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Lev I. Rubanov*, Alexandr V. Seliverstov, Oleg A. Zverkov and Vassily A. Lyubetsky

Abstract

Background: Perfectly or highly conserved DNA elements were found in vertebrates, invertebrates, and plants by
various methods. However, little is known about such elements in protists. The evolutionary distance between
apicomplexans can be very high, in particular, due to the positive selection pressure on them. This complicates the
identification of highly conserved elements in alveolates, which is overcome by the proposed algorithm.

Results: A novel algorithm is developed to identify highly conserved DNA elements. It is based on the identification
of dense subgraphs in a specially built multipartite graph (whose parts correspond to genomes). Specifically, the
algorithm does not rely on genome alignments, nor pre-identified perfectly conserved elements; instead, it performs a
fast search for pairs of words (in different genomes) of maximum length with the difference below the specified edit
distance. Such pair defines an edge whose weight equals the maximum (or total) length of words assigned to its ends.
The graph composed of these edges is then compacted by merging some of its edges and vertices. The dense
subgraphs are identified by a cellular automaton-like algorithm; each subgraph defines a cluster composed of similar
inextensible words from different genomes. Almost all clusters are considered as predicted highly conserved elements.
The algorithm is applied to the nuclear genomes of the superphylum Alveolata, and the corresponding phylogenetic
tree is built and discussed.

Conclusion: We proposed an algorithm for the identification of highly conserved elements. The multitude of identified
elements was used to infer the phylogeny of Alveolata.

Keywords: Phylogeny, Ultraconserved element, Highly conserved element, Dense subgraph, Apicomplexan parasites,
Alveolates

Background
Introduction
Ultraconserved elements (UCEs) are perfectly conserved
regions of genomes shared among evolutionary distant
taxa. Usually it is assumed that these regions are identi-
cal in closely related species and have minor differences
in relatively distant ones, which substantially limits the
phylogenetic distances. Generally these are untranslated
regions. UCEs were first described in mammals, where
several hundreds of identical regions more than 200 bp
in length have been reported [1]. Knockouts of certain

UCE loci in mice resulted in viable fertile offspring sug-
gesting a cryptic role of UCEs in genome biology [2].
Then, UCEs were found in other vertebrates as well as

in invertebrates and plants. For example, hundreds of
conserved noncoding sequences were detected in four
dicotyledonous plant species: Arabidopsis thaliana, Car-
ica papaya, Populus trichocarpa, and Vitis vinifera [3].
Makunin et al. [4] used preliminarily generated mul-

tiple alignments of insect genomes with the genome of
Drosophila melanogaster as well as the genomes of ver-
tebrates with the human genome; a 100-bp sliding win-
dow was used to find identical UCEs in drosophilids and
vertebrates, and the number of UCEs in insects proved
to be much lower compared to vertebrates. As an al-
ternative, UCEs can be identified using the method
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described by Kent et al. [5] based on pairwise alignments
of complete genomes generated by BLASTZ [6].
A number of studies such as [7–9] do not rely on gen-

ome alignments for the identification of UCEs, which
seems generally advantageous. Thus, Reneker and Shyu
[7] proposed an algorithm for the identification of short
conserved DNA regions based on a hash table mapping
all short words represented in the chromosome. It was
used to search conserved sites and repetitive sequences
in different prokaryotic and eukaryotic species. Later
Reneker et al. [8] used this method with 8-bp words to
identify and analyze UCEs of at least 100 bp in plants
and to expand the UCE sets in vertebrates.
Christley et al. [9] offered a public domain software

embedded into the BioCocoa library. It is based on a
combinatorial algorithm that considers pairs of genomes
using suffix arrays, after which the intersection is taken
for all pairs; no alignments are involved. The method is
claimed to be much faster than BLAST and is compar-
able in speed to the algorithms based on suffix trees.
UCEs were identified in 17 genomes of vertebrates.
Identical UCEs are available in regularly updated data-

bases and online resources such as UCbase [10] for
humans and UCNEbase [11] for vertebrates from human
to zebrafish.
UCEs can be used in phylogenetic studies. This relies

on a phylogenetic signal that can be embedded in UCE
flanks; their variation increases with the distance from
the conserved core [12]. The conserved region allows
easy alignment across widely divergent taxa, while vari-
ation in the flanks is useful for comparative analyses
[13]. In this case, UCE-containing loci are sequenced in
fairly closely related species. In particular, this method
was applied to reconstruct the phylogeny of 15 avian
species including Pavo and five co-distributed neotrop-
ical rainforest bird species [13, 14]. Similar studies were
conducted on the phylogeny of birds in Neoaves [15], all
major reptile lineages including tuatara [16], and fish
[17]. McCormack et al. [18] used identical UCEs of rep-
tiles (including birds) to design 2560 in silico probes,
which were aligned with the available mammalian ge-
nomes, after which the flanks of the resulting regions
were also aligned. The data obtained suggested the phyl-
ogeny of amniotes. Glazov et al. [19] have found all iden-
tical matches longer than 50 bp between the genomes of
the mosquito Anopheles gambiae and two fruitflies Dros-
ophila melanogaster and D. pseudoobscura, all of which
belong to the order Diptera.
The average similarity between regions from UCE de-

creases as more distant taxa are included, which gave
rise to the term highly conserved elements (HCEs). The
identification of HCEs is also considered in numerous
publications, many of which rely on alignments and per-
cent identity-based methods [20–26].

After the identification of HCEs in placental mammals,
the evolution was investigated by extending these HCEs
to opossum, chicken, frog, and fugu [20]. The identified
HCEs demonstrate minor differences in the correspond-
ing regions, while their number substantially increased,
to 13736. This work was further extended to elephant
shark using the same approach [21].
The database Ancora provides non-exonic regions of

high similarity between genome sequences from distantly
related metazoan organisms: human, mouse, dog, horse,
chicken, zebrafish, tetraodon, Drosophila (fruitfly), Caenor-
habditis (roundworm), Aspergillus oryzae (fungus), and
Dictyostelium discoideum (amoebazoan) [22]. These HCEs
were identified by scanning pairwise whole-genome align-
ments obtained with BLASTZ for regions with identity of
70-100 % depending on the evolutionary distance.
Faircloth et al. [23] used pairwise alignments of the ge-

nomes of honeybee and Nasonia vitripennis to identify
about 3000 of identical UCEs with the length of at least
40 bp, which were confined to HCEs with at least 80 %
identity to their counterparts in two other insect ge-
nomes with a lower coverage (Atta cephalotes and Sole-
nopsis invicta). Target sequencing of the selected HCEs
in 30 species from different hymenopterans made it pos-
sible to refine the phylogeny of this taxon. The LASTZ
program [24], an improved version of BLASTZ, was
used in this analysis.
Siepel et al. [25] presented an approach to HCE identi-

fication based on multiple genome alignments. In this
case, a comprehensive search was conducted separately
in four groups of organisms: five vertebrate species (hu-
man, mouse, rat, chicken, and fugu), four insect species
(three Drosophila species and Anopheles gambiae), two
species of Caenorhabditis, and seven species of Saccha-
romyces. The elements were identified in multiple align-
ments using the phastCons program, which is based on
a two-state phylogenetic hidden Markov model. Multiple
alignments for each species group were prepared using
MULTIZ, which builds a multiple alignment from local
pairwise alignments of a designated reference genome
with all other genomes in the group of interest [26],
pairwise alignments were obtained by BLASTZ. As a re-
sult, from 68 thousand to 1.2 million HCEs with the
length up to 1 kbp were predicted, and these HCEs are
more phylogenetically justified and rich in secondary
RNA structures.
Thus, ample data are available on the identification of

both UCEs and HCEs for phylogenetic reconstructions
of plants, fungi, and animals. However, little is known
about UCEs and HCEs in protists.

Summary
In contrast to the special case of identification of UCEs,
sets of identical words in not too distant genomes, for
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which fast algorithms are available, the identification of
HCEs, sets of notably different words in more evolution-
ary distant genomes, is a rather complex computational
problem. To our knowledge, no fast algorithm is available
for it. A number of studies performed HCE identification
using pre-identified UCEs, which were supplemented by
similar words from new genomes. Other studies relied on
time-consuming generation of alignments rather than on
pre-identified UCEs. In contrast to these approaches, the
proposed algorithm identifies HCEs from scratch relying
on neither known UCEs nor alignments, and it seems fas-
ter than other methods.
The standard methods based on the comparison of

gene coding regions have been widely used to generate
taxonomies and reconstruct species evolution over a
long period of time. Later, the coding regions were sup-
plemented by the primary and secondary structures of
the regulatory regions of genomes (e.g., [27, 28]) as well
as UCEs and HCEs. All these different approaches to
taxonomy and evolution favor their better understand-
ing. It bears repeating that HCE identification in distant
species is a nontrivial computational problem. This par-
ticularly applies to apicomplexans due to different rates
of their evolution as well as the rate of evolution in api-
complexans relative to that in better known animals and
plants. Clearly, the HCE-based approach can only be
used to supplement more traditional approaches to tax-
onomy and evolution. Comparisons of results obtained
using HCE identification by the method proposed and
those obtained using traditional methods are sampled
below in the Results and Discussion (see The phylogeny
of Alveolata). Specifically, the comparisons apply to the
superphylum Alveolata and, in our next work, to mito-
chondria of ciliates (the phylum Ciliophora).

Mathematical aspect
Mathematically, the identification of HCEs might be re-
duced to building and clustering a graph with nucleotide
sequences assigned to its vertices. The edge weight usu-
ally reflects the similarity between the sequences at the
edge ends. The weight is often computed from a global
alignment using the Needleman–Wunsch algorithm or
from a local alignment using BLAST.
The majority of clustering methods utilize various strat-

egies to construct “heavily connected components,” i.e., the
clusters that include only vertices mainly connected by
high-weight edges. Various clustering approaches were pro-
posed, from specifically organized partitioning of the span-
ning tree of the initial graph [27, 29] to time estimation of
random walk on a graph (the OrthoMCL algorithm). In the
latter algorithm based on Markov chains, a walk within a
cluster should be long and jumps between clusters should
be rare [30, 31]. The description of OrthoMCL implicitly
states that its convergence is difficult to discuss even

hypothetically. A single cluster can be found by the MEME
algorithm [32], which seems to be well suited for general
graphs not divided into parts.
Let us recall that a multipartite graph has a vertex par-

tition into disjoint subsets (called parts). It does not have
edges connecting vertices inside any part. A subgraph of
the multipartite graph is called m-dense if each its vertex
is connected to vertices from at least (m–1) different
parts. Clearly, an m-clique (a clique of cardinality m) in a
multipartite graph is an m-dense subgraph. Notice that
there exist 3-dense 3-partite graphs that contain no 3-
cliques. It is important to identify m-dense subgraphs with
a high total weight that include not many vertices from
the same part, e.g. subgraphs which contain no more than
γ vertices from each part; the preferred γ value is 1 or very
small. The m, γ and edge weight parameters should be
given in advance. The identified m-dense subgraphs in a
given multipartite graph can be screened one by one for
cliques of cardinality m or less. Any m-dense subgraph
with small value of parameter γ may be called a cluster.
Worth mentioning is the clustering method that we used
previously. When the size (cardinality) of a cluster is
known in advance, e.g., in multicomponent systems where
the length of the orthologous series is known for one
component, the most dense cluster of this size is con-
structed using the algorithm described in [33, 34]. Closely
related methods are described in [35–39].
Due to the heuristic nature of these procedures, the

comparison of the algorithms is hard to formalize, espe-
cially in the absence of standard benchmarking data.
Here we propose a novel universally applicable and

freely available software package for HCE identification
[40]. Our software does not rely on known UCEs, nor
HCEs, which makes it applicable to unstudied taxo-
nomic groups. The package includes original algorithms
for the graph generation and clustering, which allow the
identification of HCEs that consist of not only similar re-
gions but also relatively dissimilar regions from distant
species. Specifically, the algorithms rely on the gener-
ation of a sparse multipartite graph (called the source
graph) from pairs of similar regions, compaction of it
into the so-called initial graph, and massively parallel
identification of dense subgraphs in the latter graph,
which are considered as HCEs.

Species analyzed by the method
Many of apicomplexan species considered below are
agents of protozoal infections: Perkinsus marinus, in mol-
lusks; Ichthyophthirius multifiliis, in fish; many apicom-
plexans, in birds and mammals; and the full list of their
hosts is much wider. The evolutionary distance between
apicomplexans can be very high, in particular, due to the
positive selection pressure on them; there are many rele-
vant publications putting forward similar claims, e.g. [41].
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This complicates the identification of highly conserved el-
ements in alveolates, which is overcome by our algorithm.
Alveolates include four major lineages: ciliates, dino-

flagellates, chromerids, and apicomplexans [42]. Chro-
merids are phylogenetically related to apicomplexan
parasites and contain photosynthetic plastids, while api-
complexans have a non-photosynthetic plastid called the
apicoplast [43, 44]. The coral-endosymbiotic algae Chro-
mera velia and Vitrella brassicaformis share a common
ancestry with apicomplexan parasites [45]. Plastids are
also found in the dinoflagellates Lepidodinium chloro-
phorum [46], Durinskia baltica, and Kryptoperidinium
foliaceum [47].
Neither Cryptosporidium parvum [48] nor Gregarina

niphandrodes [49, 50] have plastids. Gregarines are early
diverging apicomplexans. Thus, it is not clear whether
the common ancestor of apicomplexans had plastids.
The protozoan parasite Perkinsus marinus is a faculta-

tive intracellular parasite of mollusks. Its close relation-
ship with the Apicomplexa was initially proposed based
on the ultrastructural analysis of the zoospore, which re-
vealed the presence of organelles resembling an apical
complex [51]. The transcriptome analysis of P. marinus
suggests the presence of a relict plastid. Furthermore, P.
marinus sequences display significant similarity to those
from both apicomplexans and dinoflagellates [52].
Tetrahymena thermophila is a model ciliate species. It

exhibits between non-coding RNA–genome interactions
leading to the removal of one third of the genome in de-
veloping somatic nuclei [53]. Let us recall that the mi-
cronucleus and the macronucleus are separated inside
the same cell, but they have a common genetic source.
In vegetative life, the micronucleus is transcriptionally
inert.
Finally, this work proposes a novel universally applic-

able and freely available software for HCE identification.
Analysis of HCEs found with the help of it provided es-
sential information on the phylogeny in the superphylum
Alveolata.

Methods
Following the Data subsection, we describe our
major result, the method for highly conserved elem-
ent identification.

Data
All genomes analyzed are available either in the
Eukaryotic Pathogen Database Resources [54] or in Gen-
Bank [55]. See Table 1 for details.
Unfortunately, the genome data contains many short

contigs due to incomplete assembly. Nuclear chromo-
somes have been assembled for a few apicomplexan spe-
cies: Babesia bovis [56], Theileria parva [57], Theileria

annulata, Neospora caninum, Toxoplasma gondii, Plas-
modium spp., and Cryptosporidium spp.
Also, we used genomes of Ichthyophthirius multifiliis,

Paramecium tetraurelia, Stylonychia lemnae, and Tet-
rahymena thermophila from the phylum Ciliophora

Table 1 All used species and their genome accession numbers

Organism Source Accession

Coccidia (apicomplexans)

Cyclospora cayetanensis strain
CHN_HEN01

GenBank GCA_000769155.1

Eimeria falciformis Bayer Haberkorn 1970 EuPathDB ToxoDB 26

Hammondia hammondi strain H.H.34 GenBank GCA_000258005.2

Neospora caninum Liverpool GenBank GCA_000208865.2

Sarcocystis neurona SN3 GenBank GCA_000727475.1

Toxoplasma gondii ME49 GenBank GCA_000006565.2

Plasmodium (apicomplexans)

Plasmodium berghei ANKA EuPathDB PlasmoDB 25

Plasmodium chabaudi chabaudi GenBank GCA_000003075.2

Plasmodium falciparum 3D7 GenBank GCA_000002765.1

Plasmodium yoelii yoelii YM EuPathDB PlasmoDB 25

Piroplasmida (apicomplexans)

Babesia bovis strain T2Bo GenBank GCA_000165395.1

Babesia microti strain RI GenBank GCA_000691945.1

Theileria annulata strain Ankara GenBank GCA_000003225.1

Theileria equi strain WA GenBank GCA_000342415.1

Theileria orientalis strain Shintoku GenBank GCA_000740895.1

Theileria parva strain Muguga GenBank GCA_000165365.1

Cryptosporidium (apicomplexans)

Cryptosporidium baileyi TAMU-09Q1 EuPathDB CryptoDB 26

Cryptosporidium hominis TU502 GenBank GCA_000006425.2

Cryptosporidium meleagridis UKMEL1 EuPathDB CryptoDB 26

Cryptosporidium muris RN66 GenBank GCA_000006515.1

Cryptosporidium parvum Iowa II GenBank GCA_000165345.1

Other apicomplexans

Gregarina niphandrodes GenBank GCA_000223845.4

Ascogregarina taiwanensis GenBank GCA_000172235.1

Chromerida (alveolata)

Chromera velia CCMP2878 EuPathDB CryptoDB 26

Vitrella brassicaformis CCMP3155 GenBank GCA_001179505.1

Perkinsida (alveolata)

Perkinsus marinus ATCC 50983 GenBank GCA_000006405.1

Ciliophora (ciliates)

Tetrahymena thermophila SB210 GenBank GCA_000189635.1

Paramecium tetraurelia strain d4-2 GenBank GCA_000165425.1

Ichthyophthirius multifiliis strain G5 GenBank GCA_000220395.1

Stylonychia lemnae 2x8/2 GenBank GCA_000325865.2
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(ciliates) as well as Perkinsus marinus from the phylum
Perkinsozoa.

An overview of the method
Conceptually, the method performs a fast search for
pairs of words (in different genomes) of maximum
length with the difference below the specified edit dis-
tance. Such pair defines an edge whose weight equals
the maximum (or total) length of words assigned to its
ends. The graph composed of these edges is then com-
pacted by merging some of its edges and vertices. The
dense subgraphs are identified by a cellular automaton-
like algorithm; each subgraph defines a cluster com-
posed of similar inextensible words from different
genomes. Almost all clusters are considered as predicted
highly conserved elements.
Technically, the method consists of the three following

stages: a source graph is built from source data, this
graph is used to construct an initial graph whose verti-
ces and edges are generated by merging the vertices and
edges of the source graph. The latter graph is used to
construct the final graph containing only a fraction of
vertices and edges of the initial graph. In the final graph
the connected components are identified, which is the
result of our method. These components are also called
clusters. Sometimes, one of the clusters includes the
great majority of vertices; such cluster is referred to as a
giant cluster. A giant cluster is our method’s limitation;
other clusters are considered as predicted HCEs. Figure 1
shows the main stages of the method.
An arbitrary region of sequence A between positions i

and j (inclusive) will be referred to as a word A[i.. j]. The
edit distance λ is defined for a pair of words [58, 59],
which depends on fixed costs δi, δd, and δs of edit opera-
tions for character insertion, deletion, and substitution;
they are subject to the usual constraints: all substitution
costs are the same and δi = δd (the latter value will be
referred to as δid). The insertion/deletion cost is often
set greater than that for substitution; below we assume
all costs equal to 1 for simplicity. The edit distance
equals the minimum number of operations transform-
ing one word into another. Our software allows arbi-
trary costs; in this case the edit distance equals the
minimum total cost of the series of operations. An arbitrary
word w = 〈w1w2…wl〉 occurs in sequence A = 〈a1a2… an〉, if
there are positions 1 ≤ i ≤ j ≤ n in it, for which the edit dis-
tance λ (w, A[i.. j]) ≤ ε, where ε is a given threshold (param-
eter). This relationship will be referred to as w ≈A[i.. j]. The
threshold ε is usually not high; e.g., 6 character substitu-
tions, insertions, and deletions for the word length l = 150.
Thus, we are given M genomes each of which is repre-

sented by a set of sequences using the same alphabet.
Each set contains sequences with the total length not ex-
ceeding N. Good data correspond to well-assembled

genomes (ideally, up to chromosomes or large scaffolds);
in this case, the number of sequences in a set is rela-
tively small. The problem is to find all words with length
l≪N that occur in at least m ≤M sequences from differ-
ent genomes and to specify their positions in the se-
quences. Here l and m are parameters of the problem.
Let us make a remark on the algorithm memory and

time complexities. If each genome consists of a single
sequence A = 〈a1a2… aN〉 of length N, the algorithm
consumes the largest amount of memory, because it
works with each pair of the top level sequences from
each two genomes. The longer first sequence of the pair,
the more memory is required. If the necessary amount
of memory is not available, the sequence A may be split
into parts with a small overlap. However, this requires
the identified clusters to be analyzed for duplicated
words occurring at the cuts. The time complexity de-
pends on the total length of genomes irrespective of the
number of sequences in those genomes.

Parameters of the method
Let us list all parameters. Two of them reflect the di-
mension of the problem: the number of genomes M and
the greatest total length of all sequences that belong to
one of the genomes N. Next, there are two main param-
eters, the minimum allowable length of words to search
l and the maximum edit distance between them ε. Since
HCE characteristics are not known in advance, l and ε
make it possible to control the trade-off between the
prediction completeness and computation time. The
value of ε is associated with the costs of replacement δs
and insertion/deletion δid operations in our procedure of
semilocal alignment (ref. to Additional file 1) of se-
quence regions; these three parameters are concordantly
specified by the user based on the desired difference be-
tween words. The parameter d is the minimum length of
overlapping between words in each group of words (see
the Stage 2 section) that belong to the same sequence;
this parameter modulates the integrity of clusters. Spe-
cifically, clusters are fragmented and merged as d in-
creases and decreases, respectively. The values of l and ε
uniquely determine the key length k and the maximum
number of deletions D for lack of insertions in the same
word, or vice versa (see note (2) in the Stage 1 section
and Additional file 1). The values of k and D can be in-
dependently varied by the user to accelerate calculations,
although it can sometimes cause underpredictions. The
parameter m specifies the lower bound of the number of
species (genomes) represented in HCEs; it is common to
vary the m value. Accessory parameters include t (the
maximum number of key copies in a sequence) and r
(the maximum word compression ratio); these parame-
ters can accelerate the algorithm by excluding low-
complexity words from the search.
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The main complication is the dimension of the prob-
lem to solve: the total sequence length N in each given
set can be very high (the genome length of a typical
protist is around 109), and the number of sets M can be
in the hundreds or more. The brute-force approach has
a quadratic complexity with O(M2N2l2) comparison op-
erations and the total memory of O(MN). This does not
allow this problem to be solved even using current su-
percomputers. The known fast algorithms for the word

search in a sequence (Boyer–Moore, Knuth–Morris–
Pratt, etc.) are inapplicable here since they only find
exactly matching words.
An efficient method based on our fast Algorithms

1–3 and tailored to parallel computation is presented
below, in three stages (Fig. 1). These stages differ in
scalability, so different number of processors or even
distinct supercomputer can be appropriate for each
of them.

sequences of 
genome 1

sequences of 
genome M

…

for each unordered pair of sequences 
from different genomes

find a pair of inextensible words 
(one per sequence) that have enough 

length, similarity and complexity; each 
pair makes up a weighted graph edge 

source M-partite 
graph

for each sequence, select the words
identified at stage 1 in ascending order 

of their middle position

merge a series of words if they overlap 
at enough length; 

keep the edge with the highest weight,
when duplicated edges appear

initial graph

identification of dense subgraphs 
(similar to a cellular automaton)

Stage 1

Stage 2

Stage 3

final graph; connected 
components are HCEs

Algorithm 1

Algorithm 2

Algorithm 3

Fig. 1 Stages and algorithms of the method
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Stage 1: identification of candidate words in two sequences
The three following notes explain what underlies the
high performance of our method.
(1) A straightforward quadratic algorithm checks the

presence of each word from sequence B in the given se-
quence A. Instead of that we use indexing the sequence A,
which is performed once and then reused many times.
(2) Highly conserved elements are identified so that

the distance between words is low, i.e., the words be-
come identical in no more than ε insertion, deletion, and
substitution operations. Thus, target words a priori in-
clude exactly matching subwords of length k that can be
used as search keys. For instance, the key length k ≈ 30
for the above parameters ε = 6 and l = 150.
(3) After matching keys are identified, each key in each

of such pairs is extended in both directions as long as
the distance between words (i.e., extended keys) does
not exceed ε, their total length is the longest, and each
word is not shorter than l.
The distance between words is usually evaluated using

the Needleman–Wunsch global alignment algorithm
[60] with the complexity of O(l2). But this algorithm as-
sumes that the ends of words are fixed, while in our case
only the beginning or end of a word is invariable de-
pending on the extension direction. The application of
local alignment algorithms (Smith–Waterman, BLAST,
etc.) is excessive here since one of the word extremities
is fixed (adjacent to the key extremity). Because of that,
we use an original variant of the Needleman–Wunsch
algorithm called semilocal alignment. Since this variant
makes allowance for the threshold ε and uses a limit D
of the number of deletions, its spatial and temporal
complexity is O(D l), as shown in Additional file 1. Thus,
semilocal alignment algorithm is linear in l as against
the conventional quadratic algorithm.
Based on the above three notes, the Algorithm 1 ex-

plained below is applied to each unordered pair of se-
quences 〈A, B〉 from different genomes (Fig. 2).
First, sequence A is indexed according to note (1) as

follows. Let k be the key length set according to note (2)
above. A hash table HA is filled with all available keys,
i.e., words of length k in sequence A along with their
starting position in the sequence:

HA ¼ hA ið Þ≡ KA;j; j
� � j KA;j ¼ A j :: jþ k−1ð Þ½ �; i ¼ Hash KA;j

� �� �
;

where Hash(⋅) is a hash function mapping the key to the
table slot number. Collisions appearing as the hash table
is generated decrease the algorithm efficiency. They
stem from the imperfect hash function and duplications
of the same word of length k in the source sequence.
The rate of the former collisions can be reduced by
selecting a different hash function and/or by decreasing
the load factor of the table (the average number of keys

per slot). The latter collisions cannot be avoided, al-
though their rate decreases with k. Table 2 illustrates the
rate of such collisions for real data (the complete gen-
ome of Sarcocystis neurona, N = 124377056). Here, such
collisions at k = 16 appear in more than 20 % of cases;
however, their rate decreases below 4 % as the key
length increases to 24. Repetitive keys usually belong to
genome regions of low complexity that are discarded
here (see below); we use the occurrence threshold t for a
key in the considered sequence, and keys that occur
more than t times are discarded. Since the collisions are
inevitable (although rare), we have chosen a hash table
with separate chaining. The hash table size depends pri-
marily on the length of sequence A and chosen load fac-
tor. Considering that sequence B is not involved here,
the index is generated once for all sequences A in paral-
lel and then repeatedly used for all B sequences in ac-
cordance with the note (1).
After the hash table HA is built, the following steps 1–6

of the Algorithm 1 are applied to one or more sequences B.

1. For each position j of sequence B, use the word
KB,j = B[j.. (j + k − 1)] as the key for the hash table.

2. Check if the key occurs in HA; if not, loop to step 1
using the next position j.

3. If there exists s such that hA(s) = (KB,j, i), a new pair
of candidates has been found starting at positions i
and j in sequences A and B, respectively. If the
element hA(s) contains a chain of positions j due to
multiple occurrences of the key, all (i, j) pairs are
checked. However, we skip the pairs with a different
key which can occur as a hash function limitation.

4. The identified pair of candidates is tested for key
extension to approximately matching words of
interest; if successful, the words are stored. The
extension algorithm relies on the note (3); it is
detailed in Additional file 1, where it has a
complexity of O(D l).

5. Loop to step 1 with the next position j in
sequence B until the end of the sequence.

6. Repeat steps 1–5 for the sequence reverse-
complementary to sequence B.

If collisions are neglected, Algorithm 1 has a complex-
ity of O(N) ⋅O(D l), i.e., it is linear in the sequence
length on average. The memory used, O(N), is also lin-
ear, although the corresponding constant can cause
problems for very large N. In the case of a short alpha-
bet, memory requirements can be reduced by compres-
sing keys in the hash table HA: hashed keys KA,j should
be transcoded using a smaller number of bits per char-
acter and stored compressed in a smaller number of
bytes; this does not affect key search in the table if can-
didate words are transcoded in the same way. Since the
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problem in question applies to sequences using a four-
letter alphabet, memory requirements for storing keys in
the hash table can be reduced fourfold; it is also con-
venient to select quadruple k.
To summarize, the overall complexity of the first stage

of our method is O(Nl) for a single pair of sequences.
For all unordered pairs, the complexity is multiplied by
the number of them to become in the order of O(M2);
however, sequence pairs can be processed in parallel as
specified below.

Let us consider three more points relevant to Stage 1.
Let us recall that HCE is considered as a set of words
assigned to vertices of an m-dense subgraph (we tempor-
arily neglect a possible giant cluster). We wish different
HCEs to have the property designated as inextensibility:
all words of one HCE are not subwords of words of
another HCE taken from the same sequence locations.
Naturally, the inextensibility requirement is limited to
the set of all identified m-dense subgraphs. In order
to meet this requirement, the key extension with the

fill hash table HA with all keys 
of length k from sequence A

use sequence B of other genome

for each position j of B, select 
word KB,j B[j..( –1)]

KB,j

occurs in HA

for each position i of A such 
that {KA,i A[i..( –1)]} = KB,j

no

yes

try extending KA,i, KB,j to the left 
while

store all new left margins i1, j1, 

try extending KA,i, KB,j to the right 
while

store all new right margins i2, j2, 
wher

choose the quadruple i1, j1, i2, j2 such that
A[i1..i2 B[j1.. j2

and (i2 – i1) + (j2 – j1)     max

i2 – i1 l – 1 &
j2 – j1 l – 1

A[i1..i2], B[j1.. j2] 
are complex

add new edge to the source graph

yes

yes

end of B reached

yes

repeat with the reverse 
complement of sequence B

no

no

no

end
1st time 2nd time

Fig. 2 The flowchart of Algorithm 1
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maximum total length of words is chosen at step 4 of
Algorithm 1.
Only words of sufficient complexity are of interest.

Complete genomes include long regions composed of
one or two symbols repeated many thousand times, e.g.,
AT-repeats. HCEs containing words from such regions
are ignored. The exclusion of simple highly repetitive
words also decreases memory usage and accelerates
our algorithm. This is realized also at step 4 by the
Ziv–Lempel compression algorithm [61] implemented
in the GNU gzip utility [62] with the threshold r em-
pirically defined for the compression ratio.
In the presence of M(M − 1)/2 or more processors,

Stage 1 is executed in parallel for each unordered pair of
genomes independent of other pairs. The algorithm is
most efficient when a sequence A of one genome is
compared with all sequences B of other genomes in the
separate process, in which case Algorithm 1 operates in
parallel on M − 1 processors (although a greater number
of processors can be beneficial considering that genomes
are commonly represented by several sequences). Inter-
mediate options with different numbers of parallel pro-
cesses can be used to balance the computational burden
between processors; we have considered this problem
elsewhere [63].
The result of the first stage is a huge set of isolated

edges; taken together they constitute the source graph
with low vertex degrees. From our experience, the num-
ber of edges in it is typically closer to the number of ver-
tices rather than to the squared number of vertices; the

graph usually consists of many disjoint components.
This is an edge-weighted graph; the edge weight is the
maximum length of words assigned to its ends. The
weight is evaluated at this stage and remains unaltered
later. Sometimes it is more convenient to use a mono-
tonic function of length of these words instead of their
maximum length. A graph part is defined as all words of
the source graph which belong to sequences of the same
genome. There are no edges within a part. Thus, we get
an M-partite graph that is further processed.

Stage 2: compaction of the source graph
The properly extended keys are assigned to the ends of
the edge defined by this pair of words in the source
graph. Since edges are built at the first stage irrespective
of the other edges, certain edges can have vertices corre-
sponding to roughly the same location in a sequence but
with different word ends, Fig. 3. At this stage, Algorithm
2 merges overlapping vertices along with incident edges,
thus compacting the source graph. Specifically, Algorithm
2 checks words of each sequence in ascending order of
their middle position. The maximum set (called group) of
consecutive words from the same sequence that overlap
by at least d characters forms a new vertex. If this require-
ment is not satisfied, the current word initiates a new
group. Thus, each new vertex corresponds to its own
group of consecutive words from the same sequence, and
these groups are disjoint. This compaction of the source
graph is done separately for each sequence, maybe in
parallel.
During merging, old edges are first transferred to new

vertices; however, if multiple edges emerge between two
new vertices, the edge with the highest weight is kept.
Each new vertex is assigned a union of all words of the
corresponding group. The intersection of these words is
also stored. Such unions and intersections are useful for
the analysis of future HCEs. Each new vertex specifies
an approximate position of an HCE word in the corre-
sponding genome.
Thus, at the second stage the source graph is com-

pacted by merging all vertices with corresponding words
overlapping at a length of d or greater, thus producing
so-called initial graph. The complexity of this stage is
linear in the number of vertices in the initial graph and
is naturally parallelized over the number of sequences.

Stage 3: identification of dense subgraphs
At this stage, Algorithm 3 recognizes the m-dense sub-
graphs of the initial graph, primarily, with the highest
total edge weight (Fig. 3). The set of identified m-
dense subgraphs makes up the solution of the original
problem. The resulting graph of this stage is referred
to as final.

Table 2 The number of repeating keys of length k in the long
sequence of the complete genome of Sarcocystis neurona

The number of
occurrences of
the key

k = 16 k = 24 k = 32 k = 48

1 94919216 119034327 121193592 121823700

2 5284353 764077 401812 242260

3, 4 1438861 190900 65945 24494

5–8 486137 60275 15503 4875

9–16 183799 20869 4129 1116

17–32 72581 7429 1202 194

33–64 29861 2996 437 155

65–128 11196 1217 208 85

129–256 4986 498 86 41

257–512 1776 148 9 3

513–1024 739 67 8 6

>1024 447 90 3 1

The number of
different keys

102433952 120082826 121682934 122096930

The mean number
of occurrences

1.21408 1.03559 1.02191 1.01833
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Algorithm 3 features deep internal parallelism and is
similar in design to a cellular automaton with graph ver-
tices as cells and incident vertices as neighboring cells.
An independent process is initiated at step 1 shown
below at each graph vertex. The processes at all vertices
are synchronized after each step 1 or 2 so that a next
step of any process starts only after the previous step
was completed at all vertices.
The two steps of Algorithm 3 are as follows (Fig. 4).
1. If a vertex is connected by edges to less than (m − 1)

graph parts, this vertex and all edges incident to it are
removed.
If a vertex is connected to a part by a single edge, such

edge is labeled; labeled edges may be deleted only to-
gether with one of its ends.
If step 1 of the algorithm modified the graph, step 1 is

executed again at all graph vertices.
Otherwise, step 2 is executed once at all graph vertices.
2. If an edge incident to the vertex is unlabeled and its

weight is strictly less than those of all other unlabeled inci-
dent edges (or it is the only one), such edge is removed.
If step 2 modified the graph, step 1 is executed again

at all vertices; otherwise the algorithm terminates. The
result is the final graph. Each of its connected compo-
nents is the desired m-dense subgraph.
The Algorithm 3 offers flexible scaling possibilities for

the number of processors up to the number of graph ver-
tices and can be implemented on distributed memory sys-
tems. If the number of available processors is less than the
number of vertices, they are evenly distributed among the
available processors, each of which executes the current
step of the process at all allocated vertices one by one.
The efficiency of parallel computation can be increased by
allocating vertices connected by low-weight edges to the
same processes and, vice versa, by allocating nonadjacent
vertices or vertices connected by high-weight edges to
different processes. The optimization of graph vertex allo-
cation among processors is an independent problem. It is

hard to evaluate the algorithm complexity analytically;
however, it is not practicable since sample calculations of
large data volumes demonstrated that the third stage of
our method is executed much faster and requires a less
powerful supercomputer than the first two ones.
A serious limitation of the method is the emergence of

a connected component in the final graph including the
majority of graph vertices when improper parameters
are used to build the source and/or initial graphs; we re-
ferred to it as a giant cluster. The absence of such a
component as well as the presence of m-dense sub-
graphs for m greater than the half of graph parts (i.e.,
the number of genomes) indicates a success. Our experi-
ments demonstrated that the risk and size of the giant
cluster can be decreased by removing all edges with the
weight below a certain threshold, the choice of which is
an independent problem. The presence of a giant cluster
in the final graph not necessarily interferes with the
identification of m-dense subgraphs with a smaller num-
ber of vertices for relatively high m values.
The substantial result of our method is a set of con-

nected components of the final graph excluding the
giant cluster, which are considered as predicted HCEs.
Certainly, the definition of the giant cluster depends on
the corresponding threshold.
Thus, we have developed a parallel algorithm that re-

duces the initial graph to the final graph composed of only
m-dense subgraphs. Computer experiments on real data
demonstrated that Algorithm 3 completes the task in a
small number of such steps (usually numbering in the
hundreds) even for very large graphs (e.g., 107 vertices and
109 edges, or even more). It also features flexible scalabil-
ity for any number of available processors in a wide range.

Results and Discussion
As mentioned above, our major result is the method for
HCE identification set forth in the Methods section. The
phylogeny of Alveolata section below discusses the

d

(a) (b)

x y z

Fig. 3 The compaction of the source graph by Algorithm 2: a three word pairs identified in three sequences and the corresponding edges of the
source graph; b union of words at new vertices, the intersections are marked by a darker color; edges x and y merged into edge z
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results obtained by this method for biological data on
the superphylum Alveolata.
All computing was made using the following parame-

ters: M = 30, N = 1.97 ⋅ 108, l = 65, k = 16, t = 200, δs = 1,
δid = 2.1, ε = 17.5, D = 2, r = 2.2, d = 40, and m = 3.

Comparison with LASTZ program
The first stage of our method has much the same goal as
the pairwise alignment of genomes in many papers cited

in the Background section. We used protists data to com-
pare the results of our first stage with those of LASTZ
with default parameters. The comparison was conducted
in uniprocessor mode on a 2 GHz Linux workstation. Spe-
cifically, the longest (6.99 Mbp) chromosome of Neospora
caninum was collated in turn with three well-assembled
full genomes: Babesia microti of 4 chromosomes (6.39
Mbp in total), Cryptosporidium parvum of 8 chromo-
somes (9.1 Mbp), and Plasmodium falciparum of 16

graph
modified

p number of graph parts 
this vertex is connected to

p m 1
remove this vertex 

and all edges 
incident to it

i 1

s number of edges from this 
vertex to ith part of the graph

s = 1

label such edge 

i i + 1

yes

yes

no

i M

no

no
yes

synchronize 
at all vertices

no

end

remove unlabeled incident 
edge with minimum 

weight (if exists)

synchronize 
at all vertices

graph
modified

no

yes

yes

Fig. 4 The flowchart of Algorithm 3
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chromosomes (23.3 Mbp). It took respectively 2 m 16 s,
11 m 35 s, and 30 h 47 m for LASTZ to process these
three data sets. Our Algorithm 1 worked for 1 m 9 s, 1 m
30 s, and 20 m 26 s, respectively. It is arguable that our
algorithm is faster and its complexity grows with input
data volume not nearly as rapid as for LASTZ. The
memory consumption was 130–204 MB for LASTZ
and 620–645 MB for our algorithm. For the first data
set, the number of pairs of similar words (aligned or
identified) was 501 (LASTZ) and 108 (our algorithm).
However, among of 501 alignments found by LASTZ,
at least 202 were of low complexity regions; while our
algorithm rejected such words. Remaining 299 align-
ments included less than a half (47 of 108) of word
pairs found by our algorithm. This can be attributed to
essentially different functionals used by the two ap-
proaches. Our algorithm looks for pairs of words that
have the maximum length and the edit distance below
the threshold, which results in words with the length of
61–109 bp (75 bp on average) and 72-85 % (77 % on
average) of identity (similarity). LASTZ finds longer
alignments (53–3117 bp; 273 bp on average), but with a
lower identity (43-96 %; 66 % on average). The align-
ments identified by LASTZ included only 84 ones with
the identity greater than 70 %, which is less than our al-
gorithm has found. A similar situation is observed for
two other data sets: LASTZ and our algorithm have
found 36013 vs 7512 word pairs for the second set and
2.24 million vs 944 thousand word pairs for the third
set, respectively.
The second and third stages of our method transit

from a pairwise genome analysis towards building HCEs
for a set of genomes. The authors are not aware of freely
available counterparts of these tools. Generally speaking,
they may not be necessary when HCEs are identified
using a multiple alignment of genomes; each element be-
comes evident in many genomes [4]. In case of UCEs,
the search using pairwise genome alignments can be
based on intersections of pairwise elements [9]. In the
general case, synthenic chains of elements in ortholo-
gous parts of genomes can be selected [5, 22].

The phylogeny of Alveolata
The species tree predicted using the derived HCE data
(Table 3) is shown in Fig. 5 and discussed below. The
phylum Ciliophora was used as an outgroup to root
the tree.
Comparison of the complete genomes from Table 1

and generation of the source graph (Stage 1 of our
method) were conducted on supercomputers MVS-
100 K and MVS-10P in the Joint Supercomputer Center
of the Russian Academy of Sciences [64], which required
about 200 h on up to 512 processors. The subsequent
compaction of the graph and identification of dense

subgraphs (Stages 2 and 3 of the method) was conducted
on a 32-core server with 256 GB RAM and required less
than 20 h.
The source graph contained 32,028,631 vertices and

386,307,036 edges. Merging of properly overlapped verti-
ces and removing duplicated edges yielded the initial
graph with 3,867,747 vertices and 338,034,279 edges.
After 185 steps of the algorithm for dense subgraph
identification, the final graph included 2,153,534 vertices
and 291,812,518 edges, which formed 9920 connected
components. The giant cluster included 96.9 % vertices.
It has not been analyzed in detail; however, some prelim-
inary investigation demonstrated that many words in it
contain low complexity regions. Complexity evaluation of
individual regions in a word with overall allowable com-
plexity is another problem not considered here. The
remaining 9919 clusters included 67564 vertices. De-
tailed data on the obtained clusters including their
words and summary data on clusters are available in
Additional files 2 and 3, respectively.
All found words from HCEs were further analyzed

using the following two resources.
1. Genome annotations available in GenBank (converted

into GFF format); it was tested if a word of interest overlaps
with the regions of a gene and its coding sequence (CDS).
If both conditions are satisfied, the word corresponds to a

Table 3 Predicted HCEs

HCE type (label) Count Description

protein 8 988 A protein according to the GenBank
annotation

tRNA 26 A transfer RNA

tRNA-Sec 1 Selenocysteine transfer RNA

LSU_rRNA 15 Large subunit ribosomal RNA

SSU_rRNA 5 Small subunit ribosomal RNA

5_8S_rRNA 1 5.8S ribosomal RNA

U1 1 U1 spliceosomal RNA

U2 1 U2 spliceosomal RNA

ACEA_U3 1 ACEA small nucleolar RNA U3

U4 1 U4 spliceosomal RNA

U5 1 U5 spliceosomal RNA

U6 3 U6 spliceosomal RNA

Protozoa_SRP 1 Protozoan signal recognition particle RNA
(aka 7SL, 6S, 4.5S)

RNaseP_nuc 2 Nuclear ribonuclease P (RNase P)

snoR07 1 Small nucleolar RNA snoR07

snoR10 1 Small nucleolar RNA snoR10

SNORD36 1 Small nucleolar RNA SNORD36

intron 163 Non-coding region of a gene

unknown UCE 706 Not gene nor RNA predicted

Total 9919
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protein (in this case, the data on both gene and its CDS are
included in the Additional file 2); if only the first condition
is satisfied, the word belongs to a gene untranslated region
such as an intron (in this case, only the data on the gene is
included in the Additional file 2).
2. Rfam database [65]; it was tested if the word is a

fragment of a known non-protein-coding RNA. In this
case, Additional file 2 specifies the RNA name and
other data.
Additional file 3 summarizes the data on each cluster in-

cluding the HCE type. Specifically, (1) if any of cluster
words was found in Rfam, the cluster corresponds to a
known RNA such as tRNA, snRNA, etc. and is labeled as
this RNA; (2) otherwise if any of cluster words overlaps
with a CDS, it corresponds to a protein (exon) and is la-
beled as “protein”; (3) otherwise if any of cluster words
overlaps with a gene, it corresponds to an intron or other
untranslated region and is labeled as “intron”; (4) other-
wise the cluster describes an unknown HCE (no label).
Table 3 demonstrates that more than 90 % of identi-

fied HCEs correspond to proteins or known RNAs.
Nevertheless, no data were found for 706 elements of
unknown function as well as for 163 elements corre-
sponding to non-coding gene regions. Although many of
the latter genes are known or were reliably predicted,
HCEs lie in their untranslated regions rather than exons

(according to GenBank annotations). Many of such
clusters include only a single word annotated as a pre-
sumable gene. These can be errors of automatic anno-
tation. Anyway, these 163 HCEs deserve a thorough
consideration together with those for which no data are
available.
The above 163 clusters are largely small, i.e., the corre-

sponding elements are conserved in a small number of
species (12 at maximum and 3.08 on average). The num-
ber of clusters with 12, 6, 5, 4, and 3 species is 1, 2, 15,
28, and 823, respectively.
RAxML v. 8.2.4 [66] generated a tree (Fig. 5) using a

matrix with 30 rows and 9919 columns corresponding to
the number of nuclear genomes (species) specified in
Table 1 and HCEs identified by our algorithm listed in
Table 3. Cell value of 1 and 0 in the matrix indicates the
presence or absence in a genome of an HCE-representing
word, respectively. Branch lengths have standard meaning
of estimated average number of substitutions (0 instead of
1 and vice versa) per site (between ancestral and des-
cendant sequences). Thus, maximum likelihood search
followed by rapid bootstrapping was performed in
RAxML using binary substitution model with maximum
likelihood estimate for the base frequencies. Frequency-
based criterion was satisfied after 250 bootstrap replicates.
All other RAxML parameters were left in default setting.

Fig. 5 The tree predicted for 30 Alveolata species using their HCEs identified by our algorithm
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For all genera of apicomplexan parasites, their species
group together in the tree. The only exception is Babesia
spp. A separate position of Babesia microti relative to
other species of the order Piroplasmida in the HCE-
based tree is in agreement with its isolated position in
the plastid tree [67]. At the same time, B. orientalis is
closely related to other Piroplasmida species in agree-
ment with [68].
The genus Cryptosporidium is not included in the

class Coccidia in agreement with [69, 70]. It is closely re-
lated to the genus Plasmodium.
Two coral-endosymbiotic phototrophic algae Chro-

mera velia and Vitrella brassicaformis are closely related,
which agrees with [45]. Species from the subclass Coc-
cidia have many common HCEs with phototrophic algae
as well as with Perkinsus marinus. Here our result is in
agreement with [52] as well as with an early observation
by Levine [51].
Two species Gregarina niphandrodes and Ascogregar-

ina taiwanensis are also closely related and compose an
early diverged branch of the group of Apicomplexa.
According to our HCE-based tree, we can propose that

the common ancestor of all the apicomplexans had no
plastids. Thus, plastids could appear after the Gregarina-
sina isolation, while early apicomplexans with plastids
were photosynthetic algae. Later these plastids were lost
in Cryptosporidium spp.
Note a good agreement between the trees based on

HCEs and all proteins encoded in the plastids of Api-
complexa and Chromerida species [71] as well as with
chromosomal structures [72].
The isolated position of coccidians agrees with the re-

sults of comparative analysis of apicoplast-targeted pro-
teins [73].

Conclusions
We presented a novel algorithm to identify highly con-
served DNA elements; it was applied to the superphy-
lum Alveolata. The multitude of identified elements was
used to infer the phylogeny of Alveolata which turned
out to be in agreement with other available data. The de-
scribed method for the identification of highly conserved
elements is applicable to other fields where any texts are
compared including natural language analysis targeted
to identify the author, style, borrowings, etc. [74].

Additional files

Additional file 1: Contains the details of step 4 of Algorithm 1 including
auxiliary algorithms of semilocal sequence alignment and optimal key
extension. (PDF 343 kb)

Additional file 2: Presents in detail all clusters found in the final graph
by our algorithm. The clusters are ordered by their numbers in column A;
the first cluster is a giant one (shown partially). The first line of each

cluster is marked with fixed numbers in columns C–D; it contains the
number of vertices (words) of that cluster in column E. Each of the
subsequent lines corresponds to a word and contains the following data
in columns A–J: the cluster number (A), the number of species in the
cluster (B), the vertex degree (C), the vertex density, i.e., the number of
graph parts this vertex is connected to (D), the species name (E), the
sequence name (F), start position of the word in the sequence (G), the
word length (H), DNA strand indicator (I), and the word itself (J). A part of
the word shown in capital letters corresponds to the intersection of all
words merged at this vertex (a group); lowercase letters correspond to
the union of those words. If the word overlaps with regions of a gene
and its coding sequence (CDS) according to the genome annotation
available in GenBank, this word corresponds to a protein. In such cases,
the gene data including the protein description is shown in columns
K–O; and CDS data, in columns P–R. If only the first condition is satisfied,
the word belongs to a gene untranslated region such as an intron; in this
case, only the data on the gene are shown. If a word is a fragment of a
known non-protein-coding RNA according to Rfam database, columns
S–AB contain the RNA name and other data. The clusters that correspond
to untranslated regions or unknown HCEs are highlighted in gold or blue,
respectively, in column A. (XLSX 10204 kb)

Additional file 3: Presents summary data on the clusters. The Resume
sheet provides some information on the algorithm results with different
parameters. The variant with the threshold length 65 bp, which is
discussed in the main paper, is highlighted in pink. In lines 15–42, the
number of m-dense clusters and their vertices are shown for m values
from 30 to 3. For example (line 15): 14 clusters were found containing
words from all 30 genomes; these clusters comprise a total of 3736
vertices, i.e. 9 words per genome on average. Another example (line 35):
84 clusters were found containing words from 10 genomes; 1.2 words
per genome on average. On the Clusters sheet, each line starting from
the sixth one corresponds to a cluster. Column A contains the cluster
number highlighted in the case of untranslated or unknown UCE (similar
to Additional file 2). The HCE type is shown in column B as follows: if any
of cluster words was found in Rfam, the cluster corresponds to a known
RNA such as tRNA, snRNA, etc.; the column contains this RNA label; if any
of cluster words overlaps with a CDS, it corresponds to a protein (exon)
and is labeled as a protein; if any of cluster words overlaps with a gene,
it corresponds to an intron or other untranslated region and is labeled as
an intron; otherwise the cluster describes an unknown HCE (no label in
column B). Column C shows the total number of words in the cluster;
column D, the total number of species containing these words; and
columns E–AH, the number of words from each species. (XLSX 1109 kb)
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