly compares all pairs of models to iden-
tify those that share common substructures without the
need to perform a loop over pairs of models (see
Additional file 1: Figure S1). Thus, 1D-jury provides geo-
metric consensus-based ranking of all models in a set
with a linear time complexity algorithm. In addition,
1D-jury provides natural centroids of clusters consisting
of models sharing common substructures. It should be
also noted that the 1D-jury approach can be generalized
to arbitrary structures (of any length) as long as they can
be projected into fixed length structural profiles, such as
frequency profiles used by FragBag or Gauss integral
projections used by Pleiades.
Structural profiles in conjunction with linear time con-

sensus ranking can be further combined with profile

hashing to enable efficient hierarchical clustering with a
low memory footprint. The main idea is to use structural
profiles in order to define hashing keys that map similar
structures into the same values of a hash function, and
thus enable collating profiles/structures with the same
keys into initial micro-clusters. These micro-clusters are
subsequently either tuned (with some level of profile
coarse graining and further projections/filters) to obtain
a certain number (K) of clusters and data coverage (the
fraction of structures included in these K clusters), or
aggregated hierarchically using the Hamming, cosine or
other applicable distance measure (see Fig. 1). Building
on these algorithmic engines, we present the uQlust
package which combines 1D structural profiles, hashing
and linear time ranking to enable ultrafast clustering of
very large sets of atomistic or coarse-grained protein or
RNA structures.

Implementation
Structural profiles
The following versatile residue-level projections of 3D
structures (starting from a set of all-atom or reduced
PDB or DCD files) are implemented in uQlust:

i) SS-SA or secondary structure (SS) – solvent
accessibility (SA) profile, which assigns each amino
acid residue to one of three secondary structures
(NSS = 3), and one of up to NSA = 10 solvent
accessibility states; the DSSP utility [10] is integrated
with uQlust to assign SS and RSA states;

ii) CA(SS)-NC(SA) or approximate distance dependent
secondary structure (SS) – solvent accessibility (SA)
profile, which can be used for Cα only models, and
assigns pseudo-secondary structure states based on
distances between Cα atoms (CA) – for details see
Supplementary Materials and uQlust Manual;

iii)CA-CM (contact map), which is also applicable to
both atomistic and reduced models, and consists of
the top triangle of the binary contact map, where
d(Cα,i,Cα,j) < 8.5 Ang, |i-j| > 11.

Analogously to protein profiles, 1D RNA profiles for
ranking and clustering (of equal length RNA models) are
built either using a backbone phosphorus atom contact
map (denoted as RNA-P-CM) where d(Pi,Pj) < 15.5 Ang,
|i-j| > 11, or by considering a combination of secondary
structure and base pairing states generated by using
RNAview [11]. Namely, a simplified secondary structure
assignment (stem vs. loop, NSS = 2) is combined with a
coarse-grained Leontis and Westhof (LW) classification
of base-pairs into one of 15 different types based on
nucleotide pairs (AT vs. GC), glycosidic bond orientation
(cis vs. trans), interacting edges (Watson-Crick,
Hoogsteen, Sugar Edge, and their frequently observed
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combinations plus ‘Other’ state), resulting in 30 distinct
states (denoted as RNA-SS-LW).
Another type of profile available in uQlust uses a struc-

tural motif/fragment frequency profile to represent arbi-
trary structures (of any length). For proteins, uQlust uses
the FragBag library [5] of 400 backbone fragments of length
11 residues, while its custom developed RNA-FragBag
counterpart is used for RNAs (see the Results section).
A user-defined, protein or RNA, residue level or

fragment-based profile can also be used in uQlust, in
conjunction with an external application, such as DSSR
[12]. A pre-defined workflow (denoted as RNA-SS-TA)
combines simple secondary structure state assignment
(NSS = 2) with distinct torsional angle states (NTA = 5),
defined as combinations of DSSR epsilon-zeta BI and BII
backbone states with chi syn- and anti- states (plus
‘other’ state). The resulting 10 distinct states can be
further split based on base-pair type assignment, similar
to that used for RNA-SS-LW.
Such defined profiles, as listed in Additional file 1:

Table S1, can be used for either model assessment using
1D-Jury (denoted as uQlust:1D-ProfileName), or explicit
clustering with profile hashing, using hash keys generated
with a profile of choice to provide an initial ‘slicing’ of
data.

Profile hashing
Profile hashing is used in conjunction with 1D-Jury to
achieve ultrafast clustering heuristics with a low memory
footprint. Binary hash keys are generated with a 1D pro-
file of choice by comparing each profile with a reference

profile that obtains the maximum 1D-Jury score (which
can be computed in linear time). The hash key for a pro-
file is defined at each position as follows: 0 is added to
the key if a given profile is in the same state as the refer-
ence profile at that position, 1 is added otherwise (note
that the number of ones in a key is equal to the
Hamming distance from the reference profile). Since the
best 1D-jury score reference profile is expected to repre-
sent a natural geometric consensus for a substantial
subset of models [9], one can also expect that many of
such largely consistent models will likely obtain the
same hash key, resulting in less granular partitioning
into micro-clusters (subsets of profiles with the same
value of the hashing function) compared with a random
reference structure, or a direct use of multi-state profile
as opposed to binary ‘geometric consensus’ keys.

Clustering heuristics for big macromolecular data
The first heuristic discussed here is a profile hashing-
based clustering that directly draws from the above
considerations. It is referred to as uQlust:Hash (K,F),
where K defines the number of target clusters, and F de-
notes the fraction of data that should be contained
within those K clusters. Hash (K,F) starts by slicing data
into micro-clusters with the same hashing function
value. Subsequent agglomeration into K clusters (com-
prising F% of data) is obtained by simply changing the
granularity of hash keys, which is achieved by removing
a sufficient number of the most variable profile hash key
positions characterized by high entropy across all data
vectors.

Fig. 1 Schematic representation of approximate hierarchical clustering with profile hashing to generate ‘micro-clusters’ (lower level in the figure,
with hashing keys in terms of consensus structure) that are subsequently hierarchically clustered, starting from the representative structures
(1D-jury centroids shown above) in each micro-cluster, using an applicable distance measure, such as Hamming, cosine or RMSD (if 3D structures
are available)
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Another heuristic in uQclust is a form of reference-
based partitioning, which is referred to as uQlust:Rpart
(K,F). As before, this new heuristic relies on the initial
identification of 1D-jury ‘centroid’ for the entire data set,
as a suitable reference conformation. For efficiency and
granularity, Rpart also represents all profiles in terms of
binary hash keys. However, the subsequent partitioning
of data proceeds very differently. Rather than aggregat-
ing hashing-based micro-clusters, Rpart recursively
identifies macro-clusters centered on a reference profile
by adjusting the radius of clustering to achieve K
clusters comprising F% of data.
Specifically, Hamming distances to the reference pro-

file hash key are computed to identify a central inner
sphere that contains data points closer than the radius
of clustering (initially set to ¼ of the maximum distance
from the 1D-jury reference) to the reference vector.
Such defined sphere constitutes a candidate for a macro-
cluster. The profile (structure) with the highest 1D-Jury
score in the outer layer is then selected as the next
reference structure. Next, the radius of clustering is reset
to its distance from the original 1D-jury reference, and
the process is repeated on the remainder of the data,
considering only points at distances less than twice the
current radius of clustering from the original 1D-jury
reference. If after K iterations less than F% of data points
are covered by such defined K candidate macro-clusters,
then the size of the radius of clustering is increased (or
decreased if more than F% of data points are covered),
and the process is repeated. The process stops when no
further improvement towards the targeted F is observed.
Finally, in the case of approximate hierarchical cluster-

ing, which is referred to as uQlust:Tree, the first step is
analogous to that used for Rpart (K,F) or Hash (K,F),
except that a large K is used to induce a large number of
small clusters (micro-clusters, see Fig. 1) and F is set to
100% to include all data. While K can be modified by the
user to set the tradeoff between speed and accuracy, its
default value is set to K = 1,000 to provide sufficient
granularity in both conformational space partitioning and
model clustering for quality assessment (note that K and F
are effectively fixed and can be dropped in references to
uQlust:Tree). In the next step, a 1D-jury centroid is
computed for each micro-cluster, and from this level trad-
itional average distance agglomerative (bottom-up) hier-
archical clustering with either Hamming or cosine
distance (for arbitrary profiles), or RMSD (only for
proteins or RNAs) can be applied. As a result, effectively
linear complexity in the number of structures, Nstruct, is
achieved when Nstruct > >K (see running times in Table 2).

Implementation details
uQlust is written in C# and should be easily portable be-
tween different operating systems (system independent

pre-compiled executables that require .NET ver. 4.5 or
higher, or Mono ver. 3.8 on 64-bit Windows or Linux
operating systems, respectively, are provided with the
distribution). Multithreading is implemented to speed-
up profile pre-processing, ranking and clustering. Fast
methods for RMSD [13] and MaxSub [14] structure
similarity measures are implemented to speed-up struc-
ture to structure comparison when profiles are not used.
For vector hashing, C# Dictionary Type with a hash
function default method GetHashCode() is used. Work
is in progress to enable the use of uQlust (in particular,
for profile pre-processing) in conjunction with Hadoop
Map/Reduce framework, using the Microsoft Azure plu-
gin for C#.

Results and discussion
Linear time ranking of macromolecular models
As shown in [9], by projecting macromolecular 3D coordi-
nates into a suitable 1D profile and profile pre-processing
to compute the state frequency vector at each profile pos-
ition, one can implicitly compare all pairs of models to
compute their overall geometric consensus ranking with a
linear time complexity algorithm. The resulting 1D-Jury
approach enables ultrafast ranking of large sets of models,
while yielding results on par with quadratic complexity
methods, such as 3D-Jury [4] or PconsD [8]. This is illus-
trated in Additional file 1: Figure S1.
Here, uQlust is evaluated in terms of ranking and

model assessment using CASP10 [15] and TASSER [16]
benchmarks for proteins. Only those targets/models that
were successfully processed by all methods are used for
comparison (73 and 56 targets, and a total of 28,150 and
1,065,345 models, for CASP and TASSER respectively).
Several well performing profiles, including a simple 1D-
SS-SA and a contact map profile 1D-CA-CM, motivated
by the success of PconsD (and to provide its linear
complexity counterpart), are assessed.
As can be seen from Table 1, the running times indeed

scale linearly with the number of structures for uQlust-
1D-CA-CM, as opposed to quadratic scaling for PconsD.
Furthermore, as can be seen from Table 2, the results of
uQlust-1D-CA-CM and more compact uQlust-1D-SS-
SA profile based ranking are on par with PconsD in
terms of selection of top models. Interestingly, using
centroids of explicitly identified clusters as top models
leads to further improvements, especially for hashing
and reference-based uQlust heuristics that outperform
K-means approaches on CASP, while hierarchical
uQlust:Tree clustering works best on TASSER.

Ultrafast clustering with profile hashing
Traditional and profile hashing-based hierarchical clus-
tering techniques are compared in terms of time and
memory usage in Table 3. We used coarse-grained
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models generated using the CABS-flex server [17] for
three distinct conformers of Troponin C, increasing the
number of models for each conformer to obtain a series
of data sets of growing size, each consisting of 3 distinct
clusters of equal number of structures. Note that, unlike
for other hierarchical clustering methods tested, the run-
ning time and memory usage grow essentially linearly
with the size of the problem for uQlust:Tree (here with
the CA-CM profile, Rpart (1000,100) to define initial
micro-clusters). Running times and memory allocation
can be further reduced by replacing the CA-CM profile
used here with a much more compact SS-SA profile.
It should be emphasized that there is a very high

degree of concordance between full hierarchical and
CA-CM (or SS-SA) profile-based uQlust:Tree, as indi-
cated by the Rand index of 0.99 (at the level of 5
clusters) and illustrated in Additional file 1: Figure S3.
Very similar results can also be obtained (data not
shown) using the compact pseudo-secondary structure/
contact number profile, CA(SS)-NC(SA), illustrating the
versatility of uQlust. It should be also noted that RMSD
can also be used in uQust:Tree to aggregate micro-
clusters, providing in this case virtually identical results
to those of full hierarchical clustering, without affecting

significantly running times since only representative
structures need to be superimposed.
In addition to applications to large scale structure pre-

diction and molecular simulations of a target protein or
RNA (of some fixed length), uQlust can also be used in
conjunction with the FragBag structural motif frequency
profile [5] for analysis and clustering of arbitrary struc-
tures (of different length), including an interactive
exploration of the entire PDB. This is illustrated by per-
forming hierarchical clustering of about 98,000 protein
chains from the PDB that were assigned no more than
one CATH fold level annotation to avoid ambiguous
class assignment.
In order to perform the task on a Linux Intel

i7-30610QM 2.3 GHz 4 core laptop, uQlust:Tree re-
quires less than 2.5 GB of RAM and about 3.3 and 1.3
CPU hours for profile generation and hierarchical clus-
tering, respectively, using the FragBag profile, Rpart
(10000,90) micro-clusters and cosine similarity measure.
For comparison, a simple hashing-based clustering with
uQlust: Hash (10000,90) takes only about 30 CPU
seconds, resulting in small clusters largely consistent at
the superfamily level (but it obviously does not provide
the overall hierarchical structure). It should be also
noted that cosine similarity is more appropriate for
frequency profiles that are characterized by large differ-
ences in counts and the overall profile vector norm, as
opposed to Hamming distance that works well for resi-
due level or contact map profiles (see Additional file 1:
Figure S3 for instance).
Note that CATH contains over thousand folds and

about 2,700 superfamilies, requiring a large number
(10,000) of micro-clusters for these highly granular data
[18]. The results are illustrated in Fig. 2: the three main
classes of proteins (alpha, alpha-beta and beta) cluster
largely together, while within the micro-clusters the ma-
jority voting results in over 91%, 88% and 87% classifica-
tion accuracy (that can be further improved to 96, 94

Table 1 Running times for model ranking on TASSER target
256b_A

N_struct 2000 4000 8000 16,000

Profile preprocessing 13.8 51.6 132.0 231.0

uQlust:1D-CA-CM 0.6 1.2 3.0 6.6

PconsD 23.6 64.8 260.7 901.7

Time in CPU sec on a server with 8 Intel (R) Core (TM)2 Q6600@2.0GHz CPUs,
4 GB, and Linux version Ubuntu 12.04. PconsD was allowed to use all 8 CPUs
and the TESLA C2075 graphical card with 448 GPUs, while times for uQlust are
for 1 CPU only to demonstrate its linear scaling

Table 2 Evaluation of protein model quality assessment
approaches

Method CASP10 TASSER

PconsD 0.68 / 0.43 4.3 / 0.46

uQlust:1D-CA-CM 0.66 / 0.38 4.2 / 0.46

uQlust:1D-SS-SA 0.67 / 0.40 4.3 / 0.41

ClusCo (10) 0.68 / 0.37 3.2 / 0.49

Pleiades (10) 0.67 / 0.38 3.1 / 0.45

uQlust: Hash (10,60) 0.76 / 0.52 3.5 / 0.44

uQlust: Rpart (10,60) 0.75 / 0.56 3.3 / 0.42

uQlust:Tree 0.71 / 0.46 2.9 / 0.47

Average MaxSub similarity score between top ranking and best models (left),
and fraction of good models (right) are reported for both CASP and TASSER
targets. The fraction of good models is defined as the fraction of targets with
the top ranking model less than 0.2 MaxSub score from the best model for
CASP, and less than 2 Ang RMSD for TASSER. Centroids of the 5 largest (out of
K = 10) clusters are considered for clustering methods, and F = 60% of data is
used for uQlust

Table 3 Time and memory usage for hierarchical clustering
methods

N_struct 9000 18000 36,000 72,000 144,000

Time (uQlust:Preprocess) 104 241 581 1604 3743

Time (uQlust:Tree) 70 92 168 310 488

Time (ClusCo) 360 3080 24818 209072 —

Time (MaxClust) 7140 50540 — — —

Memory (uQlust:Tree) 0.3 0.6 0.8 2.6 4.3

Memory (ClusCo) 0.4 1.6 6.5 25 —

Memory (MaxClust) 1.9 5.7 19.0 — —

CPU times (sec) and memory usage (GB) for approximate uQlust:Tree vs. full
hierarchical clustering, obtained by using ClusCo [6] or MaxClust [22]. All
calculations were performed on a server with 16 Intel (R) Xeon (R) E5-2680-
0@2.70GHz CPUs, 132GB, and Linux
version 2.6.32-504.1.3.el6.centos.plus.x86_64
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and 90% by increasing by 2-fold the number of micro-
clusters at the expense of computation time) at the level
of CATH class, architecture, and fold assignment,
respectively.
Thus, despite large differences in length and signifi-

cant variation in the secondary structure content within
CATH fold or superfamily members, a simple FragBag
profile can capture important global characteristics of
the hierarchy of protein folds. On the other hand, the
FragBag library had been primarily designed to enable
fast retrieval of similar structures from PDB, rather than
the overall structural classification. Importantly, the
resolution and accuracy achieved here can be further
improved by combining FragBag with other types of pro-
files, such as the Gauss integral representation of the
backbone trace used by Pleiades [7]. Such extensions
can be implemented by using a user defined profile in
uQlust, and will be a subject of a future investigation.

Clustering and ranking of RNA structures
We briefly illustrate the use of uQlust to cluster and rank
RNA structures, using the FARNA benchmark [19], and a
set of 23S, 16S and 5S ribosomal RNAs, collected from the
SCOR database [20] and augmented by additional struc-
tures obtained from PDB. The results for six FARNA tar-
gets, with a subset of 500 models each, obtained using
clustering to identify centroids of 5 largest clusters as top
scoring models, are summarized in Table 4. The perform-
ance of uQlust: Rpart (10,60) with either RNA-SS-LW or
RNA-SS-TA (only results for the former are shown) profile
and Hamming distance are on par (or better) compared to

enhanced K-means approach (uQust:10-means) with 3D
structures and RMSD.
Hierarchical clustering of ribosomal RNAs using a

fragment-based profile is illustrated in Additional file 1:
Figure S4. A library of 92 representative coarse-grained
5-mer backbone (phosphorus atom) RNA fragments,
derived from the RNA05 set of RNA structures [21] is
used to define an RNA fragment-based profile, denoted
as RNA-FragBag. Such defined profile is then used in
conjunction with uQlust:Tree and cosine distance,
demonstrating high concordance with the three classes
of ribosomal RNAs included.
Finally, we would like to emphasize that by enabling

large-scale numerical experiments and benchmarking,
uQlust can provide a platform for further refinement of
profile-based approaches for macromolecular structure
analysis and modeling, including the development of
comprehensive RNA fragment libraries.

Conclusions
By combining profile hashing in conjunctions with 1D
residue level, fragment-based or arbitrary user defined
profiles of proteins and RNAs, as well as the 1D-jury lin-
ear time complexity ranking algorithm with implicit com-
parison of all pairs of models [9], uQlust enables ultrafast
and low memory footprint clustering (and ranking) of very
large sets of atomistic or coarse-grained models of fixed
length using residue profiles, or arbitrary macromolecular
structures when using fragment profiles. At the same time,
uQlust yields results on par with methods implying much
higher computational cost in both model quality assess-
ment and explicit clustering. A number of widely used

Fig. 2 Hierarchical clustering of 98,000 protein chains from the Protein Data Bank, using the fragment-based FragBag profile and the uQlust:Tree
algorithm. The initial micro-clusters of structures deemed as closely related (i.e. those with identical hash keys, including large “micro-clusters” of
nearly identical structures such as those of globins or lysozymes) constitute the leaves in the tree. CATH assignment at the class level for majority
alpha, alpha/beta (or alpha + beta) and beta clusters are shown as red, blue and yellow bars, respectively. It should be noted that the uQlust
graphical user interface enables interactive exploration of such generated dendograms and other representations of large data sets
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methods and utilities for macromolecular structure ana-
lysis, including DSSP for protein secondary structure and
solvent accessibility assignment [10], RNAview for RNA
secondary structure and base-pair type assignment [11],
and FragBag for fragment-based profile assignment [5],
are implemented in uQlust and integrated into workflows
for ranking and clustering without the need to use exter-
nal programs. The code is freely available to the commu-
nity and can be used in both batch and interactive modes,
providing a versatile, efficient and easy-to-use toolkit for
macromolecular structure exploration and analysis.

Availability and requirements
The uQlust package is freely available under the GNU
General Public License at https://github.com/uQlust.
uQlust has been written in C# and should be easily
portable between different operating systems. System
independent pre-compiled executables that require .NET
ver. 4.5 or higher, or Mono ver. 3.8 on 64-bit Windows
or Linux operating systems, respectively, are provided
with the distribution.

Additional file

Additional file 1: Figure S1. 1D-jury algorithm for geometric
consensus-based model ranking with contact map profiles. Three models
(rows) of a hypothetical protein consisting of just 4 amino acid residues
are considered, with the upper triangle of the inter-residue contact map
(i,j) arranged as a linear profile. Black squares indicate contacts, while
yellow squares indicate pairs of residues that are not in contact. The
calculation of the score for the best scoring M2 model that corresponds
to the consensus state at 5 (out of 6) profile positions proceeds red
arrows. Note that a vector of state counts in each column of the profile
can be precomputed in linear time, allowing one to account for all
pairwise similarities without the need for a loop over pairs of models.
Figure S2. Assessment of protein model selection on TASSER benchmark
using uQlust: Hash (K,F) with different choices of the number of clusters
K, and fraction of data included F. Low (averaged over all TASSER targets)
RMSD of the top ranking model with respect to the best model available
indicates better results. Figure S3. Comparison between full (RMSD-based
average linkage) and uQlust:Tree (approximate) hierarchical clustering of
coarse-grained structures obtained using CABS-flex server (Jamroz et al.,
2013). Three initial conformations of troponin C are used to generate 3

distinct clusters (each containing 3,000 models, and marked by red, green
and blue bars, respectively). Figure S4. Hierarchical clustering of ribosomal
RNAs (blue – 16S, red – 23S, green - 5S) using the fragment-based
RNA-FragBag profile, uQlust:Tree in conjunction with profile hashing (using
the default number of microclusters) and cosine distance. Table S1. Structural
profiles implemented in uQlust. For each profile, its type (as defined by the
macromolecule it applies to, i.e., either protein or RNA), the source of state
assignment, the number of states and the size (length) of the profile are
reported. (PDF 260 kb)
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