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Abstract

Background: Prediction of ligand binding sites is important to elucidate protein functions and is helpful for drug
design. Although much progress has been made, many challenges still need to be addressed. Prediction methods
need to be carefully developed to account for chemical and structural differences between ligands.

Results: In this study, we present ligand-specific methods to predict the binding sites of protein-ligand interactions.
First, a sequence-based method is proposed that only extracts features from protein sequence information,
including evolutionary conservation scores and predicted structure properties. An improved AdaBoost algorithm is
applied to address the serious imbalance problem between the binding and non-binding residues. Then, a
combined method is proposed that combines the current template-free method and four other well-established
template-based methods. The above two methods predict the ligand binding sites along the sequences using a
ligand-specific strategy that contains metal ions, acid radical ions, nucleotides and ferroheme. Testing on a well-
established dataset showed that the proposed sequence-based method outperformed the profile-based method by
4–19% in terms of the Matthews correlation coefficient on different ligands. The combined method outperformed
each of the individual methods, with an improvement in the average Matthews correlation coefficients of 5.55% over all
ligands. The results also show that the ligand-specific methods significantly outperform the general-purpose methods,
which confirms the necessity of developing elaborate ligand-specific methods for ligand binding site prediction.

Conclusions: Two efficient ligand-specific binding site predictors are presented. The standalone package is freely
available for academic usage at http://dase.ecnu.edu.cn/qwdong/TargetCom/TargetCom_standalone.tar.gz or request
upon the corresponding author.
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Background
The purpose of protein research is to identify and anno-
tate protein functions. Many proteins perform their
functions by interacting with other ligands, although
only a small portion of the residues are in contact with
the ligands. The recognition of binding residues is im-
portant for the elucidation of protein functions and drug
design applications [1]. Experimental methods to detect
the binding residues are often expensive and time-
consuming. With the large and increasing number of se-
quences deposited in various databases, it is valuable to

predict the ligand binding sites using computational
methods.
During the last decade, much effort has been made to-

wards accurately predicting ligand binding sites [2, 3].
Roughly speaking, these methods can be grouped into the
following categories based on the source of the informa-
tion used [4]: sequence-based methods, structure-based
methods and hybrid methods that combine sequence with
structure information [5]. The sequence-based methods
[6] extract diverse features from the protein sequence dir-
ectly or indirectly and input the features into a classifier to
predict the possibility of binding residues. The most
widely used feature is the position-specific scoring matrix
(PSSM) generated by PSIBLAST [7]. Other predicted fea-
tures have also been used, including the predicted second-
ary structure, predicted solvent accessibility and predicted
dihedral angles. Fang et al. [8] demonstrates that PSSM
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contains most of the information needed for ligand func-
tion site prediction. Evolutionary conservation is an im-
portant indicator for function-related residues. The
Rate4Site method [9] calculates the conservation score
based on polygenetic trees and uses the score to detect
functionally important regions in proteins with known
three-dimensional structures. Capra et al. [10] presented a
simple but efficient method that used Jensen-Shannon
divergence to estimate sequence conservation. The
structure-based methods basically dominate this field [11].
These methods generally use known templates with simi-
lar topology structures to find the “pocket” or “cavity” on
the structure surface. The template-based methods search
homologous structures with global topology; then, the
putative binding sites can be transformed after superpos-
ition [12, 13]. The homology-derived model is still useful
even if the structure of the target protein is not available
[14]. The global comparison methods can find templates
with similar topology, but the alignment in the binding
pocket may not be accurate. The local comparison is
sensitive to the binding pocket but has a high false positive
rate [15]. The combination of global and local compari-
sons can obtain robust results, as shown by COFACTOR
[16]. The other type of structure-based method searches
the surface of the structure to find either a geometry-
complementary [17] or energy-favourable [18, 19] region
as the possible binding site. The hybrid methods use both
sequence and structure information to obtain better predic-
tions. For example, ConCavity [20] integrates the residue
conservation scores and the output of other structure-
based methods to identify protein surface cavities, and
FREPS [21] predicts functional regions by detecting spatial
clusters of conserved residues on the protein structure.
Although much progress has been made in computa-

tional binding site predictions, many issues with the
current methods require further investigation.
First, many approaches use three-dimensional protein

structures to identify the binding sites. In reality, only a very
small proportion of proteins have experimentally solved
structures deposited in Protein Data Bank (PDB) [22].
Obtaining structures for many proteins is difficult due to
purification and crystallization issues. In contrast, available
sequences [23] are exponentially increasing due to the ad-
vance of high-throughput sequencing techniques. Although
structure models can be obtained using template-based [24]
or ab initio structure prediction [25], the quality of the model
has an important influence on the confidence of the binding
site prediction, especially for hard target proteins [26] that do
not have homologous templates in the current PDB library.
Thus, it is necessary to develop powerful methods for
binding site prediction from protein sequence information
alone. This study will demonstrate that the sequence-based
method is an effective complement when template-based
methods fail to obtain a good predicted structure model.

Second, most methods try to obtain all binding sites
without carefully checking the differences between dif-
ferent ligands. However, ligands are chemically and
structurally different. The assessment of binding site
residue predictions in CASP9 [27] suggests that the as-
sessment should be made according to the chemo-type
categories of the ligand. The ProBiS-ligands server [28]
predicts the types of ligands that can be bound to a
given structure. Recently, researchers have paid attention
to the differences in ligands, and many ligand-specific
methods have been developed to obtain more accurate
predictions. For example, Bharat et al. developed VitaPred
[29] to predict vitamin-interacting residues, Moreover,
nucleotide-binding residues were predicted using
SITEpred [30] and ATP binding residue predictions were
extensively investigated using many methods [31, 32].
Other ligands have also been explored, such as HEME
[33], FAD [34], calcium [35], GTP [36], NAD [37], and
zinc [38].
Third, the principle of protein-ligand binding is com-

plicated, and each method can only explore specific
binding site information. Thus, the combination of
multi-methods can result in better predictions. For ex-
ample, MetaPocket 2.0 [39] combines eight methods to
generate a consensus output for function site predic-
tions. COACH [40] also achieves better predictions by
integrating five methods.
In view of the above-mentioned statement, this study

will present a robust ligand-specific binding residue pre-
dictor. Nine ligands were initially investigated to validate
the proposed method. However, the proposed frame-
work can easily integrate other ligand-specific predictors
without much revision. First, a sequence-based method
called TargetSeq was developed; this method only uses
features from the protein sequence. The extracted features
include the position-specific scoring matrix, the residue con-
servation scores, and the predicted secondary structure.
These features are inputted into an ensemble classifier that
is based on a modified AdaBoost algorithm to tackle the
serious imbalance problem between the positive samples
(binding residues) and negative samples (non-binding resi-
dues). Second, a combined method called TargetCom was
developed that integrated the outputs of four well-
established methods (COACH [40], COFACTOR [16], TM-
SITE [40] and S-SITE [40]). Extensive experimental results
show that the combined method outperforms each of the
individual methods.

Methods
Benchmark dataset and ligands
Most ligand binding site prediction methods use three-
dimensional structures from the PDB database [22]. A non-
redundant subset for specific or general ligands is obtained
as a benchmark dataset after filtering the whole database.
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However, not all the ligands in PDB are natively bound to
the structures. Many ligands are included as additives to
help solve the structures. Thus, much effort has been made
to filter out the biologically relevant ligands from the PDB
structures, and many well-established databases have been
developed, such as FireDB [41], LigASite [42], PDBbind [43]
and BioLip [44]. Because BioLip is a newly developed and
semi-manually curated database, this study uses BioLip as
the data source. First, PDB chains with specific ligands are
extracted from the BioLip database. If one chain has mul-
tiple sites with the same type of ligand, all sites are consid-
ered effective. Then, these structures are filtered by keeping
only structures with a resolution less than 3.0 Å and a se-
quence length larger than 50 residues. Redundant structures
are removed using the CD-HIT program [45] with a se-
quence identity threshold of 0.4. Although CD-HIT is ex-
tremely fast and is widely used, similarities are estimated by
common word counting instead of a sequence alignment.
Thus, there are some odd data in which a pair of sequences
may be a little higher than the specific threshold. To obtain
strict non-redundant benchmark data, the dataset is filtered
using the global dynamic programming algorithm of the
Needleman-Wunsch alignment.
Nine types of ligands are used here to evaluate the

proposed ligand-specific method; these nine ligands are
comprised of six small ligands and three large ligands.
The small ligands contain four metal ions (BioLip ID:
CU, FE, FE2 and ZN) and two acid radical ions (BioLip
ID: SO4 and PO4). The large ligands contain two nucle-
otides (BioLip ID: ATP and FMN) and one HEME. The
ligand HEME corresponds to the HEM and HEC ligands
in the BioLip database because they are two subtypes of
the HEME molecule. The detailed composition of the
dataset is given in Table 1.
For each ligand, five-fold cross-validation is used to

evaluate the performance of the proposed method. The
dataset is randomly divided into five parts. One part is

used to obtain the test results, and the other four parts
are used to train the model. The above process is re-
peated five times so that each part is tested. The average
performance over the five parts is reported as the final
cross-validation result.

Sequence-based method pipeline
First, we present a sequence-based method named Target-
Seq, which only uses information from protein sequences
or their variants through a multiple sequence alignment
(Fig. 1a). For a target residue in a protein sequence, a slid-
ing window with length L is used to extract the protein se-
quence features including the position-specific scoring
matrix, the predicted structure properties and the conser-
vation scores. The target residues are then represented as
feature vectors. These vectors are then inputted to sup-
port vector machine to get the classifier. Note that to han-
dle the class-imbalance problem, the modified AdaBoost
algorithm is used to get the ensemble classifier. For a test-
ing target residue, the same procedure is used to get the
feature vector and the ensemble classifier is used to get
the probability of binding site. The binding sites are pre-
dicted in ligand-specific manner. For each type of ligands,
the corresponding ensemble classifier is constructed. The
overall flowchart is illustrated in Fig. 1a. Detailed feature
encoding and training algorithm are explained below.

Position-specific scoring matrix
The position-specific scoring matrix (PSSM) contains
protein evolutionary information. PSSM has been widely
used for many prediction problems in bioinformatics. In
this study, the position-specific scoring matrix is gener-
ated by running PSI-BLAST [7] on the non-redundant
protein dataset (nr) from NCBI with an e-value thresh-
old of 0.001 and iteration time of three. The original
PSSM scores are transformed by the following logistic
function before they are extracted as features:

y ¼ 1
1þ 2−x

ð1Þ

where x is the original PSSM value, and y is the normalized
value. A sliding window with length L centred at the target
residue is used to extract the PSSM value. The window
length is a parameter of the method and needs to be opti-
mized during cross-validation. Due to the distinction of dif-
ferent ligands, each ligand has its own optimal window
length as shown in the Results section. Therefore, the num-
ber of dimensions of the PSSM features is L*20.

Predicted structure properties
Previous studies showed that the predicted structure
properties were helpful for function site identification.
Here, we use the predicted secondary structure, relative

Table 1 Composition of the dataset for the 9 types of ligands

Ligand Categories Ligand IDa No. Proteins No. Positiveb No. Negativec

Metal ions CU 110 535 38488

FE 227 1115 73813

FE2 103 439 34113

ZN 933 4317 367292

Acid radical ions SO4 303 2125 99729

PO4 339 2168 112279

Nucleotides ATP 261 3631 100848

FMN 95 1552 30244

HEME HEM and
HEC

228 5821 69155

aThe ligand ID in the BioLip database
bThe number of binding residues
cThe number of non-binding residues
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solvent accessibility and torsion angles as additional fea-
tures. The predicted secondary structures are obtained
using PSIPRED [46], and a three-dimensional vector
with a Boolean value is used to indicate the type of sec-
ondary structures defined as alpha-helix, beta-strand,
and coil. The relative solvent accessibilities are predicted
by ANGLOR [47] which uses the neural network as the
classifier, and only one Boolean value is used to illustrate
whether the residue is buried (<25%) or exposed (>25%).
The backbone torsion angles are also predicted by
ANGLOR [47], and the two-dimensional real value is
used to show the φ and ψ dihedral angles. Taking the
local window with length L into consideration, the num-
ber of dimensions of the predicted structure properties
is L*6.

Conservation scores
Residue conservation is a crucial indicator for functionally
important residues that has been extensively investigated
and well used for ligand binding site prediction. First, the
position-specific conservation is calculated by the soft-
ware implemented by Capra and Singh [10], with two
information-theoretic scores [the relative entropy score (RE)
and Jensen-Shannon divergence score (JSD)] used as the
features. The JSD score has been reported to perform simi-
larly to the Rate4Site algorithm [48] for the identification of
functionally important residues, but the JSD algorithm is
several orders of magnitude faster than the Rate4Site algo-
rithm. The number of dimensions of the position-specific
conservation is L*2. In addition to the above position-
specific conservation, we also consider the conservation of
the sequence segment within the entire local window. A
position weight matrix, which is similar to the PSSM, is

constructed based on all sequence segments. The occur-
rence frequency of each residue in the specific position
within the local window is calculated as follows:

pi;j ¼
ni;j þ

ffiffiffiffiffiffi
Ni

p
=21

Ni þ
ffiffiffiffiffiffi
Ni

p ð2Þ

where i denotes the position index within the window, j
denotes one of the twenty residues plus an additional
residue used to denote the unknown residue or the resi-
due outside of the sequence, nij is the occurrence num-
ber of residue j at position i, Ni is the occurrence
number of all residues in position i, and pij is the fre-
quency of residue j at position i and is further normal-
ized by the background frequency:

mi;j ¼ log
pi;j
pj

 !

ð3Þ

where Pj is the background frequency of residue j and
mij is the matrix element of the position weight matrix.
A conservation score for a specific sequence segment
can be calculated based on the position weight matrix
and the sequence of the segment as follows:

S ¼

XL

i¼1

mi;si−mi;min
� �

XL

i¼1

mi;max−mi;min
� �

ð4Þ

where mi,min and mi,max are the minimum and maximum
values, respectively, for position i in the matrix, and si is
the residue type at position i for the target sequence

Fig. 1 The flowchart of the proposed TargetSeq (a) and TargetCom (b) methods for protein-ligand binding site prediction
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segment. The above score can be calculated for the posi-
tive and negative samples so that a two-dimensional vec-
tor can be obtained as the feature for each sequence
segment.
In this study, support vector machine (SVM) is used

as the base classifier. SVM is a class of supervised ma-
chine learning algorithms that was first presented by
Vapnik [49]. SVM has shown excellent performance in
practice and has a strong theoretical foundation of stat-
istical learning. Here, the LibSVM package [50] is used
as an implementation of the SVM, and the radial basis
function is selected as the kernel. The parameter λ in
the kernel function and the regularization parameter C
are selected based on the cross-validation.
There are serious class-imbalance problems in ligand bind-

ing site predictions (i.e., the number of binding site residues is
far lower than the number of non-binding site residues). The
traditional machine learning algorithms cannot perform well
on these datasets because they are developed on the assump-
tion that the class is balanced. Recently, the ensemble

classifier has arisen as one possible way to solve the imbalance
problem. The basic idea of the ensemble classifier is to train
multiple base classifiers and combine them to obtain a single
class label. The AdaBoost algorithm [51] is one of the most
representative methods. AdaBoost trains a series of base clas-
sifiers by randomly selecting samples from the training data-
set. For each round, the misclassified samples are assigned
large weights so that they may be re-trained in the subsequent
round. Additionally, each base classifier is assigned a weight
associated with the overall accuracy. The output of the testing
sample is the weighted vote of each of the base classifiers. In
this study, a modified version of AdaBoost is used. First, ran-
dom sample selection is performed only on the negative sam-
ples (non-binding residues). All positive samples are used in
each round because the number of negative samples is several
orders of magnitude larger than the number of positive sam-
ples, especially for small ligands. Second, to prevent over-
fitting and make full use of the negative samples, the weight
of the misclassified negative samples increases on a small
scale. The overall modified AdaBoost is shown in algorithm 1.
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Combination of the template-free and template-based
methods
The proposed TargetCom method combines the template-
free method (TargetSeq) and the template-based method
(COFACTOR, TM-SITE, S-SITE and COACH) to get an
improved performance (Fig. 1b). The process is similar to
the proposed sequence-based method. A sliding window
centred at the target residue is used to collect the output of
each individual method. The target residue is then con-
verted into a feature vector by concatenating the output of
all residues in the window. The modified AdaBoost algo-
rithm is then used to get the ensemble classifier which is
then used to get the probability output for a testing residue.
The overall flowchart is depicted in Fig. 1b.
Template-based methods use proteins with known lig-

and binding sites to infer the binding residues of the target
sequence. The basic assumption behind these methods is
that homologous proteins often have similar functions.
Template-based methods have attracted a great deal of at-
tention and shown a powerful performance in CASP [11].
However, the similarities between the target sequence and
the template can affect the accuracy of the template-based
methods. If no homologous templates are available for the
“hard” target protein, the template-based methods will fail.
In contrast, the template-free methods are robust because
they use only sequence information, although the perform-
ance of the template-free methods is worse than the
performance of the template-based methods when hom-
ologous templates can be identified. Based on this ob-
servation, we presented a combined method named
TargetCom that combined the sequence-based and
template-free method TargetSeq with four template-
based methods (COFACTOR [16], TM-SITE, S-SITE
and COACH [40]).
COFACTOR is a structure-based method that first uses a

global structural alignment to identify possible templates
with the same fold and then adopts the local 3D motif
alignment to obtain the binding residues. TM-SITE uses a
similar architecture but adds an additional clustering step
to derive the binding sites. S-SITE uses a binding site-
specific sequence profile-profile comparison to detect the
templates and ligand binding sites. COACH is a consensus
method that combines the output of the above three
methods and two other methods and achieves a magnifi-
cent Continuous Automated Model EvaluatiOn (CAMEO)
performance. To provide an unbiased comparison with the
sequence-based method, all of the structure-based methods
use a predicted model and are run in “benchmark” mode,
in which all homologous templates with sequence identities
larger than 30% are removed.
The probability output of the TargetSeq method is col-

lected as one of the features of the TargetCom method.
The C-score and cluster density of the other four
methods are selected as input features. The C-score is

the confidence score of the prediction and is calculated
based on the similarity between the query target and the
templates. The cluster density is the percentage of tem-
plates in specific binding sites. Because the proposed
combination method is ligand-specific, the binding site
predictions for specific ligands need to be extracted from
the other four general-purpose methods. The possible li-
gands of the predicted binding site are collected by the
identified templates. If one ligand matches the specific
ligand, the binding site is selected as a candidate. This
methodology is better than the method that only uses
the most possible ligand (data not shown).
These features are also inputted to support vector ma-

chine to obtain the model. Then, the trained model is
used to classify new testing samples.

Evaluation metrics
The following metrics are used to evaluate the proposed
methods: accuracy, sensitivity, specificity and the Mat-
thews correlation coefficient (MCC).

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð5Þ

Sensitivity ¼ TP
TP þ FN

ð6Þ

Specificity ¼ TN
TN þ FP

ð7Þ

MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð8Þ
where TP is the number of binding sites correctly predicted
as binding residues, TN is the number of non-binding resi-
dues correctly predicted as non-binding residues, FP is the
number of non-binding residues wrongly predicted as bind-
ing residues, and FN is the number of binding residues
wrongly predicted as non-binding residues.

Results and discussion
Sequence-based method results
The proposed method (TargetSeq) was evaluated using
five-fold cross-validation and compared with the S-SITE
method. Although S-SITE is a template-based method, it
does not use three-dimensional structure information.
Therefore, here the comparison is performed on two
sequence-based methods (the template-free method and
the template-based method).
As shown in Table 2, the optimal window length of each

ligand is different, with the small ligands usually having
short window lengths and vice versa. The size of the bind-
ing pocket is generally proportional to the volume of the
binding ligand; thus, the local neighbour information used
to predict the binding residues might also change with the
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size of the binding ligand. The proposed method (TargetSeq)
can make predictions for most ligands with an accuracy
varying from 96.62 to 99.02%, specificity from 95.26 to
99.81% and MCC from 0.19 to 0.66. The performance on
the SO4 ligand appeared to be especially low. As shown in
the Additional file 1, none of the methods obtained a good
performance on this ligand, indicating that SO4 was a hard
ligand to predict. Overall, the proposed method outper-
formed the S-SITE method on most of the ligands with the
exceptions of ATP and HEME, possibly because the large
window length on these ligands introduced extra noise.

Combined method results
The proposed combination method (TargetCom) combines
the output of the proposed template-free method and four
other template-based methods. COACH is also a consensus
method and outperforms other methods, as shown in refer-
ence [40]. Therefore, we only list the comparison results of
TargetCom and COACH in Table 3. The detailed results of
all methods are provided in the Additional file 1.
The proposed TargetCom outperformed COACH on all

ligands with an average MCC value increase of 0.0533,
which was on average 10% higher than the COACH MCC
value. The improvement made by TargetCom is mainly a
result of the complement properties of the individual com-
ponent predictor, as demonstrated by a previous study [40].
The template-free method is a complement of the template-
based method that will be discussed in the subsequent

Table 2 Performance of the proposed sequence-based methods on the 9 types of ligands over five-fold cross-validation and
comparison with S-SITE

Ligand wa Method Accuracy (%) Sensitivity (%) Specificity (%) MCC

CU 15 TargetSeq 99.02 51.40 99.69 0.59

S-SITE 97.98 60.37 98.50 0.46

FE 9 TargetSeq 98.83 53.54 99.52 0.57

S-SITE 96.93 59.55 97.49 0.38

FE2 9 TargetSeq 99.20 51.36 99.81 0.63

S-SITE 98.28 42.14 99.00 0.37

ZN 11 TargetSeq 99.01 41.78 99.68 0.50

S-SITE 97.71 56.43 98.20 0.38

SO4 13 TargetSeq 97.79 10.07 99.66 0.19

S-SITE 96.98 14.4 98.73 0.15

PO4 7 TargetSeq 98.09 20.18 99.59 0.31

S-SITE 97.29 27.86 98.63 0.27

ATP 19 TargetSeq 97.14 36.81 99.31 0.48

S-SITE 96.73 48.09 98.48 0.49

FMN 17 TargetSeq 97.23 56.59 99.32 0.66

S-SITE 96.39 66.56 97.92 0.62

HEME 17 TargetSeq 92.62 61.27 95.26 0.53

S-SITE 93.63 58.24 96.61 0.55
aThe optimal window length

Table 3 Performance of the proposed combined methods on
the 9 types of ligands over five-fold cross-validation and comparison
with COACH

Ligand Method Accuracy (%) Sensitivity (%) Specificity (%) MCC

CU TargetCom 99.21 57.94 99.78 0.67

COACH 98.86 61.12 99.39 0.59

FE TargetCom 98.73 59.73 99.32 0.58

COACH 97.95 66.82 98.42 0.50

FE2 TargetCom 99.27 67.73 99.68 0.70

COACH 99.20 62.41 99.67 0.66

ZN TargetCom 98.99 56.18 99.50 0.56

COACH 98.65 57.38 99.14 0.50

SO4 TargetCom 97.72 15.11 99.48 0.23

COACH 97.21 19.15 98.87 0.21

PO4 TargetCom 97.99 32.03 99.26 0.37

COACH 97.52 35.33 98.72 0.34

ATP TargetCom 97.17 59.26 98.54 0.58

COACH 96.99 56.27 98.46 0.55

FMN TargetCom 97.66 79.61 98.58 0.76

COACH 96.75 70.36 98.11 0.66

HEME TargetCom 94.96 69.92 97.07 0.66

COACH 94.48 61.60 97.25 0.60
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section. The head-to-head comparison of TargetCom with
the other individual methods is shown in Fig. 2. The Pear-
son correlation coefficient is also provided in the figure. The
maximum correlation is observed between TargetCom and
COACH, indicating that COACH makes the greatest con-
tribution to TargetCom, followed by S-Site, TM-Site, Target-
Seq and COFACTOR. The P-values of Student’s t-test
between any two methods on the proteins of all ligands are
calculated and shown in Table 4. The P-values between Tar-
getCom and the other methods are all very small, demon-
strating that the improvement from consensus is significant.

Data difference between BioLip and LPC
The first step towards the automatic prediction of ligand
binding sites is defining the binding residues between the

protein and ligand. Another important issue is that bio-
logically irrelevant ligands need to be filtered before the lig-
and binding residues are identified. BioLip [44] is a newly
developed, semi-manually curated database for biologically
relevant ligand-protein interactions. The definition of a
binding site is the same as the official CASP definition: a
binding site is defined by all protein residues in the target
structure having at least one (non-hydrogen) atom within a
certain distance (dij) of biologically relevant ligand atoms:

dij <¼ ri þ rj þ c ð9Þ

where dij is the distance between a residue atom i and a
ligand atom j, ri and rj are the van der Waals radii of the
involved atoms, and c is a tolerance distance of 0.5 Å.

Fig. 2 Head-to-head comparisons between TargetCom and the individual component methods on the proteins of all ligands. CC is the Pearson’s
correlation coefficient between the MCCs of the two compared methods
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Many previous studies used the Ligand Protein
Contact (LPC) software [52] to define the binding resi-
dues; this software is based upon the surface comple-
mentarity analysis [53].
In this study, the difference between the binding sites de-

fined by LPC and BioLip was investigated. The ATP168
dataset [32] is a representative dataset defined by LPC that is
collected by Chauhan et al. for ATP binding site prediction.
The same proteins are extracted from the BioLip database,
and the corresponding binding sites of the ATP ligand are
gathered. The binding sites of these proteins are compared
using LPC and BioLip. We observed that the difference was
significant. A total of 1968 common binding residues were
defined by both methods. A total of 1117 binding residues
were defined solely by LPC, and 208 binding residues were
defined solely by BioLip. The number of binding residues
defined by LPC was more than 40% higher than the number
defined by BioLip. To quantitatively assess the influence of
the binding site definition on the performance of the pre-
dictor, a base-line method (SVM-PSSM) that uses only
PSSM as input for support vector machine is implemented
and tested on the ATP168 dataset with different ligand bind-
ing site definitions. As shown in Table 5, the SVM-PSSM
method with binding sites defined by the LPC database
achieves performed significantly better than the method
using the BioLip database. Because the method and the data
are the same, this huge difference is definitely caused by the
different binding site definitions. Because the LPC database
defines more binding sites, the performance of the predictor
trained on the LPC-derived dataset will be over-estimated.

The sequence-based method is a complement of the
structure-based method
The structure-based method uses three-dimensional struc-
tures to identify binding sites, which can usually obtain bet-
ter predictions than other methods. However, the
structure-based methods will fail when no structures or

homologous templates are available. In this case, sequence-
based methods may be helpful, which will be quantitatively
assessed here. The “hard” target proteins, which do not
have any homologous templates, are identified by the
multi-threading programme LOMETS [26]. For each
threading program, the target-template alignment is
measured by the Z-score, which is defined as the differ-
ence between the raw alignment score and the mean in
the unit of derivation. A target protein is classified as
“hard” if none of the threading programmes identifies a
template with a Z-score larger than the specific thresh-
old. The performance of all methods used in this study
on the “hard” target proteins is listed in Table 6. As ex-
pected, none of the methods generated satisfactory pre-
dictions using these hard target proteins. Among the
non-combined methods, the sequence-based methods
(S-SITE and TargetSeq) significantly outperformed the
structure-based methods (COFACTOR and TM-SITE).
In most cases, the structure-based methods could not
identify any binding sites. S-SITE usually performs bet-
ter than the other methods on small ligands (CU, FE
and ZN). TargetSeq performs better than the other
methods on the ATP and PO4 ligands. These results
demonstrate that the sequence-based methods are ef-
fective complements of the structure-based methods
when no homologous templates are available.

Ligand-specific method helps improve the prediction
performance
The ligand-specific method trains models for each type of
ligand, whereas the general purpose methods only use one
model for all types of ligands. We will experimentally dem-
onstrate the different performances of these strategies.
The datasets for all 9 ligands are merged into one sin-

gle dataset. The positive samples are the binding resi-
dues regardless of the type of ligands to which they bind.
The negative samples are the non-binding residues. The
general purpose method is evaluated using this dataset
via five-fold cross-validation. To give an unbiased com-
parison, the proposed TargetSeq method is re-performed
on the merged dataset by cross-validation. During the
evaluation phase, the performance is calculated for each
type of ligand and compared with the ligand-specific
mode of TargetSeq. As shown in Table 7, the ligand-

Table 5 Performance comparison of SVM-PSSM on the ATP168
dataset with different definitions of ligand binding sites

Definitiona Accuracy (%) Sensitivity (%) Specificity (%) MCC

LPC 96.00 33.40 99.28 0.47

BioLip 95.14 22.34 98.10 0.24
aBinding sites were defined using the LPC and BioLip databases, respectively

Table 4 The p-values in Student’s t-test for the differences in the MCC scores between each pair of predictors on the proteins of all
ligands

Method TargetCom TargetSeq COACH COFACTOR TM-SITE

TargetSeq 8.17562E-32

COACH 2.09639E-44 1.17438E-10

COFACTOR 4.366E-117 4.27612E-34 5.84742E-79

TM-SITE 2.62453E-79 2.29774E-06 6.07923E-42 2.70076E-15

S-SITE 7.1097E-112 2.47659E-10 5.31899E-68 7.66908E-11 0.0924092

Hu et al. BMC Bioinformatics  (2016) 17:470 Page 9 of 12



specific mode of TargetSeq consistently outperforms the
general purpose mode of TargetSeq in terms of accuracy,
specificity and MCC. The performance of the general
purpose mode decreases dramatically on small ligands.
The sensitivities of the general purpose mode are higher
than those of the specific mode, indicating that the gen-
eral purpose mode of TargetSeq predicts too many bind-
ing residues. As expected, the average precision is only
13.39%. The precision is the percentage of correct pre-
dictions over all predictions.

Comparison with other methods
There are many outstanding studies on ligand binding
site prediction of proteins. The performance of the pro-
posed methods is compared with that reported in other
studies. ATP is one of the most extensively studied li-
gands for binding site prediction. The proposed Target-
Com method achieves an overall accuracy of 97.17% and
MCC value of 0.58 and the proposed TargetSeq method
achieves an overall accuracy of 97.14% and MCC value
of 0.48 on ATP ligand. The ATPsite method [31] re-
ported an overall accuracy of 96.2% and MCC value of
0.43 which is lower than the proposed methods. The
nSITEpred method [30] predicted the binding site for
several nucleotides. They reported an overall accuracy
of 96% and MCC value of 0.46 for ATP ligand, which
is also lower than the proposed methods. The newly

Table 6 Performance of all methods on the “hard” target
proteins over each type of ligand

Ligand Na Method Accuracy (%) Sensitivity (%) Specificity (%) MCC (%)b

CU 3 TargetCom 98.76 16.67 1 23.42

COACH 98.76 16.67 1 23.42

S-SITE 98.76 33.33 99.56 27.04

TargetSeq 98.33 0 1 0

COFACTOR 98.33 0 1 0

TM-SITE 98.33 0 1 0

FE 3 TargetCom 98.48 16.67 1 23.39

COACH 98.48 16.67 1 23.39

S-SITE 98.73 25.00 1 28.76

TargetSeq 98.26 12.5 99.9 20.03

COFACTOR 97.98 0 1 0

TM-SITE 97.98 0 1 0

ZN 30 TargetCom 98.38 40.63 99.42 37.49

COACH 97.65 40.91 98.66 31.86

S-SITE 97.43 43.32 98.37 33.51

TargetSeq 97.97 7.02 99.68 11.43

COFACTOR 98.14 0 1 0

TM-SITE 97.99 0 99.85 −0.15

SO4 5 TargetCom 97.11 6.67 99.61 7.61

COACH 97.02 6.67 99.51 7.08

S-SITE 97.11 0 1 0

TargetSeq 97.11 0 1 0

COFACTOR 97.39 6.67 99.9 1

TM-SITE 97.02 6.67 99.51 7.08

PO4 8 TargetCom 97.68 4.17 99.59 4.52

COACH 97.54 05 99.43 2.9

S-SITE 97.81 0 99.76 −0.36

TargetSeq 98.08 13.39 99.66 12.98

COFACTOR 97.91 0 99.86 −0.17

TM-SITE 98.05 0 1 0

ATP 4 TargetCom 93.92 5 97.14 1.38

COACH 93.92 5 97.14 1.38

S-SITE 96.42 0 1 0

TargetSeq 97.32 27.08 99.85 33.79

COFACTOR 96.42 0 1 0

TM-SITE 93.69 5 96.9 1.19

HEME 9 TargetCom 92.74 16.7 99.21 25.02

COACH 91.8 03.98 99.3 07.3

S-SITE 92.43 14.9 99.2 17.25

TargetSeq 89.54 15.47 95.68 11.59

COFACTOR 92.12 0 1 0

TM-SITE 92.12 0 1 0
aThe number of “hard” target proteins in each type of ligand
bThe numbers shown in bold are the best values of the non-combination
based method

Table 7 Performance comparison of the general purpose and
ligand-specific models of the TargetSeq method on the dataset
of the 9 ligands by five-fold cross-validation

Ligand Type Model Type Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

MCC

CU General 86.98 79.62 87.09 0.22

Specific 99.02 51.40 99.69 0.59

FE General 90.14 85.02 90.22 0.29

Specific 98.83 53.54 99.52 0.57

FE2 General 90.67 90.89 90.67 0.30

Specific 99.20 51.36 99.81 0.63

ZN General 88.50 74.29 88.66 0.27

Specific 99.01 41.78 99.68 0.50

SO4 General 85.85 55.29 86.50 0.17

Specific 97.79 10.07 99.66 0.19

PO4 General 86.38 71.73 86.66 0.23

Specific 97.29 27.86 98.63 0.27

ATP General 87.46 71.88 88.02 0.32

Specific 96.73 48.09 98.48 0.49

FMN General 88.24 76.68 88.83 0.40

Specific 96.39 66.56 97.92 0.62

HEME General 86.18 73.85 87.21 0.43

Specific 93.63 58.24 96.61 0.55
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developed ATPBR method [54] reported an overall ac-
curacy of 87.53% and MCC value of 0.55, where the
accuracy is lower than the proposed methods, and
the MCC value is larger than the TargetSeq method
but lower than the TargetCom method.
Lu et al. [55] predict the binding sites of metal ions

by using fragment transformation method. There are
three metal ions (CU, FE2 and ZN) overlapped with
the current study. They used accuracy, true positive
rate and false positive rate as the evaluation metrics,
so we use the accuracy as the compared metric. Lu et
al. reported the accuracy of 94.9%, 94.9 and 94.8% for
ligand CU, FE2 and ZN respectively, while the pro-
posed TargetSeq method achieves the accuracy of
99.02%, 99.20 and 99.01% and the proposed Target-
Com method gets the accuracy of 99.21%, 99.27 and
98.99% for ligand CU, FE2 and ZN respectively. It is
clearly show that the proposed methods outperform
the method of Lu et al.
The HemeBIND method [33] predict the binding sites

of HEME ligand and reported an overall accuracy of
97.17% and MCC value of 0.58. The proposed Target-
Com method achieves an overall accuracy of 94.96% and
MCC value of 0.66 and the proposed TargetSeq method
achieves an overall accuracy of 92.62% and MCC value
of 0.53 on HEME ligand.
The above comparison shows that the proposed

methods provide the state-of-the-art performance for
binding site prediction of proteins.

Conclusion
This study presented two effective ligand-specific methods
for ligand binding site prediction. The sequence-based
method uses only sequence information and adopts the
improved AdaBoost method for binding site predictions.
The combined method combines the template-free and
template-based methods. Both methods are tested on the
dataset extracted from the recently developed, semi-
manually curated ligand binding site database (BioLip).
The experimental results demonstrate the efficacy of the
proposed methods. The sequence-based method is an ef-
fective complement to the structure-based method when
no structures are available or no homologous templates
can be identified. The ligand-specific methods can help
improve the prediction performance. We also found that
the binding site definition in BioLip was stricter than the
definition in LPC.
Future directions are to use a feature selection or extrac-

tion algorithm to remove the possible noise in the high di-
mensional feature space. Another issue for ligand-specific
binding site prediction is how to select the negative sam-
ple (non-binding residues) because proteins may have
multiple ligands. The non-binding residues for one ligand
may be binding residues for another ligand; thus, these

residues have potential binding ability. The ligand-specific
predictor needs to be intensively explored to develop an
excellent method for ligand binding site prediction.

Additional file

Additional file 1: Table S1. Performance of all methods used in the
paper on 9 types of ligands. (DOCX 20 kb)

Acknowledgement
We would like to acknowledgement Dr. Jianyi Yang for helpful suggestions
which improve the performance of the proposed methods.

Funding
Financial support was provided by the National Key Research and Development
Program of China (Grant No. 2016YFB1000905) and National Natural Science
Foundation of China (Grant No. U1401256, 61402177, 31260203 and 61672234)
which covers the cost for data preparation, program coding and paper publish,
and The “CHUN HUI” Plan of Ministry of Education and Science Foundation of
Inner Mongolia at China (Grant No. 2016MS0378) which covers the cost for the
design of the study and analysis of the results.

Availability of data and materials
The datasets analyzed during the current study are freely available at
http://dase.ecnu.edu.cn/qwdong/download/databmcbio201610.zip or
request upon the corresponding author.

Authors’ contributions
HX designed the experiments. DQ performed the experiments. WK analysed the
data. HX and DQ wrote the paper. All authors read and approved the paper.

Competing interest
The authors declare that there is no conflict of interest regarding the
publication of this article.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1College of Sciences, Inner Mongolia University of Technology, Hohhot
010051, People’s Republic of China. 2College of Animal Science and
Technology, Jilin Agricultural University, Changchun 130118, People’s
Republic of China. 3Institute for Data Science and Engineering, East China
Normal University, Shanghai 200062, People’s Republic of China. 4Key
Laboratory of Network Oriented Intelligent Computation, Harbin Institute of
Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055,
People’s Republic of China. 5Present Address: School of Computer Science
and Software Engineering, East China Normal University, #3663, North
Zhongshan RD, Shanghai 200062, China.

Received: 2 August 2016 Accepted: 10 November 2016

References
1. Dong Q, Wang S, Wang K, Liu X, Liu B. Identification of DNA-binding

proteins by auto-cross covariance transformation. In: 2015 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). 2015. p. 470–5.

2. Dukka BK. Structure-based Methods for Computational Protein Functional
Site Prediction. Comput Struct Biotechnol J. 2013;8:e201308005.

3. Xie ZR, Hwang MJ. Methods for predicting protein-ligand binding sites.
Methods Mol Biol. 2015;1215:383–98.

4. Leis S, Schneider S, Zacharias M. In silico prediction of binding sites on
proteins. Curr Med Chem. 2010;17(15):1550–62.

5. Wong GY, Leung FH, Ling SH. Predicting protein-ligand binding site using
support vector machine with protein properties. IEEE/ACM Trans Comput
Biol Bioinform. 2013;10(6):1517–29.

Hu et al. BMC Bioinformatics  (2016) 17:470 Page 11 of 12

dx.doi.org/10.1186/s12859-016-1348-3
http://dase.ecnu.edu.cn/qwdong/download/databmcbio201610.zip


6. Chen P, Huang JZ, Gao X. LigandRFs: random forest ensemble to identify
ligand-binding residues from sequence information alone. BMC
Bioinformatics. 2014;15 Suppl 15:S4.

7. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997;25(17):3389–402.

8. Fang C, Noguchi T, Yamana H. Simplified sequence-based method for ATP-
binding prediction using contextual local evolutionary conservation.
Algorithms Mol Biol. 2014;9(1):7.

9. Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N. Rate4Site: an algorithmic
tool for the identification of functional regions in proteins by surface
mapping of evolutionary determinants within their homologues.
Bioinformatics. 2002;18 suppl 1:S71–7.

10. Capra JA, Singh M. Predicting functionally important residues from
sequence conservation. Bioinformatics. 2007;23(15):1875–82.

11. Gallo Cassarino T, Bordoli L, Schwede T. Assessment of ligand binding site
predictions in CASP10. Proteins: Structure, Function, Bioinformatics. 2014;
82(S2):154–63.

12. Wass MN, Kelley LA, Sternberg MJ. 3DLigandSite: predicting ligand-binding
sites using similar structures. Nucleic Acids Res. 2010;38(Web Server issue):
W469–73.

13. Roy A, Zhang Y. Recognizing protein-ligand binding sites by global
structural alignment and local geometry refinement. Structure.
2012;20(6):987–97.

14. Brylinski M, Skolnick J. FINDSITE: a threading-based approach to ligand
homology modeling. PLoS Comput Biol. 2009;5(6):e1000405.

15. Konc J, Janežič D. ProBiS algorithm for detection of structurally similar
protein binding sites by local structural alignment. Bioinformatics.
2010;26(9):1160–8.

16. Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative algorithm for
structure-based protein function annotation. Nucleic Acids Res. 2012;40(Web
Server issue):W471–7.

17. Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding sites using the
Connolly surface and degree of conservation. BMC Struct Biol. 2006;6(1):19.

18. Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the
prediction of protein–ligand binding sites. Bioinformatics. 2005;21(9):1908–16.

19. Ngan C-H, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S. FTSite: high
accuracy detection of ligand binding sites on unbound protein structures.
Bioinformatics. 2012;28(2):286–7.

20. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA. Predicting
protein ligand binding sites by combining evolutionary sequence
conservation and 3D structure. PLoS Comput Biol. 2009;5(12):e1000585.

21. Nemoto W, Toh H. Functional region prediction with a set of appropriate
homologous sequences-an index for sequence selection by integrating
structure and sequence information with spatial statistics. BMC Struct Biol.
2012;12(1):11.

22. Rose PW, Prlić A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell
DS, Westbrook JD, Woo J. The RCSB Protein Data Bank: views of structural
biology for basic and applied research and education. Nucleic Acids Res.
2015;43(D1):D345–56.

23. Consortium U. UniProt: a hub for protein information. Nucleic Acids Res.
2015;43(Database issue):D204.

24. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein
structure and function prediction. Nat Methods. 2015;12(1):7–8.

25. Xu D, Zhang Y. Ab initio protein structure assembly using continuous
structure fragments and optimized knowledgeion J: ion by inte. Proteins:
Structure, Function, Bioinformatics. 2012;80(7):1715–35.

26. Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure
prediction. Nucleic Acids Res. 2007;35(10):3375–82.

27. Schmidt T, Haas J, Cassarino TG, Schwede T. Assessment of ligand binding
residue predictions in CASP9. Proteins. 2009;77 Suppl 9:138.

28. Konc J, Janežič D. ProBiS-ligands: a web server for prediction of ligands by
examination of protein binding sites. Nucleic Acids Res. 2014;42(Web Server
issue):W215–20.

29. Panwar B, Gupta S, Raghava GP. Prediction of vitamin interacting residues in
a vitamin binding protein using evolutionary information. BMC
Bioinformatics. 2013;14:44.

30. Chen K, Mizianty MJ, Kurgan L. Prediction and analysis of nucleotide-
binding residues using sequence and sequence-derived structural
descriptors. Bioinformatics. 2012;28(3):331–41.

31. Chen K, Mizianty MJ, Kurgan L. ATPsite: sequence-based prediction of ATP-
binding residues. Proteome Sci. 2011;9 Suppl 1:S4.

32. Chauhan JS, Mishra NK, Raghava GP. Identification of ATP binding
residues of a protein from its primary sequence. BMC Bioinformatics.
2009;10:434.

33. Liu R, Hu J. HemeBIND: a novel method for heme binding residue
prediction by combining structural and sequence information. BMC
Bioinformatics. 2011;12:207.

34. Mishra NK, Raghava GP. Prediction of FAD interacting residues in a protein
from its primary sequence using evolutionary information. BMC
Bioinformatics. 2010;11 Suppl 1:S48.

35. Horst JA, Samudrala R. A protein sequence meta-functional signature for
calcium binding residue prediction. Pattern Recogn Lett. 2010;31(14):2103–12.

36. Chauhan JS, Mishra NK, Raghava GP. Prediction of GTP interacting residues,
dipeptides and tripeptides in a protein from its evolutionary information.
BMC Bioinformatics. 2010;11:301.

37. Ansari HR, Raghava GP. Identification of NAD interacting residues in
proteins. BMC Bioinformatics. 2010;11:160.

38. Shu N, Zhou T, Hovmöller S. Prediction of zinc-binding sites in proteins
from sequence. Bioinformatics. 2008;24(6):775–82.

39. Zhang Z, Li Y, Lin B, Schroeder M, Huang B. Identification of cavities on
protein surface using multiple computational approaches for drug binding
site prediction. Bioinformatics. 2011;27(15):2083–8.

40. Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using
complementary binding-specific substructure comparison and sequence
profile alignment. Bioinformatics. 2013;29(20):2588–95.

41. Maietta P, Lopez G, Carro A, Pingilley BJ, Leon LG, Valencia A, Tress ML.
FireDB: a compendium of biological and pharmacologically relevant ligands.
Nucleic Acids Res. 2014;42(Database issue):D267–72.

42. Dessailly BH, Lensink MF, Orengo CA, Wodak SJ. LigASite—a database of
biologically relevant binding sites in proteins with known apo-structures.
Nucleic Acids Res. 2008;36 suppl 1:D667–73.

43. Wang R, Fang X, Lu Y, Yang C-Y, Wang S. The PDBbind database:
methodologies and updates. J Med Chem. 2005;48(12):4111–9.

44. Yang J, Roy A, Zhang Y. BioLiP: a semi-manually curated database for
biologically relevant ligand-protein interactions. Nucleic Acids Res. 2013;
41(Database issue):D1096–1103.

45. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics. 2012;28(23):3150–2.

46. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web
services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res.
2013;41(W1):W349–57.

47. Wu S, Zhang Y. ANGLOR: a composite machine-learning algorithm for
protein backbone torsion angle prediction. PLoS One. 2008;3(10):e3400.

48. Mayrose I, Graur D, Ben-Tal N, Pupko T. Comparison of site-specific rate-
inference methods for protein sequences: empirical Bayesian methods are
superior. Mol Biol Evol. 2004;21(9):1781–91.

49. Vapnik VN, Vapnik V. Statistical learning theory, vol. 1. New York: Wiley; 1998.
50. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST). 2011;2(3):27.
51. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning

and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39.
52. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M. Automated analysis

of interatomic contacts in proteins. Bioinformatics. 1999;15(4):327–32.
53. Sobolev V, Wade RC, Vriend G, Edelman M. Molecular docking using surface

complementarity. Proteins: Structure, Function, Bioinformatics.
1996;25(1):120–9.

54. Ma X, Sun X. Sequence-based predictor of ATP-binding residues using
random forest and mRMR-IFS feature selection. J Theor Biol. 2014;360:59–66.

55. Lu CH, Lin YF, Lin JJ, Yu CS. Prediction of metal ion-binding sites in proteins
using the fragment transformation method. PLoS One. 2012;7(6):e39252.

Hu et al. BMC Bioinformatics  (2016) 17:470 Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Benchmark dataset and ligands
	Sequence-based method pipeline
	Position-specific scoring matrix
	Predicted structure properties
	Conservation scores
	Combination of the template-free and template-based methods
	Evaluation metrics

	Results and discussion
	Sequence-based method results
	Combined method results
	Data difference between BioLip and LPC
	The sequence-based method is a complement of the structure-based method
	Ligand-specific method helps improve the prediction performance
	Comparison with other methods

	Conclusion
	Additional file
	Acknowledgement
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interest
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

