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Abstract

Background: Cancer is a complex disease which is characterized by the accumulation of genetic alterations during
the patient’s lifetime. With the development of the next-generation sequencing technology, multiple omics data,
such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual.
Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which
contributes to tumorigenesis, from millions of functional neutral passenger mutations.

Results: In this paper, in order to identify driver genes effectively, we applied a generalized additive model to
mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then
we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy
algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed
method Length-Net-Driver (LNDriver).

Conclusions: Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal
clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can
identify not only frequently mutated drivers, but also rare candidate driver genes.
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Background
Cancer is driven by genetic alterations, including single
nucleotide variants (SNVs), small insertions or deletions,
large copy-number variations (CNVs) and structural ab-
errations that accumulate during the lifetime. Several
international large scale cancer genomics projects, such
as The Cancer Genome Atlas (TCGA), and International
Cancer Genome Consortium (ICGC) [1], etc., have pro-
duced a large volume of data in recent years [2] and
provided us with an unprecedented opportunity to
better characterize the molecular signatures of human
cancers [3]. However, it is still a challenge to integrate

information across the different omics data [4] and dis-
tinguish driver mutations which can promote the cancer
cell to proliferate infinitely and diffuse from passenger
mutations whose changes represent neutral variation
that does not influence cancer development [5–9].
In response to the large volume of mutations being

generated from massively parallel sequencing projects,
many growing mathematical and statistical approaches
to search for driver genes, driver pathways or core
modules based on data integration were proposed. The
most basic approach, eg. MutSig [10] and MuSic [11],
is to identify driver genes based on somatic mutation
rates in cancer patient populations, that is, the most
commonly occurring mutations are more likely to be
drivers [12, 13].* Correspondence: zhengch99@126.com
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Also, computational approaches based on evaluating the
functional impact of mutations [14] such as PolyPhen-2
[15] and OncodriverFM [16] were proposed. However,
cancer is more closely related with a group of genes inter-
acting together in a gene-gene interaction network. With
the advent of the whole-genome measurements of somatic
mutations and CNVs in the mass of cancer samples, many
changes altered at network and pathway levels are found,
not simply a point mutation [14]. Therefore, network- and
pathway-based approaches have become one of the most
promising methods to prioritize driver mutations and sig-
nificantly mutated genes due to their abilities to model
gene-gene interactions. VarWalker is a network-assisted
method to prioritize potential driver genes [17]. Another
method, DawnRank prioritizes altered genes on a single
patient level using PageRank algorithm [3]. DriverNet is
an integrated analysis framework to identify likely driver
mutations by virtue of their effect on mRNA expression
networks and reveals the prevalence of rare candidate
driver mutations [18]. It has been demonstrated that
genes which are relatively long compared to the distri-
bution of all human consensus coding sequences (CCDS)
are more likely to mutate while they may be not driver
genes [17]. However, DriverNet doesn’t consider the effect
of gene length. Also, the scale of the network in DriverNet
is a little small which may miss some genes and the infor-
mation between genes.
In this work, we develop a network-based method

called Length-Net-Driver (LNDriver) to improve the
performance of detecting driver genes based on the ra-
tionale of DriverNet [18]. Our goal is to consider the
point mutation genes’ length and construct a new inter-
action network contained more genes and interactions
based on Human Protein Reference Database (HPRD)
[19] instead of its original gene influence graph in Dri-
verNet. Furthermore, we integrate somatic SNV data,
CNVs data and gene expression data using gene-gene
interaction network. Then a greedy algorithm is applied
to the integrated data to prioritize candidate genes. The
application on three TCGA datasets demonstrated that
the performance of our method is good.

Methods
The overview of LNDriver approach
In LNDriver method, the population-based genomic and
transcriptomic interrogations of tumor types were inte-
grated to identify driver mutations. The pipeline is
shown in Fig. 1.
Actually, some studies have indicated that genes with

long length have a better chance to harbor mutations
(e.g. gene TTN) [17]. It indicated that gene length-based
filtering process is essential to perform. Hence, in this
study, the generalized additive model (GAM) was used
to assign the somatic mutation probabilities of all

human genes for each sample. Then a resampling test
was performed to filter passenger genes whose occurring
frequencies are ≥ 5% at random datasets [17]. After the
filtering procedure, CNVs are combined with it to con-
struct a binary mutation matrix. In addition, in order to
enrich the information of the gene-gene interaction net-
work, we constructed a new interaction network using
Human Protein Reference Database (HPRD) [19]. As for
gene expression data, we built a binary outlying matrix
by nominating genes whose expression values are out-
side two standard deviation of the Gaussian distribution
as outliers [18]. Next, we formulated associations be-
tween mutation and gene expression data using a bipart-
ite graph where the left partition of nodes represented
the mutation status and the right partition of nodes rep-
resented the outlying status in each of patients. After the
above process, greedy algorithm was applied on the bi-
partite graph to select those genes in the left partition
which have the highest number of outlying expression
events, and then nominated them as putative driver
genes. Also, the statistical significance test was assessed
using a randomization framework. Finally, pathway en-
richment analysis was done using the database for anno-
tation, visualization and integrated discovery (DAVID)
online tools [20, 21].
To demonstrate the advantages of the approach, we

analyzed three large-scale publicly available genome-
transcriptome datasets in head and neck squamous cell
carcinoma (HNSC), thyroid carcinoma (THCA) and
kidney renal clear cell carcinoma (KIRC).

Filtering long genes
The length of genes in human are very different and so
the mutation probabilities of different genes are in vast
difference. There may be some genes which have muta-
tions only because they are long yet they aren’t driver
mutations. So, for each gene, we adopted the filtering
strategies of VarWalker and computed a probability
weight vector (PWV) by fitting a generalized additive
model for each sample [17]. Denoting the vector X as
the gene length of cDNA, we can adopt the following
model to assess the mutated probability of a gene ac-
cording to its cDNA length,

logit πð Þ ¼ log
π

1−π

� �
ef Xð Þ; ð1Þ

where π ¼ #Mutant Genes
#CCDS genes represents the proportion of mu-

tant genes (defined as genes with ≥ 1 deleterious somatic
mutation in coding regions) in the researched samples,
and f(⋅) represents an unspecified smooth function [17].
After the above fitting process, each gene was assigned a
weight value which would be used to select genes in the
next resampling procedure.
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Then a resampling test was applied to random gene
sets for each sample. The number of being selected ran-
dom gene sets is same with mutant genes in specific
sample. And the probability of each gene to be selected
is based on the probability weight calculated in the
above fitting procedure. The test was performed 1000
times in each sample following PWV. The mutation fre-
quency was calculated for each gene using formula (2):

f re ¼ # selecting the gene in resampling testð Þ
1000

ð2Þ

where # (selecting the gene in resampling test) indicates
the times and fre represents the frequency of the gene
being selected across 1000 times in resampling process.
Then we filtered those genes whose frequencies were
≥ 5% that indicates the gene may occur at random
unless they are CGC genes. Those genes with fre < 5%
which represented the gene was unlikely mutated at
random were observed.

Greedy algorithm
For detecting the candidate driver genes based on proc-
essed mutation data and expression data, they were inte-
grated with the gene-gene interaction network into a
bipartite graph (see Fig. 1). The elements on the left of
bipartite graph represent the mutation status of genes in

population level. And the right partition events indicate
outlying expression status of the genes [18]. An edge be-
tween gi and gj will be drawn if the gene gi in the left
partition is mutated (blue node), the right gene gj is out-
lying expression gene (black node) and gi interacts with
gj in the gene-gene interaction network. Given the bi-
partite framework, the aim is to find the mutation genes
on the left partition which cover the most events on the
right of bipartite graph. To this end, the optimization
method of a greedy algorithm was used to select the
most covered genes: at each step, chose a mutated gene
which connected to the most uncovered outlying expres-
sion genes on the right of bipartite graph. When all the
connected outlying expression events were covered, the
program was terminated. Finally, the mutated genes
ranked based on their coverage and the mostly covered
mutated genes are considered as the candidate driver
genes.

Significance test
In order to assess the statistical significance of the candi-
date driver genes, the random framework was used by
permuting N = 100 times of the original datasets including
mutation matrix, processed outlying expression matrix
and the gene-gene interaction network. Then the algo-
rithm was run on the N randomly generated datasets.
Finally, the real data results were assessed to see whether

Fig. 1 Schematic of the LNDriver. Genes in somatic mutations are firstly applied to GAM to filter long genes and then they will combine with
CNV to construct mutation matrix. The bipartite graph is constructed based on mutation data, expression data and gene-gene influence network,
where the blue nodes on the left bipartite graph represent the mutated gene and the black nodes on the right represent the outlying patient-gene
events from the gene expression matrix. Then greedy algorithm is applied to identify candidate driver genes. Finally, enrichment analysis is employed
to these candidates to explore their roles in pathways
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they are significantly different from the results on ran-
domized datasets. The null hypothesis H0 is that the gene
mutations have no influence on the occurrence of the can-
cer, and the alternative hypothesis H1 is that the cancer is
related to the mutations of the genes. The definition of
the statistical significance of gene g, whose corresponding
node coverage is COVg, is the fraction times of selecting
driver genes that are more than COVg in N = 100 random
runs of the method. The calculation is listed as follows:

p−value gð Þ ¼
XN

i¼1

XSi

j¼1
δ COVgij > COVg
� �

XN

i¼1
Si

ð3Þ

where Si is the number of candidate driver genes se-
lected in the ith run of the method [18]. Then the
Benjamini-Hochberg method was used to correct the p-
values for multiple tests and finally we chose the genes
whose p-values were less than 0.05.

Results
Datasets and pre-processing
We applied LNDriver to 513 THCA samples, 522 HNSC
samples and 534 KIRC samples (Table 1). These three
datasets comprise somatic SNV data, CNV data and
gene expression data collected from The Cancer Genome
Atlas (TCGA) data portal [22].

The construction of mutation matrix
Firstly, we collected somatic SNVs in level 2 and CNV
data in level 3 directly from TCGA data portal. Sec-
ondly, we removed the genes whose item of “Variant_
Classification” is “silent” or “RNA” in somatic SNV data
and whose length are too long according to generalized
additive model and resampling test process. Thirdly, the
CNV information was extracted by selecting genes from
amplified and deleted segments in CNV data. Finally, we
integrated CNV data with filtered somatic SNV data by
getting intersecting samples and union genes to con-
struct a binary matrix M, whose rows indicate samples
and columns indicate genes. Each entry of Mij refers to
the mutation status of gene j in sample i and Mij = 1 rep-
resents that there is labeled valid mutation in gene j of
sample i. Otherwise, Mij = 0 indicates the absence of a
mutation in the jth gene of the ith sample.

Expression outlier matrix
For gene expression dataset E, the values of it contain not
available (NA) values. These values affect the results of the
approach. We substituted them with the mean of all other
genes in the specific samples. Also, we adopted the assump-
tion in DriverNet that the expression distribution of every
gene across all samples is Gaussian distribution [23]. Based
on the hypothesis, we converted the expression data to a
binary patient-outlier matrix E ' where E'(i, j) = 1 means the
expression of gene i is an outlier in patient j. The definition
of the outliers is that genes whose expression values are
outside the two-standard deviation range of the expression
values of gene i across all the patients [18].

Gene-gene interaction network and gene annotation data
Cancer is a disease related with sets of genes which
interact with each other in some molecular networks
not only related with single gene. In order to enrich the
information gene-gene interaction network in DriverNet,
we built an influence graph G(V, E) using HPRD [19]
(release 9, 06/29/2010) which contains 9617 proteins to
server as our reference network. The influence graph
G(V, E) in our work is an undirected and unweighted
binary network where V represents the nodes of genes
and E represents the edges among genes. When there is
a correlation between gene i and gene j, Gij = 1, other-
wise Gij = 0.
We used the consensus coding sequences (CCDS)

genes data which have been allocated complementary
DNA (cDNA) length based on their coding sequences
from VarWalker [17] as a benchmark gene resource to
select those genes that have matched CCDS symbols. In
order to explore the impact of the gene length, we com-
pared genes with somatic SNVs with the distribution of
all human CCDS gene length to filter long genes.

Cancer gene census (CGC) genes
The CGC is a database that catalogues genes whose mu-
tations have been causally implicated in cancer, which
has been widely served as benchmark in many cancer re-
searches. In this work, we also utilized it as the standard
reference list which was downloaded from COSMIC [24]
and included total of 571 genes (07/8/2015).

The analysis of the overall performance
In this study, the performance of LNDriver’s ability was
evaluated using the number of indentifying known
drivers in CGC database compared with other methods.
The benchmarks of the above evaluation were precision,
recall and F1score which were based on the top N genes
as following:

Table 1 Description of datasets

Tumor type Number of tumor
expression samples

Number of somatic
mutation samples

Samples of tumor
expression∩somatic
samples

THCA 513 435 433

HNSC 522 509 501

KIRC 534 417 415
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precision ¼ Mutated genes in CGCð Þ∩ Genes found in LNDriversð Þ
Genes found in LNDriversð Þ

ð4Þ

recall ¼ Mutated genes in CGCð Þ∩ Genes found in LNDriversð Þ
Mutated genes in CGCð Þ

ð5Þ

F1 score ¼ 2� precision� recall
precisionþ recall

ð6Þ

For the sake of performing the property of our method
on identifying cancer related drivers, we compared the

result of our method to classical frequency-based method,
GeneRank method [25], DriverNet method and personal-
based method of DawnRank. The results of the experi-
ment on HNSC, KIRC and THCA datasets are shown in
Fig. 2.
HNSC, the sixth most common cancer worldwide

[26], was analyzed in our method. As for the overall per-
formance of its top 100 genes, it can be seen in Fig. 2a-c
that LNDriver method remarkably outperforms other
four methods. For the top 100 genes, there are 36 genes
contained in CGC database of our method, while 32 of
DawnRank and 23 of DriverNet. There are 200 genes

Fig. 2 a HNSC precision. b HNSC recall. c HNSC F1score. d KIRC precision. e KIRC recall. f KIRC F1score. g THCA precision. h THCA recall. i THCA
F1score. The comparison of precision, recall and F1score for top ranking genes in LNDriver and other methods. The X axis represents the number
of top ranking genes and the Y axis represents the score of the precision, recall and F1score respectively
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being selected as candidates and 32 genes of them with
p-values less than 0.05 in our method (see Additional
file 1). Apart from those common genes like TP53,
EGFR, CDKN2A and PIK3CA, the NOTCH1 which func-
tioned as tumor suppressor gene in HNSC was also
indentified in our method [26]. In addition, CASP8,
which is ranked 16 in our method while 58 in DriverNet,
has been demonstrated that in human papillomavirus
(−) HNSC, concurrent mutations of CASP8 with HRAS
can target cell cycle, death, NF-κB and other oncogenic
pathways [27]. Furthermore, PPFIA1 gene, which was
ranked 9 in our method while was not detected in
DriverNet, acts as an invasion inhibitor in HNSC and is
the highest upregulated gene in the 11q13 amplicon of
HNSC cell lines [28].
For KIRC data set, our method always remarkably

outperforms GeneRank and frequency-based method
(Fig. 2d-f ). Although the performance of the top several
genes in LNDriver is slightly worse than DriverNet and
DawnRank, for latter genes, it has a remarkably better
performance than DriverNet method. The curves show
that the stability of our method and DawnRank is rela-
tively good since the precision of the two methods are
similar. About top 100 genes, 34 are found in CGC in
our method. In LNDriver, 164 genes are indentified as
candidates and 36 of them with p − value ≤ 5% (see
Additional file 2). Indeed, some well validated genes such
as VHL, TP53, EGFR, PTEN and so on are ranked in the
top rank in our method. Interestingly, EWSR1 (also known
as EWS) in CGC is not nominated as candidate drivers in
DriverNet and DawnRank, while it is one of the most
commonly involved genes in sarcoma translocations [29].
For THCA, although the performances of LNDriver

on top several genes are same with DriverNet, the over-
all effect is better than DriverNet, frequency-based, and
GeneRank method (Fig. 2g-i). In middle part of the top
100 genes (from the 6th gene to about 90th gene), our
method performs poor than DawnRank in this dataset,
but the top 5 genes are all in CGC. After the significance
test, we chose 34 genes whose p-values were less than
0.05 as the cancer driver genes (see Additional file 3).
With respect to several top genes, like PTPN11, it en-
codes the protein-tyrosine phosphatase SHP2 whose
protein expression was significantly increased in human
thyroid carcinoma [30]. In addition, there are literatures
suggesting that somatic gain-of-function mutations of
PTPN11 are presented in breast cancer [30, 31], lung
adenocarcinomas [32] and etc. BRAF is ranked as the
second impactful driver gene which is an important
event in the development of papillary thyroid cancer
[33]. For the RAS genes (HRAS and NRAS), upon activa-
tion they can activate the MAPK pathway [34] which
plays an essential role in the control of the cell cycle and
differentiation [35].

The analysis of identifying rare drivers
LNDriver can identify not only frequently mutated driver
genes, but also rare significant drivers. The ‘rare signifi-
cant drivers’ are defined as genes with p − values < 0.05
and whose alteration frequencies are less than 2% of the
patient cohort in mutation data.
In HNSC, we obtained 8 rare genes (see in Table 2) in

32 candidate drivers with p − values < 0.05. Four of them
(AKT1, RB1, PLCG1, ZBTB16) are in CGC. For example,
AKT1 (1.99% of cases), identified by LNDriver, is a
serine/threonine protein kinase and its downstream pro-
teins have been reported to be frequently activated in
human cancers [36]. The RB1 gene is tumor suppressor
gene identified and loss of it is considered an accelerating
event in retinoblastoma [37, 38].
For KIRC, 29 rare drivers were identified in our method

and 11 of which are in CGC (see in Table 3). Although
some rare genes like EGFR, EP300 and CREBBP are found
in DriverNet, but the ranked positions are more near to
the top in our method. In addition, the activity of SRC
(0.48% of cases), although it isn’t contained in CGC, is
often associated with disease and might contribute to the
development of human malignancy [39]. The Src family of
protein tyrosine kinases provides us with many important
landmarks in understanding oncogenic transformation
[39]. Furthermore, CDKN2A (1.20% of cases) and RB1
(1.03% of cases) are hallmarks of lung squamous cell
carcinoma [40] and glioblastoma [41] respectively.
For THCA, in addition to the frequently mutated

genes (PTPN11, BRAF, HRAS, NRAS and CDC27), the
rest of the drivers indentified by our method are rare
genes (Table 4). For example, PTK2B is a member in
PAK signaling pathway [42].

Long genes filtering analysis
In this study, we adopted GAM to assign every point
mutation gene with a probability weight consequently to
filter frequent mutations because of long length. With
respect to TTN gene, the longest gene in human, ranked
18 as a driver gene of HNSC by DriverNet algorithm.

Table 2 The rare driver genes in HNSC

Rank Gene Cases with
mutations

Mutation
frequency (%)

p-value CGC gene

14 AKT1 10 1.996008 0.011832 YES

15 RB1 9 1.796407 0.012938 YES

18 CALM1 7 1.397206 0.016769 NO

22 MAPK1 4 0.798403 0.019237 NO

23 PLCG1 5 0.998004 0.030388 YES

24 ZBTB16 8 1.596806 0.032729 YES

30 SETDB1 3 0.598802 0.044476 NO

32 PTK2 4 0.798403 0.048264 NO
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However, after the step of filtering long genes in our im-
proved method, it just ranked 140 and wasn’t nominated
as a candidate of driver gene. And in THCA, our
method didn’t identify TTN as a candidate while it was
detected as the fourth ranked gene in frequency-based
method.

Enrichment analysis
To test biological functions of these predicted candidate
drivers, KEGG pathway enrichment and GO functional
enrichment were performed using DAVID tool (v6.8).
For HNSC, the important candidates are mainly

enriched in pathways in cancer, prostate cancer, glioma,
non-small cell lung cancer, melanoma, ErbB signaling
pathway and so on after KEGG pathway enrichment (see
Additional file 4). With respect to the biological process,
regulation of apoptosis, programmed cell death, cell

death, nitrogen compound metabolic process, cellular
biosynthetic process and etc. are enriched after the GO
functional enrichment (see Additional file 4). Concerning
the cellular component, identified candidates are enriched
in nuclear lumen, nucleoplasm, intracellular organelle
lumen, organelle lumen, membrane-enclosed lumen and
cytosol etc. (see Additional file 4). Furthermore, with re-
gard to important molecular functions, candidate drivers
are enriched in identical protein binding, nitric-oxide syn-
thase regulator activity, structure-specific DNA binding,
transcription factor binding, enzyme binding and so on
(see Additional file 4).
In KIRC, pathways in cancer, cell cycle, melanoma and

prostate cancer etc. are enriched in KEGG pathways (see
Additional file 5). In terms of biological process, positive
regulation of nitrogen compound metabolic process, cel-
lular biosynthetic process, biosynthetic process, cell

Table 3 The rare driver genes in KIRC

Rank Gene Cases with mutations Mutation frequency (%) p-value CGC genes

3 SRC 2 0.481928 0.001378 NO

5 EGFR 7 1.686747 0.003100 YES

6 EP300 6 1.445783 0.003214 YES

7 CHD3 4 0.963855 0.004018 NO

8 EWSR1 2 0.481928 0.00551 YES

9 ATF7IP 5 1.204819 0.007462 NO

11 RB1 1 0.240964 0.010332 YES

12 NCOA3 5 1.204819 0.011135 NO

13 PRKCD 2 0.481928 0.011135 NO

14 CREBBP 4 0.963855 0.012513 YES

15 DDX20 4 0.963855 0.012513 NO

16 SMAD9 1 0.240964 0.013546 NO

17 KDR 5 1.204819 0.016186 YES

19 PPARG 1 0.240964 0.018138 YES

21 ATXN1 2 0.481928 0.021008 NO

22 HDAC1 2 0.481928 0.021008 NO

23 PLG 5 1.204819 0.021008 NO

24 CDKN2A 5 1.204819 0.023533 YES

25 MET 3 0.722892 0.023533 YES

26 EIF6 1 0.240964 0.027322 NO

27 JAK2 5 1.204819 0.027322 YES

29 PCNA 3 0.722892 0.032717 NO

30 ARF6 1 0.240964 0.039031 NO

31 FRS2 2 0.481928 0.039031 NO

32 SETDB1 4 0.963855 0.039031 NO

33 NOS1 8 1.927711 0.044886 NO

34 PPP2R1A 2 0.481928 0.044886 YES

35 RAB5A 1 0.240964 0.044886 NO

36 SVIL 7 1.686747 0.044886 NO
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cycle, transcription and gene expression etc. are signifi-
cantly enriched in GO functional enrichment (see Add-
itional file 5). As for cellular component, candidates are
enriched in nucleoplasm, nuclear lumen, nucleoplasm
part, nuclear periphery, chromosome and so on (see
Additional file 5). In terms of molecular functions, tran-
scription factor binding, protein tyrosine kinase activity,
transcription regulator activity and nucleotide binding
etc. are enriched (see Additional file 5).
In THCA, the pathways after KEGG enrichment are

prostate cancer, pathways in cancer, chronic myeloid
leukemia and glioma etc. (see Additional file 6). In terms
of biological process in GO functional enrichment, can-
didate drivers are enriched in response to organic sub-
stance, apoptosis, programmed cell death and induction
of apoptosis by intracellular signals etc. (see Additional
file 6). With respect to cellular component, cytosol,

nucleoplasm, nuclear lumen, intracellular organelle
lumen and so on are enriched (see Additional file 6). As
for molecular functions, candidates are enriched in en-
zyme binding, enzyme binding, protein serine/threonine
kinase inhibitor activity and protein kinase binding etc.
(see Additional file 5).

Discussion and conclusions
In this work, we introduced a network-based framework
by integrating transcriptome and genomics data into a
gene-gene interaction network to identify significant
driver gene in cancer. By virtue of the consideration of
gene length, the frequently mutated genes with long
length may be filtered. Also, we constructed a network
containing more genes and interaction information in
order to improve the accuracy of driver genes identifying.
LNDriver can identify not only frequently mutations but

Table 4 The rare driver genes in THCA

Rank Gene Cases with mutations Mutation frequency (%) p-value CGC genes

3 RB1 6 1.385681 0.000101 YES

4 TP53 3 0.692841 0.000101 YES

6 PRKACA 2 0.461894 0.002121 NO

7 PTK2B 2 0.461894 0.004141 NO

8 PIK3R1 2 0.461894 0.005858 YES

9 EP300 3 0.692841 0.006868 YES

10 PTPN6 1 0.230947 0.008484 NO

11 CASP3 1 0.230947 0.009191 NO

12 JAK2 2 0.461894 0.009191 YES

14 YWHAG 1 0.230947 0.009191 NO

15 CDKN1A 1 0.230947 0.009696 NO

16 PTEN 6 1.385681 0.010706 YES

17 CTNNB1 4 0.923788 0.018079 YES

18 ACTB 1 0.230947 0.020099 NO

19 PML 8 1.847575 0.020099 YES

20 ATM 5 1.154734 0.022725 YES

21 HSP90AA1 1 0.230947 0.022725 YES

22 SMAD3 1 0.230947 0.026462 NO

24 FLNC 5 1.154734 0.035754 NO

25 BRCA1 6 1.385681 0.041713 YES

26 CHD3 4 0.923788 0.041713 NO

27 CHEK2 7 1.616628 0.041713 YES

28 GRIN2B 5 1.154734 0.041713 NO

29 NEDD4 5 1.154734 0.041713 NO

30 PIAS4 2 0.461894 0.041713 NO

31 RASA1 2 0.461894 0.041713 NO

32 VAV1 1 0.230947 0.041713 NO

33 ACTA1 1 0.230947 0.048783 NO

34 SP1 1 0.230947 0.048783 NO
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also rare drivers. Application on HNSC, KIRC and THCA
datasets has demonstrated that the performance of our
method is remarkably better than frequency-based, Gen-
eRank and DriverNet method. In addition, our method
also outperforms DawnRank method in HNSC dataset.
However, in KIRC and THCA, DawnRank sometimes
have a better performance than our method. We will ex-
plore the causes about this phenomenon in our following
work and we hope to find a new method which can have a
good performance on KIRC and THCA.
Furthermore, there are also some limitations of our

method. Firstly, gene length filtering step was only ap-
plied to point mutations not including CNVs because
point mutations are more inclined to be affected by gene
length. Although this step has ability to filter long genes,
it has randomness. We will seek solutions to improve it
and enhance robustness of it. Secondly, the information
of gene-gene interaction network are more and more
abundant with the development of the field. So, we will
try to integrate more information to a new gene-gene
interaction network which may help us to mine more in-
formation about cancer driver genes. Moreover, it is now
acknowledged that precision medicine and personalized
medicine are important for patient diagnosis and treat-
ment, so we will major in proposing new method to
identify patient-specific and rare driver genes based on
individual mutational and expression profiles in different
tumors in the future.
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