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Background: PCR clonal artefacts originating from NGS library preparation can affect both genomic as well as RNA-

Seq applications when protocols are pushed to their limits. In RNA-Seq however the artifactual reads are not easy
to tell apart from normal read duplication due to natural over-sequencing of highly expressed genes. Especially
when working with little input material or single cells assessing the fraction of duplicate reads is an important
quality control step for NGS data sets. Up to now there are only tools to calculate the global duplication rates that
do not take into account the effect of gene expression levels which leaves them of limited use for RNA-Seq data.
Results: Here we present the tool dupRadar, which provides an easy means to distinguish the fraction of reads
originating in natural duplication due to high expression from the fraction induced by artefacts. dupRadar assesses
the fraction of duplicate reads per gene dependent on the expression level. Apart from the Bioconductor package
dupRadar we provide shell scripts for easy integration into processing pipelines.

Conclusions: The Bioconductor package dupRadar offers straight-forward methods to assess RNA-Seq datasets for

quality issues with PCR duplicates. It is aimed towards simple integration into standard analysis pipelines as a
default QC metric that is especially useful for low-input and single cell RNA-Seq data sets.
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Background

Sources of duplicate reads in Next-Generation sequencing
Next Generation Sequencing has become a standard
assay for many questions in molecular biology. It in-
volves the preparation of sequencing libraries out of
fragments of DNA or RNA molecules and sequencing
adapters, PCR amplification and sequencing. The calcu-
lation of the fraction of duplicate reads has become a
standard step for quality control in NGS experiments, as
high duplication rates can hint towards problems in dif-
ferent steps of the NGS library preparation process. In
particular, the variety of molecules that can be seen after
sequencing correlates with minute amounts of input ma-
terial (“molecular bottleneck”) or too many PCR cycles.
This can lead to low library complexity. Furthermore
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overloading of a sequencing flow cell may result in
optical duplicates or problems with reagents can lead to
elevated duplication rates. Duplicate reads can also be
caused by a combination of complex genomic loci and
insufficient read length or even issues with the reference
genome.

In RNA-Seq however it is common to have high over-
all fractions of duplicate reads not due to technical arti-
facts. This is known and discussed in the community
(e.g. [1, 3, 4]) but is still sometimes misunderstood [2].
Often the top 5 % of expressed genes take up more than
50 % of all reads in a common RNA-Seq dataset [5].
Read counts for highly expressed genes easily surpass
the threshold of 1 read per bp of the exon model, at
which read duplication is inevitable. Due to a number of
biases in the process of RNA-Seq [6] read duplication in
RNA-Seq starts even below the 1 read per bp threshold.
In RNA-Seq duplication originating from technical
artifacts such as described before are confounded with
natural read duplication due to highly expressed genes,
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hence overall duplication rate is not a suitable measure
for quality control purposes.

Effects and treatment of PCR duplicates in RNA-Seq data
In assays involving genomic DNA (e.g. resequencing,
ChIP-Seq) reads marked as duplicates with tools such as
the established picard [7], or the more recent bamUtil
dedup [8] and biobambam [9] are commonly removed
before further analyzing the data. In RNA-Seq studies
with the aim to quantify expression however the situ-
ation is more complex. Duplicate reads also arise natur-
ally in highly expressed genes, hence complete removal
of duplicate reads affects estimation of expression levels.
Tools such as eXpress [10] attempt to tackle related
problems by smoothing the read coverage. However this
approach is not applicable to situations in which system-
atic over-estimation of read counts on a large fraction of
genes exists.

Detection of duplicate reads in Next-Generation
sequencing

Currently there are many tools available that address the
overall duplication rates or read frequencies of NGS data
sets [7, 11-16]. Commonly, the non-systematic detection
of PCR artefacts in RNA-Seq analysis relies on the visual
inspection in a genome browser, where problematic data
sets show typical stacked reads in loci with low and
medium expression.

Here we present dupRadar, a tool to systematically de-
tect anomalous duplication rate profiles and simplify the
task of identification of data sets that require further in-
depth assessment.

Implementation
dupRadar relates the duplication rate and length normal-
ized read counts of every gene to model the dependency
of this two variables. It requires a BAM file with mapped
and duplicate marked reads, and a gene model in GTF
format. Internally dupRadar calls the featureCounts
function from the RSubread package [17] several times,
to count all and the duplicate marked reads per genes,
both uniquely as well as multi-mapping reads. Further-
more dupRadar calculates the per gene duplication rate
and reads per kilobase (RPK) as a proxy for relative gene
expression. The resulting calculations are stored in a
data frame which can be directly passed on to different
visualization functions, which show the dependence of
the duplication rate on gene expression. Besides fitting a
logistic model to the dependency between duplication
rate and RPK, dupRadar estimates the baseline duplica-
tion rate for lowly expressed genes which can be used as
an indicator for general problems inside a data set.
Additionally, the data frame can be used for further
processing of the data in standard read count based
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differential gene expression tools [18-20], or for other
purposes such as the detection of genes that are exclu-
sively covered by multi-mapping reads.

To enable interpretation of the dependency of duplica-
tion rate and gene expression, dupRadar currently in-
cludes various visualization functions. Beyond that the
vignette of the Bioconductor package contains examples
for customised plots using dupRadar. For the sake of us-
ability, it includes wrappers for some common tools for
duplicate marking in order to streamline the processing
of the data sets.

To demonstrate the effect of PCR artefacts also on
downstream analysis we perform a simulation study based
on the Airway dataset commonly used in Bioconductor
courses [21] (results in Additional file 1: Figure S1). To
obtain a comparable dataset with a high fraction of dupli-
cate reads, we subsampled the reads of the original library
to different fractions (50 and 10 %), and applied an ampli-
fication step to the remaining ones to match again the
number of reads in the original library, thus creating sim-
ulated libraries with respectively 50 and 90 % of duplicate
reads, following a Poisson process to simulate what
happens in a PCR..Subsequently we perform differential
expression analysis using edgeR [22] for both the original
data as well as the datasets with 50 and 90 % of artificially
added duplicate reads.

Results and discussion

Recently, RNA-Seq protocols were improved considerably,
leading to less technical duplicates and the linked issues.
Still in our experience possible problems are worth to be
checked for by default, especially if protocols are pushed
to or beyond their boundaries or more recent low-input
or single cell RNA-Seq protocols are used.

To demonstrate the usage of dupRadar we apply a typ-
ical work flow for selected single read RNA-Seq data sets
from the study of Marinov et al. [23] ranging from single
cells to cell pools to bulk RNA data. We map reads using
STAR [24] and mark duplicate reads using BamUtil dedup
[8]. Together with the human reference gene annotation
GTF included in the iGenomes collection for the UCSC
hg19 build [25], we use the resulting bam files as input for
dupRadar’s duplication rate calculation function. As an
example Table 1 contains the entries from a sample of 10
genes out of the full set for the library 13276
(SRR764800). We supply instructions to regenerate the re-
sults in the supplement (Additional file 2: Methods 1,
Additional file 3: Methods 2, Additional file 4: Table S1.).

Based on the duplication rates, we generate the main
visualizations of dupRadar in Fig. 1. The effects of over-
sequencing libraries of limited complexity in cases of
little input material as well as an example for a bulk
RNA-Seq dataset without any traces of PCR duplicates.
The given plots indicate the duplication rate in relation



Sayols et al. BMIC Bioinformatics (2016) 17:428

Page 3 of 5

Table 1 Example values for a sample of 10 genes from the library 13276

D genelength allCounts filteredCounts dupRate dupsPerld RPK RPKM
LOC100288069 1371 17 15 0.12 2 1240 0.60
LINC00115 1317 28 28 0.00 0 21.26 1.03
LOC643837 9233 281 246 0.12 35 3043 147
FAM41C 1706 1 1 0.00 0 0.59 0.03
LOC100130417 496 0 0 NA 0 0.00 0.00
SAMD11 2554 0 0 NA 0 0.00 0.00
NOC2L 2800 329 273 0.17 56 117.50 567
KLHL17 2564 2 2 0.00 0 0.78 0.04
ISG15 666 590 271 0.54 319 885.89 4278
AGRN 7326 3 3 0.00 0 041 0.02

Some columns were omitted due to space constraints; refer to Additional file 7: Table S2 for the complete table

to the gene expression. Ideally single read RNA-Seq ex-
periments at common read depths are expected to show
low duplication rates for lowly expressed genes in the
bottom left of the plot, with the duplication rate rising
as the expression level approaches the 1 read/bp bound-
ary. Beyond this threshold genes are covered almost
completely with reads marked as duplicates due to their
high expression levels (e.g. Fig. 1c). Data sets based on
lower amount of input material show the effects of lim-
ited complexity of the library, resulting in higher

duplication rates already at lowly expressed genes, lead-
ing to the majority of data points being shifted upwards
to higher duplication rates also for lowly expressed genes
(e.g. Fig. 1d). Similar situations can be observed for data
sets with actual PCR artifacts. DupRadar does not define
fixed thresholds for acceptable data quality on purpose,
as PCR duplication rate can be influenced by various pa-
rameters. However already low levels of PCR artefacts
can have an influence on downstream analysis and inter-
pretation of data.
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Fig. 1 Several RNA-seq datasets from Marinov et al. [26]. Legends shows the intercept and slope of a fitted logit model. a Single cell experiment with
relatively low duplication rates and most of the genes detected. b Single cell experiment with most of the genes undetected and high duplication rate
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Although paired-end libraries facilitate the distinction
between duplicates due to adding the fragment length as
an extra variable to distinguish molecules, the problem
is not completely solved. For typical dupRadar plots of
paired-end libraries see Additional file 5: Figure S2. The
recent introduction of unique molecular identifiers
(UMI) during library preparation, allows for exact
distinction of technical and biological duplicates and
therefore also the removal of technical duplicates [24],
which alleviates the described problem on the side of ex-
perimental procedures.

To assess the impact of excess PCR amplification on
downstream analysis in RNA-Seq studies we simulated
data sets with defined amounts of PCR artifacts
(Additional file 1: Figure S1 and Additional file 6:
Methods 3) based on good quality original data [21], and
subsequently performed differential expression both on
the original data as well as the data with simulated PCR
problems. While there is a large overlap of 1199 genes
that are differentially expressed in both the good and the
bad data, the analysis shows that PCR artefacts intro-
duce both high numbers of false positive (124) and false
negative (720) differentially expressed genes.

Choice of the aligner as well as of the reference annota-
tion both influence read mapping, quantification and
downstream analyses in RNA-Seq experiments [27, 28].
On gene level, differences between aligner and annotation
can also be observed in dupRadar results, however glo-
bally in our experience the assessment of library quality
does not differ depending on the these parameters. We
recommend not to make the choice of read mapper or ref-
erence annotation dependent on the dupRadar step.

Conclusions

The Bioconductor package dupRadar offers straight-
forward methods to assess RNA-Seq datasets for problems
with duplicate reads and is aimed towards simple integra-
tion into standard analysis pipelines as a default QC metric.

While dupRadar serves as a diagnostics method for
PCR duplicates, we regard the issue of correction for
these artefacts as yet unsolved, with a potential to extend
dupRadar with correction functions. Currently we advise
colleagues to treat with caution RNA-seq data strongly
affected by technical duplicates and repeat library prep-
aration and sequencing if possible. Furthermore the
simulation results suggest that even consistent levels of
PCR artifacts over all samples of a project do not cancel
out and may lead to wrong conclusions in the down-
stream analysis of data.

Similar effects comparable to over-sequencing of
highly expressed genes are implicated for certain types
of enrichment-based assays (e.g. ChIP-Seq of a specific
transcription factor with high read-depths). Suitability of
dupRadar in this area remains to be explored.
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Availability and requirements

Project name: dupRadar

Project home page: http://bioconductor.org/packages/
dupRadar/

Operating system(s): Linux; MacOS

Programming language: R > = 3.2

Other requirements: Bioconductor > = 3.2

License: GNU GPL

Any restrictions to use by non-academics: None

Additional files

Additional file 1: Figure S1. Simulation results with 50 % of duplicates.
(PDF 3904 kb)

Additional file 2: Methods 1. Additional description of analysis of single
cell data, differences between SR and PE libraries, and effect of PCR
bottleneck on differential expression. (DOCX 18 kb)

Additional file 3: Methods 2. Instructions to reproduce main images.
(MD 4 kb)

Additional file 4: Table S1. Mapping statistics of the data set used to
generate Fig. 1. (CSV 520 bytes)

Additional file 5: Figure S2. Simulation results with 90 % of duplicates.
(PDF 3130 kb)

Additional file 6: Methods 3. Simulation of datasets and differential
expression. (RMD 7 kb)

Additional file 7: Table S2. Full version of Table 1 from manuscript.
(CSV 2183 kb)

Abbreviations

bp: Base pair; ChIP: Chromatin immunoprecipitation; NGS: Next-generation
sequencing; PCR: Polymerase chain reaction; QC: Quality control; RPK: Reads
per kilobase; UMI: Unique molecular identifiers
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