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Abstract

Background: Transcription factor binding, histone modification, and chromatin accessibility studies are important
approaches to understanding the biology of gene regulation. ChIP-seq and DNase-seq have become the standard
techniques for studying protein-DNA interactions and chromatin accessibility respectively, and comprehensive
quality control (QC) and analysis tools are critical to extracting the most value from these assay types. Although
many analysis and QC tools have been reported, few combine ChIP-seq and DNase-seq data analysis and quality
control in a unified framework with a comprehensive and unbiased reference of data quality metrics.

Results: ChiLin is a computational pipeline that automates the quality control and data analyses of ChIP-seq and
DNase-seq data. It is developed using a flexible and modular software framework that can be easily extended and
modified. ChiLin is ideal for batch processing of many datasets and is well suited for large collaborative projects
involving ChIP-seq and DNase-seq from different designs. ChiLin generates comprehensive quality control reports
that include comparisons with historical data derived from over 23,677 public ChIP-seq and DNase-seq samples
(11,265 datasets) from eight literature-based classified categories. To the best of our knowledge, this atlas represents
the most comprehensive ChIP-seq and DNase-seq related quality metric resource currently available. These
historical metrics provide useful heuristic quality references for experiment across all commonly used assay types.
Using representative datasets, we demonstrate the versatility of the pipeline by applying it to different assay
types of ChIP-seq data. The pipeline software is available open source at https://github.com/cfce/chilin.

Conclusion: ChiLin is a scalable and powerful tool to process large batches of ChIP-seq and DNase-seq datasets.
The analysis output and quality metrics have been structured into user-friendly directories and reports. We have
successfully compiled 23,677 profiles into a comprehensive quality atlas with fine classification for users.
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Background
ChIP-seq (Chromatin immunoprecipitation followed by
high throughput sequencing) is a powerful and widely
used technique to map the genome-wide in vivo location
of transcription factors, chromatin regulators, and histone

modifications. With the growing popularity of this tech-
nique and the rapidly dropping cost of next-generation
sequencing (NGS), laboratories now are routinely generat-
ing more and more ChIP-seq datasets. DNase-seq is a
high-throughput technique to map genome wide active
cis-regulatory elements based on chromatin accessibility.
As of 2016, there are over 20,000 ChIP-seq and DNase-
seq samples [1] in the public domain, and this number is
increasing rapidly. However, quality control (QC) and ana-
lyses of these data have not been straightforward, and the
ongoing data explosion poses new challenges and
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opportunities for the development of computational pipe-
lines for these datasets. First, such computational pipelines
must be capable of processing large batches (e.g. ~100-
1000s) of data efficiently with minimal user intervention.
Second, there is increasing recognition for the importance
of ChIP-seq data QC, which should be conducted prior to
detailed data analysis and interpretation. Specifically, in the
event of a “failed” (low-quality) ChIP-seq or DNase-seq
experiment, it will be highly advantageous for a pipeline to
explore possible sources of failure that may enable users to
modify and improve future experiments. Third, the public
availability of tens of thousands of ChIP-seq or DNase-seq
datasets represents a rich resource of historical data that
can be utilized to facilitate interpretation and identify
potential problems.
Although many computational approaches already exist

to analyze ChIP-seq data, to the best of our knowledge,
there are very few tools that are designed to tackle all
three challenges simultaneously. For example, Cistrome
[2], CisGenome [3] and ChIPseeqer [4] analysis pipelines
provide user-friendly point-and-click solutions that can be
conveniently applied only when the number of samples is
relatively small. Several new high-throughput computa-
tional tools have recently become available for ChIP-seq
data analysis, including HiChIP [5], Fish the ChIPs [6], the
annotation and visualization modules of Sole-Search [7],
seqMINER [8] and the peak calling and motif analysis tool
Homer [9]. While powerful, most of these tools focus on
ChIP-seq data analysis rather than data QC. ENCODE
phantompeakqualtools [10], ChIPQC [11], htSeqTools
[12], ChIPseeker [13] are R packages specifically designed
for ChIP-seq quality control and visualization; however,
they all assume users to be familiar with R programming
to utilize them. HiChIP implements a ChIP-seq analysis
and QC pipeline, but none of its metrics have taken pub-
licly available data into consideration. CHANCE [14], as a
standalone QC GUI software and includes ChIP-seq data
from ENCODE [15] to help validate experiment quality.
However, ENCODE has a limited selection of proteins and
histone marks in a limited number of cells compared to all
that is available in the public. In addition, ENCODE data
quality [16] often represent the best quality ChIP-seq data
and thus do not necessarily provide a wide spectrum of
data quality against which newly generated data can be
compared. Recently, a ChIP-seq QC system and database
[17] has collected many useful global and local sample QC
indicators for 32,157 publicly available profiles, but none of
the indicators account for the ChIP matching input step.
Another database integrates limited types of QC metrics
for 800 datasets only [18] and, finally, ReMap [19] empha-
sizes the quality control as well as the downstream analysis
of publically available ChIP-seq data, but is focused solely
on transcription factors. Therefore, there is an unmet need
for a ChIP-seq bioinformatics pipeline that combines data

analysis and quality control in a unified framework, with
the guidance of a comprehensive data quality atlas.
Here, we present ChiLin, an integrated command line

quality control and analysis pipeline for ChIP-seq or
DNase-seq data. ChiLin has been exhaustively tested and
applied to 11,265 datasets from a wide variety of studies in
the public domain obtained via GEO. The atlas of all
ChiLin-generated data quality metrics for these datasets is
intimately linked to the Cistrome Data Browser (unpub-
lished at http://cistrome.org/db). Further classification of
the assay types can divide the QC atlas into assay type
independent and dependent QC metrics, which facilitates
better understanding of the quality of different assays.
ChiLin builds on our previous ChIP-seq and DNase-seq
expertise and uses historical data to provide a comprehen-
sive data quality report and analysis results for validating
ChIP-seq and DNase-seq experiments.

Implementation
Overall design
ChiLin is implemented as a python package, and the
name represents an omen for luck and prosperity in
Chinese tradition. The full documentation is available at
http://cistrome.org/chilin. The workflow of ChiLin is
illustrated in Fig. 1a, with each box representing a compu-
tational step in the ChiLin pipeline. There are data pro-
cessing steps to perform analyses, and quality control
steps to evaluate the results from the analyses. Together,
these steps are conceptually grouped into three layers:
Read layer, ChIP layer and Annotation layer. Each pro-
cessing step can be easily extended by other functionality.
ChiLin is equipped with a “simple” running mode, where
the user specifies all requisite input files and minimal pa-
rameters in a single command line; alternatively, ChiLin
can read all required inputs parameters from a configur-
ation file, which is a convenient interface for batch pro-
cessing. The output of ChiLin includes a quality control
report in a pdf file, mapped BAM files, a ready-to-view
read signal BigWiggle file, narrowPeak and/or broadPeak
bed files, for individual replicates and merged replicates,
as well as json files containing all quality metrics.

Read layer
At the Read Layer (Fig. 1a), ChiLin first checks the raw se-
quence quality and GC content using FastQC [20]. It then
maps the ChIP and control FASTQ files onto a user-
specified genome build. The default read mapping tool is
BWA [21], although the user can also specify Bowtie [22]
or STAR [23] for mapping. ChiLin reports the number of
reads with mapping quality >1 [24] as “uniquely mapped
reads” and the corresponding “uniquely mapped ratio”
(uniquely mapped reads over total reads). Beyond the pri-
mary mapping target, ChiLin sub-samples 100 K reads
from each original library and reports the uniquely mapped
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ratio for a range of species (at least one of mycoplasma,
yeast, human, mouse, and others that can be user-specified)
to identify potential sample swaps or contamination.
ChiLin also examines library complexity in terms of

unique locations ratio (non-redundant fraction of
uniquely mapped reads or NRF) and PCR bottleneck
coefficient (PBC) [25] to identify potential over amplifi-
cation by PCR. “Unique locations” count is the number of
genomic locations with one or more uniquely mapped
reads. PBC is the number of locations with exactly one
uniquely mapped read divided by the number of unique
locations. Higher unique location ratio (over all uniquely
mapped reads) and higher PBC both indicate sequencing
libraries with greater complexity. Since these measures
change with sequencing depth, ChiLin calculates these
values from a sub-sample of four million uniquely mapped
reads so samples with different sequencing depths can be
compared (Additional file 1: Figure S1e).
For each user sample, ChiLin reports the percentile of

the FastQC score and uniquely mapped ratio compared to
the historical data based on a Cistrome ChiLin compiled
QC database (Additional file 2: Table S1) of FastQC

scores and uniquely mapped ratios from publicly avail-
able ChIP-seq samples.

ChIP layer
The ChIP Layer (Fig. 1a) has quality control metrics that
help the user judge the quality of the ChIP enrichment
(or quality of the digestion in the case of DNase-seq).
ChiLin uses MACS2 (https://github.com/taoliu/MACS/)
as the default peak caller. MACS2 estimates fragment size
from the cross correlation of reads in the high confidence
peaks, and can perform narrow peak (for point source
binding) or broad peak (for more diffuse enrichment)
calls, or both based on the user specification. In further
analysis, ChiLin keeps one unique read for a position for
peak calling to reduce false positive peaks. Then it calcu-
lates the false discovery rate of the reported peaks by q-
value [26], and also reports the fold enrichment of each
peak. High quality datasets typically have more peaks, a
higher fraction of peaks with >10× enrichment and >20×
enrichment, i.e. 10 and 20 fold confident peaks.
ChiLin measures the signal-to-noise ratio of a

ChIP-seq data [25] by FRiP, which is the fraction of

Fig. 1 Workflow of ChiLin and quality report. a Arrows show the dependency relationship and order of the steps. Data processing steps are indicated in
black and quality control steps are indicated in white. b batch mode processing of datasets for user to customize internal QC database, post-processing
script for compiling QC database is provided at https://github.com/cfce/chilin/blob/master/demo/compile_database.sh
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non-mitochondrial reads in peak regions. Since the
FRiP score increases with sequencing depth, ChiLin calcu-
lates FRiP from a sub-sampling of 4 M uniquely mapped
reads. Another estimate of quality is the percentage of
reads that falls in union of DNaseI hypersensitivity sites
(DHS). ChiLin derives the union DHS by merging all the
peaks of DNase-seq data from ENCODE [27], which repre-
sent a comprehensive set of regulatory elements across
many cell lines and tissues in the human and mouse
genomes.
For datasets with replicates, ChiLin calculates the rep-

licate consistency with two metrics: 1. Pearson correl-
ation of ChIP-seq reads across the genome by using
UCSC software wigCorrelate [28] after normalizing sig-
nal to reads per million, 2. percentage of overlapping
peaks in the ChIP replicates. If more than three repli-
cates available, ChiLin calculates both of the wiggle cor-
relation and peaks overlap count for each pair of the
replicates. Then, we divided the peak overlap counts by
the larger peak number for each pair of the replicates
without considering the difference of the total reads
number to deposit into ChiLin quality metrics table
(Additional file 2: Table S1). ChiLin merges the raw
reads from the replicates and re-runs MACS2 which
often yields more robust peak calls.

Annotation layer
For the Annotation Layer (Fig. 1a) evaluation, ChiLin
first plots the average Phastcon conservation profile
[29, 30] of all the peaks +/− 2 kb from the peak sum-
mits. ChiLin then reports the proportion of peak
summits that fall within RefSeq promoter, exon, in-
tron and intergenic regions. ChiLin also reports the
percentage of top peaks (default 5000, sorted by
MACS score) that fall within union DHS and blacklist
regions (“union DHS overlap ratio” and “blacklist
overlap ratio”, respectively).
Blacklist regions are a set of regions found by the

ENCODE consortium to be consistently enriched in ChIP-
seq/DNase-seq/MNase-seq/FAIRE-seq data independent of
cell lines and conditions [11, 15, 31]. Union DHS regions,
in contrast, represent the whole repertoire of regulatory ele-
ments in the human genome. Low blacklist and high union
DHS overlap ratios typically indicate good data quality.
Phantompeakqualtools [10] requires blacklist regions to
unbiasedly compute NSC and RSC score. ChIPQC [11] as-
sess a subsection of its ChIP enrichment quality metrics
with blacklist regions filtered out. However, ChiLin com-
putes blacklists overlapping ratio but keeps them in the
analysis, since current QC database is built on hg38 and
mm10 assembly which lack uniform blacklists. Users can
also customize the blacklist regions to compute the overlap
ratio for their special needs, such as greyListChIP [32] for
cell line specific copy number variation.

ChiLin next performs motif analysis on the top (de-
fault 5000) peaks using the Cistrome MDSeqPos [2], a
method that weights motifs appearing more frequently
at the stronger ChIP-seq peaks and at the center of
peaks. Large absolute z-scores of the motifs found from
ChIP-seq peaks indicate good motif enrichment and
high ChIP-seq data quality. Finally, ChiLin calculates the
regulatory potential score, a distance-weighted sum of
all the binding sites within 100 KB from the transcrip-
tion start site, of each RefSeq gene [33]. The list of genes
ordered by regulatory potential represents the putative
target genes of the protein of interest.

QC database
We compiled a comprehensive ChiLin quality metrics
database of 23,677 public ChIP-seq and DNase-seq sam-
ples (11,265 datasets) across the classified eight categories
for user reference (Additional file 2: Table S1). We used
ChiLin to process public data into datasets, then use post-
processing scripts to build the ChiLin QC tables. Users
can use ChiLin simple mode to process batches of datasets
on their computer clusters, then use the post-processing
scripts to compile their custom QC tables (Fig. 1b).

Results
ChiLin quality metrics evaluation
We first evaluated the influence of read length on the
stability of ChiLin QC metrics. In general, an increase
of read length can result in slight improvements in
the uniquely mapping ratio (Fig. 2a, Additional file 3:
Figure S3a-d).
We also evaluated all other pairwise relationships across

13 quality metrics. The overall FRiP is positively correlated
with peak number across all assay types (Fig. 2a), although
peak numbers vary significantly between different assay
types from different studies (Fig. 4a). The FRiP scores of
chromatin accessibility, transcription factor and chro-
matin regulators (Additional file 3: Figure S3a,c,d) is
highly correlated with peak number, this is not true for
histone modification samples (0.37, Additional file 3:
Figure S3b) because broad and narrow histone marks
are distinctly identified using MACS2 for broad and
narrow peak calling mode. In addition, only in DNase-
seq is FRiP anti-correlated with estimated fragment
size, indicating that shorter fragment length help
obtain higher signal-to-noise ratio for DNase-seq
(Additional file 3: Figure S3a-d).
Lastly, we evaluated library complexity metric PBC and

ChIP enrichment metric FRiP. ChiLin evaluation of PBC
and FRiP is highly consistent with ENCODE ones (Fig. 2b,
Additional file 1: Figure S1a). The two metrics are variable
across studies with different sequence depth. We chose
samples based on different ranges of PBC and FRiP to dem-
onstrate this point (Fig. 2c, Additional file 1: Figure S1d).
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We simulated different sequencing depth by sampling reads
from one million up to the total number of reads, and
calculated both PBC and FRiP at different sequencing
depths. PBC score is largely influenced by sequencing depth
(Additional file 1: Figure S1e). For FRiP, two settings are
compared: 1. peaks from down-sampled reads, 2. peaks
with all reads (overall peaks), which is built in ChiLin. The
second setting produced QC statistics that were relatively
stable as a function of sequence depth (Fig. 2e), far more so
than the first setting (Fig. 2d). Therefore, both of the met-
rics need to be compared at the same sequencing depth,
and FRiP is better calculated by using peaks from all reads.
ChiLin evaluates samples with all reads when the number

of uniquely mapped reads is less than four million, which
may cause potential biases when comparing to other sam-
ples (Additional file 1: Figure S1e). More than 93 % samples
in this study (22,120 out of 23,677) have more than four
million uniquely mapped reads. So, we recommend biolo-
gists to produce data with at least four million reads
uniquely mapped to the genome for fair quality control.

Reference data quality atlas with classification
To generate a reference atlas of data quality for ChIP-seq
and DNase-seq, we applied ChiLin to all raw sequencing
files deposited in Cistrome DB (unpublished), Cistrome
CR [34], and CistromeFinder [35]. This analysis resulted

Fig. 2 ChiLin Quality metrics exploration. a overall ChIP samples quality metrics pairwise correlation across three layers of ChiLin analysis. b ENCODE
FRiP and ChiLin FRiP score comparison. c 30 samples for three degrees of ChIP-layer quality for exploring sequence depth relationship with FRiP. d FRiP
score distribution along with sequence depth for the samples in c, background is the peak calling with down sampling reads, line and point colours
indicates different quality level as in c. e FRiP background is the peak calling with all reads
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in quality metrics for 23,677 samples and 11,265 datasets
of ChIP-seq and DNase-seq. In this study, a “sample” cor-
responds to a single fastq file, whereas a “dataset” has a
one-to-one relationship to a unique ChiLin run, which
may include multiple “samples” such as replicate IPs and
input controls. We summarized the ChiLin-generated
quality metrics for all the samples and datasets (Additional
file 2: Table S1) used in this study, which are freely avail-
able to download and use. The QC database is based on
hg38 and mm10, which includes data annotation, classifi-
cation of assay types (Appendix section Assay Classifica-
tion), 14 QC metrics across three layers (Fig. 2a), and two
replicate consistency metrics (Additional file 2: Table S1).
We further divide the 17 QC metrics across three layers
into assay type sensitive and insensitive metrics, in order
to enable experimental scientists to better associate their
own data with ChiLin QC data quality atlas to perform
quality control on their sequencing runs, and interpret
their data.
Combined profiling of sequence quality score, ratio of

uniquely mapped reads and PBC can help to establish
criteria that will flag potentially low-quality ChIP-seq
and DNase-seq data. By looking across assay types, we

find no dependence of any of the three metrics on assay
types in both ChIP and input samples (Fig. 3a). Thus,
the metrics of read layer are assay type insensitive. The
cumulative distributions of these metrics (Additional file
4: Figure S4) reveal that >85 % of samples are character-
ized by sequence quality score >25, uniquely mapped
read ratio >0.5 and PBC >0.8. This observation suggests
that users may use these cutoffs in assessing the quality of
their ChIP-seq data and deciding whether to investigate
further. Our QC analysis determined a median sequence
depth of 25 million raw reads for ChIP-seq and 40 million
for DNase-seq (Fig. 3b).
In contrast to read layer QC, ChIP layer and annotation

QC are often sensitive to assay types. Histone marks,
chromatin regulators and transcription factors have in-
herently heterogeneous ChIP enrichment levels, IP sam-
ples are typically higher than input control samples for all
samples included in our study (Fig. 4b). DNase-seq dis-
plays the highest FRiP scores in general (Additional file 5:
Figure S5d). Most of the ENCODE datasets have FRiP
scores higher than 1 % as well as thousands of peaks as
called by MACS2; it is important to note that falling
below 1 % FRiP score does not necessarily mean failure

Fig. 3 Reads layer quality metrics across eight categories. a median sequence quality score from FASTQ files. Uniquely mapped ratio with BWA
mapping quality above 1. PCR Bottleneck coefficient calculated from sampling four million reads from BAM files. b reference sequence depth
suggestions for the eight categories
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[25]. Our observation suggests a FRiP score threshold of
1 % as a proper ChIP enrichment reference for a typical
ChIP sample in that the proportion of ChIP samples
(80.9 %, 12,032/14,866) much higher than input samples
(48.6 %, 4289/8811) (Fig. 4b).
The two quality metrics for replicates consistency corre-

lates well (Fig. 4c). Replicates with sufficient wiggle correl-
ation and peaks overlapping ratio (>0.6, Fig. 4d) are
considered to be of high consistency between experiments.
Because different assay types are known to possess dif-

ferential binding preferences for various regions of a
genome, experimentalists may find it useful to have
access to a comprehensive assessment of the variations
in the binding site distributions of different assay types
across meta-regions of the genome. Meta regions are
defined as genomic regions that had been annotated as
promoters, exons, introns, or intergenic regions. We

generated meta region metrics distributions across assay
types (Fig. 5, Additional file 6: Figure S6) along with the
background ratios of the meta regions for human and
mouse genome assemblies (Additional file 5: Figure S5,
Additional file 7: Figure S7a).
Next, we demonstrate how experimental scientists may

use DHS overlap ratio to aid their data interpretation, par-
ticularly for histone marks. DHS are commonly identified
as regions of accessible chromatin [27], but their exact
associations with the diverse set of histone marks have not
been fully characterized. Most of chromatin accessibility,
transcription factor, and chromatin regulator datasets
show a DHS overlap ratio of >0.75. In contrast, histone
mark datasets show considerably more variations depend-
ing on the specific type of histone mark (Fig. 5, Additional
file 6: Figure S6, Additional file 5: Figure S5). We note that
most histone acetylation marks (e.g. H3K27ac, H3K122ac,

Fig. 4 ChIP layer quality metrics across eight categories. a MACS2 peak calling of All peaks number, peaks number with fold change >= 20, and >= 10 are
displayed density distribution for the eight categories with threshold q value 0.01. b Overall FRiP score distributions for ChIP samples (red) and input
control samples (cyan) across assay types. c Scatterplot of replicates samples wiggle correlation against peaks overlapping ratio. d Empirically cumulative
distributions of the wiggle correlation and peaks overlapping ratio for the replicates consistency
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H3K18ac, H4K8ac, H4K91ac, H4K16ac and H4K12ac)
show a fairly tight distribution of high overlap with DHS
(>0.75), comparable to the transcription factor, chromatin
regulator and chromatin accessibility factor types. However,
non-acetylation histone marks displays fairly high (e.g.
H3T11ph), intermediate (e.g. H3K27me3, H3K36me3), or
low (e.g. H3K9me3) values of union DHS overlap ratio
(Additional file 5: Figure S5a,b, Additional file 2: Table S1).
Since different histone marks play distinct roles in gene
regulation, it is noteworthy that many of these histone
marks seem to display a broad range of DHS overlap ratios
rather than a narrow distribution.
The threshold for each QC metrics is given in the last

section of a ChiLin QC report, major metrics are highlight-
ing as blue (good) or red (bad) quality (Additional file 8:
File S1–13 Part VII). Users are encouraged to compare
their ChIP-seq datasets against corresponding assay types
or proteins provided in Additional file 2: Table S1.

Case studies across factor types
To showcase the utility of ChiLin in performing data
QC for a variety of assay types, we present 13 represen-
tative examples of actual ChiLin QC reports for both
Bowtie and BWA (Additional file 9: Figure S9a-m,
Additional file 2: Table S1, Additional file 8: File S1–S13).
These reports had been generated from public ChIP-
seq datasets of broad histone mark H3K27me3 [36, 37]
(Additional file 8: File S1, S2), narrow histone mark
H3K4me3 [15, 38] (Additional file 8: File S3, S4),
H2A.Z [38] (Additional file 8: File S5), transcription

factors TRRAP [39] (Additional file 8: File S6), FOXA1
[40] (Additional file 8: File S7), STAT6 [41] (Additional
file 8: File S8), AR [42] (Additional file 8: File S9), the pair
end RAD21 [43] (Additional file 8: File S10), and chroma-
tin regulators RAG2 [44] (Additional file 8: File S11) and
CHD7 [45] (Additional file 8: File S12), chromatin accessi-
bility DNase-seq [27] (Additional file 8: File S13).
Broad histone mark ChIP-seq are harder to quality

control, as indicated by the reference atlas obtained from
public data. Neither peak number (Fig. 4a), FRiP score
(Fig. 4b), nor DHS overlap ratio (Fig. 5) appears to be a
good indicator of data quality for broad marks across
different marks. The ChiLin QC reports of H3K27me3
(Additional file 8: File S1, S2) indicate that, although the
H3K27me3 datasets meet the basic requirements of read
layer quality control, neither of the replicate is of high
quality in terms of ChIP layer (e.g. FRiP = 0.04–0.32 %).
Nevertheless, the annotation layer flat conservation pro-
files cannot flag the H3K27me3 quality as inferior since
diffuse distribution of H3K27me3 make the broad mark
conservation profile spread out in nature. Though, for
H3K27me3 in this study, the quality of the dataset with
replicates (Additional file 8: File S1) is still better than
the one with single sample in terms of larger peaks num-
bers and FRiP scores (Additional file 8: File S2). For diffuse
marks like H3K27me3, ChiLin evaluates FRiP with MACS2
special broad peak calling mode. However, the low FRiP
score with broad peaks is still a problem which is not re-
solved in general, even though there are some alternative
tools “macs2 predictd” (https://github.com/taoliu/MACS/)

Fig. 5 Annotation layer metrics across eight categories. Overall distribution of all peak summit overlapping percentage with exons, introns, promoters
and intergenic regions for different categories, and the overall distribution of the ratio of top 5000 peaks overlapping union DHS from ENCODE

Qin et al. BMC Bioinformatics  (2016) 17:404 Page 8 of 13

https://github.com/taoliu/MACS/


for this, whose measure may still not be reliable. Overlap-
ping H3K27me3 with the compiled functional regions, such
as HOX genes or EZH2 binding sites is a potential solution,
this is still ongoing work for ChiLin.
For the narrow histone marks H3K4me3 and H2A.Z,

ChiLin indicates that the datasets used in this study
show good overall quality in read and ChIP layers. The
H3K4me3 datasets with deeper sequence (Additional file
8: File S3, 19.7 M/20 M) is superior to the one with
fewer reads (Additional file 8: File S4, 4.0 M, 4.7 M) in
terms of replicates consistency and conservation profile.
The lower sequenced datasets of H3K4me3 replicates
are not consistent (wiggle correlation 0.02), the 2nd rep-
licate has much lower FRiP and peak number than the
1st one, which may need to be discarded. The higher
sequenced H3K4me3 dataset and the H2A.Z dataset is
of high quality in terms of high uniquely mapping ratio,
PBC, FRiP, peak number, high reproducibility, promoter
ratio, union DHS overlap ratio and peaky conservation
profile (Additional file 8: File S3, S5).
For transcription factors, chromatin regulators, cohensin

and DNase-seq, ChiLin identifies the datasets from AR,
FOXA1, CHD7, RAG2, RAD21, and the DNase-seq as be-
ing of good quality, and the quality metrics of these datasets
are considered to be satisfactory across all the three ChiLin
layers (Additional file 8: File S7, S9, S10, S11, S12, S13).
Specifically, the motif scan step, which is part of the ChiLin
workflow, correctly recovers the corresponding FOXA1,
AR, and the cofactor CTCF motifs from AR, FOXA1, and
RAD21 ChIP-seq dataset, respectively (Additional file 8:
File S7, S9, S10). In contrast, examination of the ChiLin
report leads to the conclusion that the TRRAP, STAT6
datasets are likely to be relatively lower quality (Additional
file 8: Files S6, S8). Specifically, for STAT6, this is indicated
by low FRiP scores (<1 %, which is the average FRiP score
for input samples in the reference data quality atlas),
relatively low number of peaks (45 in STAT6), poor
conservation profiles, and lack of motif enrichment. The
TRRAP dataset shows poor wiggle correlation (0.14) and
peak overlap count (20) between two biological replicates
despite using the same anti-GFP antibody from Abcam, so
researchers may need to explore other reasons for the ob-
served low reproducibility, or discard the poor replicate
(Additional file 8: File S6).

Availability and requirements
Project name: ChiLin: a comprehensive ChIP-seq quality
control and data analysis pipeline
Project homepage: http://cistrome.org/chilin/.
Operating systems: Linux, MacOS
Programming language: Python, R and BASH.
Other requirements: bwa (0.7.10), seqtk (1.0), fastqc

(0.10.1), samtools (0.1.19), macs2 (2.1.0.20140616),

bedGraphToBigWig, wigCorrelate, bx-python (0.7.2),
mdseqpos.
License: 3-clause BSD.
Any restrictions to use by non-academics: follow the

license.

Discussions
Since many excellent tools are already available for
ChIP-seq data analysis, we compared ChiLin features
with several published computational tools and pipelines
(Additional file 2: Table S1). We find that ChiLin is com-
plementary to other tools by providing additional or
expanded functionalities. For example, the seqMINER
software is a powerful toolset for integrative analysis of
multiple ChIP-seq datasets normalization and visualization.
The tools CisGenome, HOMER, ChIPseeqer and Sole-
Search perform peak calling, peak annotation, motif
searches and a series of useful analyses. They currently lack
a module dedicated to data quality control. CHANCE is a
comprehensive package for ChIP-seq quality control and
protocol optimization that compares the user’s data with
ENCODE’s large collection of published datasets, but its
user-friendly GUI-based design makes batch processing of
large collections of data difficult. Similar to ChiLin, HiChIP
performs read quality check, read mapping, peak calling
and consistency analysis between replicates, data
visualization and summary report, and downstream ana-
lysis; unlike ChiLin, HiChIP does not report FRiP scores
nor utilize historical data for quality metrics, or use known
DHS and blacklisted regions from ENCODE in its data
quality control analyses. For numerous R-based ChIP-seq
analysis tools including CHIPQC, htseqtools, ChIP-seeker
and the phantompeakqualtools package used in ENCODE
program, quality control is their main concerns and align-
ment and/or peak files are required as input. Consequently,
they can only provide a specific and less comprehensive
evaluation based on only a small number of the metrics
available in ChiLin. ChiLin has been designed to address all
the needs for both data processing and quality control. In
combination with the data quality atlas we have assembled,
ChiLin is a powerful tool for supporting ChIP-seq and
DNase-seq studies of any size.

Conclusions
ChiLin is an extensible software suite, and it integrates a
comprehensive set of QC metrics at various layers of the
ChIP-seq and DNase-seq experiments. ChiLin reports these
measures in a clear and automatically generated report.
ChiLin can process large batches of ChIP-seq and DNase-
seq data from single end and paired end experiments. A
user can reproduce the quality control and analysis result
with only a simple command in a single pipeline process.
The incorporation of a simple running mode in ChiLin
makes it relatively straightforward to develop customized
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GUI’s. Therefore, ChiLin can be an attractive solution to
rapidly process batches of ChIP-seq datasets in an auto-
mated manner with detailed QC reports.

Appendix
Assay classification
The purpose of the assay classification is to gain better
understanding of the quality metrics since ChIP and an-
notation layer QC measure is assay category sensitive
metrics (Additional file 3: Figure S3a-d, Additional file 6:
Figure S6, Additional file 5: Figure S5). We manually
grouped the assays into eight categories by literature
mining. The literature for classifying assay type is the
Cistrome CR [34], histone database HIstome (http://
www.actrec.gov.in/histome/) [46], chromatin regulator lit-
erature [47, 48], and transcription factor database [49, 50].
First, the assays are scored based on the following rationale
(Additional file 2: Table S1): If a factor occurs in one
particular reference, the score of the assays increments 0.5
for that category if the reference describes it as a predicted
transcription factor or chromatin regulator, otherwise the
score of the assays increments 1 for certain transcription
factor or chromatin regulator. Then, the scores are
summed up to determine the assays’ category following the
criteria: 1. If the scores of transcription factor (class a) and
chromatin regulator category (class b) are both 0, the assay
is assigned to other category. 2. If either of the score of
class a or class b is 0.5, then the classification is as below:
a. if the score of class a is 0, the score of class b is 0.5, it is
a predicted chromatin regulator; b. if the score of class b is
0, the score of class a is 0.5, it is a predicted transcription
factor; c. If the score of class a is less or equal than 0.5, the
score of class b is larger or equal than 1, it is a chromatin
regulator; d. If the score of class b is less or equal than 0.5,
and the score of class a is larger or equal than 1, it is a
transcription factor; e. If the score of class a equals class b
with a score of 0.5, it is assigned to both predicted tran-
scription factor and predicted chromatin regulator. 3. If
both of the scores are larger or equal than 1, then (a) if
the score of class b is larger than the one of class a, it is
chromatin regulator; (b) if the score of class a is larger
than the one of class b, it is a transcription factor. The rea-
son for dividing transcription factor and chromatin regu-
lator into predicted, certain or both is to be more accurate
and faithful to the literature. For example, TFCat [49] was
one of resources we referred to annotate transcription fac-
tors, and they classified genes into TF genes, TF gene can-
didate and so on.

ChiLin library complexity and aligner effect evaluation
Library complexity of single-end data underestimates the
library complexity in comparison with the pair-end
ChIP-seq data for Su(Hw) and H3K36me3 [51]. In con-
cept, PBC is more conservative than non redundant tag

(NRF) because PBC only consider unique regions with
one read against unique regions number instead of con-
sidering unique regions against all mapped reads. Fur-
ther, PBC at lower sequence depth can more accurately
estimate library complexity at higher sequence depth in
comparison to other methods (https://github.com/mat
ted/census) [52] (Additional file 1: Figure S1b, S1c).
Aligner effects are evaluated in two datasets. For both

of the cases, 13 out of 14 metrics are quite similar except
to the peaks annotation of union DHS ratio (Additional
file 9: Figure S3 a-p, motifs for TRRAP Additional file 8:
File S6, FOXA1 Additional file 8: File S7, AR Additional
file 8: File S9, RAG2 Additional file 8: File S11, CHD7
Additional file 8: File S12). The union DHS region overlap
ratios are variable between aligners because previously we
used all peaks to evaluate the union DHS ratio for Bowtie
with hg19, and now we used top 5000 peaks for BWA
with hg38 (use all peaks if peak number is less than 5000).

Four categories classification for the most commonly
studied assays
Different types of histone modification such as H3K4me3
and H3K27ac indeed have very different characteristics.
While it is easy to classify some marks as broad or narrow
this is more difficult for others, such as MacroH2A,
H2BK120UB, and H2BUB1, that have not been studied as
much. We further looked into these well-known broad
histone modification (H3K9me3, H3K27me3, H3K36me3),
narrow histone modifications (H3K4me3, H3K27ac,
H3K4me1), focal contacts (MYC, FOXA1, CTCF for tran-
scription factor, BRD4, EZH2, EP300 for chromatin regula-
tors), and chromatin accessibility (DNase). Broad and
narrow histone modifications can be arbitrarily separated
by 450 bp of median peaks length (Additional file 5: Figure
S5a). FRiP scores for most of the samples excels 1 % sug-
gested thresholds, H3K4me3 and H3K36me3 have higher
enrichment for FRiP than other 4 marks. Peaks union DHS
sites and promoter regions overlapping ratio can be used as
rough guides for separating the active narrow marks from
the broad repressive marks (Additional file 5: Figure S5a,
b). For the selected focal and chromatin accessibility assays,
on average, FRiP scores are higher than the suggested cut-
off. FRiP of DNase-seq and CTCF are much higher than
the others. The ratio of peak overlap with union DHS sites
and promoter for all focal assays and DNase-seq are much
higher than the threshold we set for union DHS and the
background genomic promoter ratios (Additional file 5:
Figure S5c, d). Further, we used H3K9me3 as an example
to determine the metric for broad mark by referring to
ENCODE ChIP-seq datasets. The overlapping ratio
between all public H3K9me3 ChIP-seq broad peak and
ENCODE H3K9me3 ChIP-seq union broad peak is larger
than 80 % (Additional file 7: Figure S7b).
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ChiLin batch mode and performance
ChiLin support batch processing of datasets in two ways:
first for computer servers with limited resources, ChiLin
uses the sub-command batch to process different config-
uration files one after another; second, for computer clus-
ters, user can prepare submission scripts with simple
mode, following the examples publicly available at https://
github.com/cfce/chilin/blob/master/demo/. For ChIP
treatment of 44.4 million reads with input 34.9 million
reads, ChiLin took approximately 9 h 11 min to finish the
processing with a single thread, and the output folder was
9.6GB in size. The hardware is CPU- 4x AMD Opteron™
Processor 6378 (64bit, 2.4GHz) each with 16 cores, RAM
is 256Gb of DDR3 (1.6GHz). For a batch of 901 datasets,
ChiLin took 6 min to run one million reads on average
using eight threads on CentOS with Slurm cluster man-
ager software (Additional file 7: Figure S7c).

Additional files

Additional file 1: Figure S1. Library complexity method exploration. a.
PBC score comparison between ChiLin and ENCODE. b. Correlation between
5 and 30 M uniquely mapped reads across different library complexity metrics
for ChIP-seq and DNase-seq. c. Linear regresssion F statistics between
5 and 30 M uniquely mapped reads library complexity metrics for
ChIP-seq and DNase-seq. d. Three degrees of library complexity quality,
each with 10 samples. e. PBC score distribution at different sequence depths
through sampling down the uniquely mapped reads, line and point colors
indicates different quality level as in d. (TIF 2123 kb)

Additional file 2: Table S1. Sheet1 ToolsComparison: ChIP-seq pipeline
software comparison. Sheet2 Examples of ChiLin report. A summary of
example data annotation of transcription factor, chromatin regulatory factor
and histone modification ChIP-seq data. Sheet3 Protein classification standard
for the 8 categories. Sheet4 Protein classification results. Sheet5 BWA
QC Database. ChiLin samples and datasets quality metrics across three
layers. A clean up table of cistrome samples and datasets quality metrics for
ChiLin users’ reference. The QC results is based on the reference of hg38
and mm10 assembly. (XLSX 10363 kb)

Additional file 3: Figure S3. Pairwise correlation of ChiLin QC metrics
for the four main assay types across read, ChIP and annotation layer. a.
chromatin accessibility, b.histone modification, c. transcription factor, d.
chromatin regulator (TIF 3819 kb)

Additional file 4: Figure S4. Cumulative probability fraction of sequence
quality score, uniquely mapped ratio, PCR Bottleneck coefficients, MACS2
estimated fragment size across eight categories (TIFF 512 kb)

Additional file 5 Figure S5. Well-known broad, narrow histone mark,
transcription factor, chromatin regulator, and DNase-seq ChIP and anno-
tation layer QC metrics. a. narrow histone modification (H3K4me1,
H3K27ac, H3K4me3) peaks length distribution along with the FRiP, peaks
meta region annotation. Red line for peaks length denotes the 450 arbi-
trary cutoff to separate broad and narrow mark, red line for FRiP and
peaks union DHS overlapping ratio denotes the suggested cutoff of 0.01
and 0.75, red line for meta regions distribution labels the background ra-
tio base pair ratio for exon, intron, promoters and intergenic regions as in
Additional file: Figure S7a. b. the same as a for broad histone modifica-
tion (H3K9me3, H3K27me3, H3K36me3). c. the same as a for transcription
factor (MYC, FOXA1, CTCF) and chromatin regulator (BRD4, EZH2, EP300).
d. the same as a for all the DNase-seq samples (TIF 2439 kb)

Additional file 6 Figure S6. Cumulative probability fraction of the ChIP
and annotation layer QC metrics (TIFF 918 kb)

Additional file 7: Figure S7 a. The reference meta region distribution
ratios for four human and mouse assemblies (hg19, hg38, mm9 &

mm10). b. overall samples H3K9me3 peaks from Cistrome Data Browser
overlapping ratio with ENCODE2 H3K9me3 peaks. Constitutive 60, 70, 80
is the genome regions with more than 60 %, 70 %, and 80 % of the
ENCODE2 H3K9me3 broad peak locates, union region is the merging
genome region of all the ENCODE2 H3K9me3 datasets. c. ChiLin runtime
performance for 901 datasets. (TIF 1243 kb)

Additional file 8: File S1. H3K27me3 data QC report from ChiLin. The
sequencing reads had been mapped to the mm10 genome build for
BWA and Bowtie. File S2. Second H3K27me3 data QC report from ChiLin.
The sequencing reads had been mapped to the hg38 genome build for
BWA and Bowtie. File S3. H3K4me3 data QC report from ChiLin. The
sequencing reads had been mapped to the mm10 genome build for
BWA and Bowtie. File S4. Second H3K4me3 data QC report from ChiLin.
The sequencing reads had been mapped to the mm10 genome build for
BWA and Bowtie. File S5. H2A.Z data QC report from ChiLin. The
sequencing reads had been mapped to the mm10 genome build for
BWA and Bowtie. File S6. TRRAP data QC report from ChiLin. The
sequencing reads had been mapped to the hg38 genome build for BWA
and Bowtie. File S7. FOXA1 data QC report from ChiLin. The sequencing
reads had been mapped to the hg38 genome build for BWA and Bowtie.
File S8. STAT6 data QC report from ChiLin. The sequencing reads had
been mapped to the mm10 genome build for BWA and Bowtie. File S9. AR
data QC report from ChiLin. This report includes two immunoprecipitated
and two input samples. The sequencing reads had been mapped to the
hg38 genome build for BWA and Bowtie. File S10. RAD21 paired end data
QC report from ChiLin. The sequencing reads had been mapped to the
mm10 genome build for BWA and Bowtie. File S11. RAG2 data QC report
from ChiLin. The sequencing reads had been mapped to the mm10
genome build for BWA and Bowtie. File S12. CHD7 data QC report from
ChiLin. The sequencing reads had been mapped to the mm10 genome
build for BWA and Bowtie. File S13. DNase-seq QC report from ChiLin. The
sequencing reads had been mapped to the hg38 genome build for BWA
and Bowtie. (GZ 9019 kb)

Additional file 9: Figure S9. BWA and Bowtie difference for the ChiLin
QC metrics. a-m, 13 QC metrics for the Additional file 8: File S1-S13, data-
sets resources is described in Additional file 2: Table S1. n-p. 230 datasets
comparison of hg38 with BWA and hg19 with bowtie (TIF 1028 kb)

Abbreviations
Cistrome DB: Cistrome Data Browser; DHS: DNase Hypersensitive site;
FRiP: Fraction of reads in peaks; IP: Immunoprecipitated; PBC: PCR bottleneck
coefficient; QC: Quality control
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