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Abstract

Background: Biological networks play an increasingly important role in the exploration of functional modularity and
cellular organization at a systemic level. Quite often the first tools used to analyze these networks are clustering
algorithms. We concentrate here on the specific task of predicting protein complexes (PC) in large protein-protein
interaction networks (PPIN). Currently, many state-of-the-art algorithms work well for networks of small or moderate
size. However, their performance on much larger networks, which are becoming increasingly common in modern
proteome-wise studies, needs to be re-assessed.

Results and discussion: We present a new fast algorithm for clustering large sparse networks: Core&Peel, which runs
essentially in time and storage O(a(G)m + n) for a network G of n nodes andm arcs, where a(G) is the arboricity of G
(which is roughly proportional to the maximum average degree of any induced subgraph in G). We evaluated
Core&Peel on five PPI networks of large size and one of medium size from both yeast and homo sapiens, comparing its
performance against those of ten state-of-the-art methods. We demonstrate that Core&Peel consistently outperforms
the ten competitors in its ability to identify known protein complexes and in the functional coherence of its
predictions. Our method is remarkably robust, being quite insensible to the injection of random interactions. Core&Peel
is also empirically efficient attaining the second best running time over large networks among the tested algorithms.

Conclusions: Our algorithm Core&Peel pushes forward the state-of the-art in PPIN clustering providing an
algorithmic solution with polynomial running time that attains experimentally demonstrable good output quality and
speed on challenging large real networks.
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Background
Due to recent advances in high-throughput proteomic
techniques, such as yeast two-hybrid system (Y2H) and
Tandem Affinity Purification coupled with Mass Spec-
trometry (TAP-MS), it is now possible to compile large
maps of protein interactions, which are usually denoted
as protein-protein interaction networks (PPIN). How-
ever, extracting useful knowledge from such networks
is not straightforward. Therefore sophisticated PPI net-
work analysis algorithms have been devised in the last
decade for several goals such as: the prediction of protein-
complexes ([1]), the prediction of higher level functional
modules ([2–4]), the prediction of unknown interactions
([5, 6]), the prediction of single protein functions ([7]),
the elucidation of the molecular basis of diseases ([8]),
and the discovery of drug-disease associations ([9]), to
name just a few. In this paper we concentrate on the issue
of predicting protein-complexes (PC) in PPI networks.
An incomplete list of complex prediction algorithms in
chronological order is: MCODE [10], RNSC [11], Cfinder
[12], MCL [13], COACH [14], CMC [15], HACO [3],
CORE [16], CFA [17], SPICi [18], MCL-CAw [19], Clus-
terONE [20], Prorank [21], the Weak ties method [22],
Overlapping Cluster Generator (OCG) [23], PLW [24],
PPSampler2 [25], and Prorank+ [26]. Further references
to existing methods can be found in recent surveys
by [1, 27–31].
The graph representing a PPIN can also be augmented

so to include additional biological knowledge, annotations
and constraints. The conservation of protein complexes
across species as an additional constraint is studied in [32].
Jung et al. [33] encode in PPIN the information on mutu-
ally exclusive interactions. Proteins in PPIN can also be
marked with cellular localization annotations ([34]), and
several types of quality scores. Though all these aspects
are important, they are possible refinements applicable
to the majority of the algorithms listed above, involv-
ing the modeling of additional knowledge in the PPIN
framework (see [35]). In this paper we concentrate on
the basic case of a PPIN modeled as an undirected and
unweighted graph. The size of PPIN found in applications
tend to grow over time because one can obtain with mod-
ern techniques from a single high-throughput experiment
thousands of novel PPI, and also because one can col-
late groups of PPI from different experiments into a single
larger network (ensemble PPIN) [36]. For example very
large PPIN arise in multi-species PPI studies, ([37, 38]),
in immunology studies ([39, 40]) and cancer data analysis
([41]). Large PPIN can be challenging for clustering algo-
rithms as many of them have been designed and tested in
the original publication with PPIN of small and medium
size (with the possible exception of SPICi ([18]), that
was designed intentionally for large PPIN). Greedy meth-
ods that optimize straightforward local conditions may

be fast but speed may penalize quality. Thus, although
more than a decade has passed since the first applica-
tions of clustering to PPIN, the issue of growing PPIN
size poses new challenges and requires a fresh look at the
problem.
We develop a new algorithm (Core&Peel) designed for

clustering large PPIN and we apply it to the problem
of predicting protein complexes in PPIN. The complexes
we seek have just very basic properties, they should
appear within the PPIN as ego-networks of high density
and thus we can model them as maximal quasi-cliques.
These features are not particularly new, but we show in
Section ‘Experiments’ that they are sufficient to character-
ize a large fraction of PCs in a sample of five large PPIN for
two species (yeast and human). Computational efficiency
is attained by a systematic exploitation of the concept of
core decomposition of a graph, which for each vertex (pro-
tein) in a graph provides a tight upper bound to the size of
the largest quasi-clique that includes that vertex. We use
this upper bound to trim locally the subgraphs of interest
in order to isolate the sought quasi-clique, and proceed
then to the final peeling out of loosely connected vertices.
Our approach has some superficial similarity with that
of CMC ([15]) which applies the enumeration algorithm
of [42] to produce, as an intermediate step, a listing of
all maximal cliques in a graph. We avoid this intermedi-
ate step that may cause an exponential running time in
large PPIN and cannot be adapted easily to listing all max-
imal quasi-cliques, when density below 100% is sought.
Our approach is both more direct (no intermediate list-
ing of potentially exponential size is produced) and more
flexible (as we can tune freely and naturally the density
parameter).
CFinder ([12]) lists all k-cliques, for a user defined value

of k, and then merges together k-cliques sharing a (k-
1)-clique. CFinder might produce too many low density
clusters if the user choosees k too small, or miss inter-
esting complexes if k is too large. Core&Peel avoids both
pitfalls since we have a more adaptive control over clus-
ter overlaps. Our algorithm is empirically very fast: all
instances in this paper run in less than 2 minutes on com-
mon hardware. The asymptotic analysis (see Additional
file 1: Section 8) indicates a running time very close
to linear for sparse graphs. More precisely, with some
additional mild sparsity assumptions, the algorithm runs
in time O(a(G)m + n) for a graph G of n nodes and
m arcs, where a(G) is the arboricity of G (which is
roughly proportional to the maximum average degree
of any induced subgraph in G). The output quality is
assessed by comparative measures of the ability to predict
known complexes and of the ability to produce biolog-
ically homogeneous clusters, against 10 state-of-the art
methods. In both quality assessments Core&Peel leads
or ties in most tests vs all other methods, often by a
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large margin (See Section ‘Comparative evaluation’). The
robustness of our method is remarkably high, since prac-
tically no output variation is measured even when adding
up to 25% random edges in the input graph. Finally, we
show several high quality predicted clusters that involve
a known complex with additional proteins, which corre-
spond to biologically relevant mechanisms described in
literature.

Paper organization
In Section Methods we start by reviewing the issue of
false positive/negative PPI in large PPIN with hindsight
from the work in [5] indicating quasi-cliques as good
models for protein complexes in our settings (Section
‘On false positive and false negative PPI in dense and large
PPIN). Next, in Section Preliminaries we recall the basic
graph-theoretic definitions of subgraph density, quasi-
cliques, and core-decompositions, that are central to our
algorithmic design. In Section ‘Partial dense cover of a
graph’ we introduce the notion of a partial dense cover
as a formalization of our problem, showing its similarities
with well known NP-hard problems of minimum clique
cover and maximum clique [43]. In Section ‘Algorithm
Core&Peel in highlight’ we give a high level description
of our proposed polynomial time heuristic. For ease of
description it is split in four phases, though in opti-
mized code some of the phases may be interleaved. The
rationale behind certain design choices is explained in
further detail in Section ‘Algorithm description: details’.
The asymptotic analysis of the proposed algorithm can
be found in (Additional file 1: Section 8). The experimen-
tal set up is described in Section ‘Results and discussion’,
including the sources of raw data, the initial data cleaning
(Section ‘Used data and preprocessing’) and the quality
score functions (Sections ‘Evaluation measures for pro-
tein complex prediction’ and Evaluationmeasure for Gene
Ontology coherence). Further data statistics and details
of the comparative evaluations are in Section ‘Expe-
riments’ and ‘Comparative evaluation’. In particular we
report on the ability to capture known complexes in
Section ‘Performance of protein complex prediction’, to
produce functionally coherent clusters (Section ‘Coher-
ence with Gene Ontology annotation’), on robustness in
presence of random noise (Section ‘Robustness against
noise in the PPIN graph’), and on computation timings
(Section ‘Running times’).
In Section ‘Some predictions with support in the litera-

ture’ we list ten interesting predictions in which a known
complex interacts with an additional protein. These find-
ings have an independent support in the literature. Finally
in Section ‘Conclusions’ we comment on the potential
applications and extensions of the proposed method, as
well as on its limitations.

Methods
On false positive and false negative PPI in dense and large
PPIN
The estimation of the number of erroneous PPI calls (false
positive/false negative) in PPI networks is highly depen-
dent on the technology and the experimental protocols
used. Yu et al. [5] report an experiment on 56 proteins
of Saccharomyces cerevisiae (yeast) for which PPI were
detected using both error-prone high throughput tech-
nologies and more precise low throughput technologies.
In 563 cases (pairs of proteins) for which the two methods
differ, the vast majority (92.5%) were false negatives (FN),
and just 7.5% false positive (FP). A similar ratio among
FP/FN rates is reported in [36] for PPI obtained through
Y2H and high confidence AP-MS techniques. While each
technology has its own systematic biases, it is observed in
[36] that such biases tend to compensate each other when
data from several sources is used to compile ensemble
PPIN. The implication is that, over time, as the evidence
on reliable PPI accumulates, the number of undetected
real PPI (FN) will steadily decrease, while the number of
spurious PPI (FP) should increase quite slowly. In graph
terms the subgraphs representing complexes in the PPI
will become denser (i.e. closer to a clique), while the
noisy interactions will still remain within a controllable
level (assuming that only high quality interaction data is
encoded in the PPI networks). Expanding on these finding
Yu et al. [5] demonstrate that quasi-cliques (cliques with a
few missing edges) are good predictors of the presence of
a protein complex, provided the PPIN is large. Our own
measurents on one medium size graphs (≈ 20K PPI) and
four large graphs (≈ 130K/220K PPI) in Section ‘Experi-
ments’ confirm this tendency of protein complex density
increase in larger PPIN. Besides the increase in density,
a second notable phenomenon, is that protein complexes
often resemble ego-networks, that is, the protein com-
plex is mostly contained in the 1-neighborhood of some
protein (see Section ‘Experiments’).

Preliminaries
An early incarnation of the Core&Peel algorithm targeting
communities in social graphs is described in [44]. In order
to make this paper self-contained we are describing in this
section a version of Core&Peel that includes all the modi-
fications needed to target potentially overlapping protein
complexes in PPI network. Let G = (V ,E ⊆ V × V )

be a simple (undirected) graph (no self-loops, no multiple
edges). A subsetQ ⊂ V induces a subgraphHQ = (Q,EQ),
where EQ = {(a, b) ∈ E|a ∈ Q ∧ b ∈ Q}. For a graph G its
average degree is:

av(G) = 2|E|
|V | .
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The density of a graph D(G) is the following ratio:

D(G) = |E|
(|V |
2

) = 2|E|
|V |(|V | − 1)

,

which gives the ratio of the number of edges in G to
the maximum possible number of edges in a complete
graph with the same number of nodes. We restrict our-
selves to local density definitions, such as the two listed
above, that are those for which the density of a subgraph
induced by a subset Q ⊆ V is a function depending only
on Q and on the induced edges set EQ. A nice survey of
concepts and algorithms related to local density of sub-
graphs is in [45]. Cliques are subgraphs of density 1, and
finding a maximum induced clique in a graph G is an NP-
complete problem [46]. Several relaxations of the notion
of clique have been proposed (see [47] for a survey), most
of which also lead to NP-complete decision problems.
Given a parameter γ ∈[ 0..1], a γ -quasi clique is a graph
G = (V ,E) such that:

∀v ∈ V |NG(v)| ≥ γ (|V | − 1),

where NG(v) = {u ∈ V |(v,u) ∈ E} is the set of immediate
neighbors of v in G. Note that a γ -quasi clique has den-
sityD(G) ≥ γ . In general, however, for a dense graph with
densityD(G)we cannot infer a bound on the value of γ for
which there exists a quasi-clique in G (except for the value
D(G) = 1 that implies γ = 1, and those cases covered by
Turán’s theorem ([48])). If we impose that the number of
vertices in a subgraph is exactly k, then the average degree
and the density depend only on the number of edges, and
thus they attain their maximum values for the same sub-
graphs. Without this constraint, finding the subgraph of
maximum average degree or the subgraph of maximum
density are quite different problems: the former admits
a polynomial time solution, the latter is NP-complete. In
this paper we aim at detecting dense-subgraphs with a
lower bound on the size of each sub-graph and on its den-
sity, thus still anNP-complete problem. A k-core of a graph
G is a maximal connected subgraph of G in which all ver-
tices have degree at least k. A vertex u has core number k
if it belongs to a k-core but not to any (k+1)-core. A core
decomposition of a graph is the partition of the vertices of
a graph induced by their core numbers ([49]).

Partial dense cover of a graph
In this section we formalize our problem as that of com-
puting a partial dense cover of a graph. We aim at col-
lecting efficiently only high quality candidate dense sets
that cover the dense regions of the input graph. A Partial
Dense Cover PDC(G, r, δ, q) is defined as the range of the

function f : V → 2V that associates to any vertex v ∈ V a
subset of V with these properties:

(a) if f (v) 
= ∅ then v ∈ f (v), (the set f (v) contains the
seed v or it is empty).

(b) f (v) ⊆ Nr(v) ∪ {v}, (the set f (v) is a subset of the
r-neighborhood of v, i.e. all its vertices are at distance
at most r from v. (In this study, we set r = 1
throughout)

(c) f (v) is the largest set having size at least q, density at
least δ, satisfying (a) and (b), or otherwise it is the
empty set.

Note that there may be more than one set f (v) that,
for a given v, satisfies (a), (b) and (c). If this is the case,
we pick arbitrarily one such set as the value of f (v). We
drop G and r from the notation when they are clear from
the context. Since the PDC(δ, q) is the range of the func-
tion f , by definition, it contains no duplicate sets, though
its elements can be highly overlapping. One way to imag-
ine this structure is as a relaxation of a minimum clique
cover of a graph that is the problem of determining the
minimum value k such that the vertices of a graph can
be partitioned into k cliques. We relax this problem by
(1) relaxing the disjointness condition (we allow sets to
overlap) (2) allowing also a covering with graphs of den-
sity smaller than 1.0 (cliques correspond to density value
δ = 1.0). Computing a clique cover of minimum size k is
a well known NP-complete problem [50], and it is hard to
approximate [51]. Even in this weaker form it remains NP-
complete, by an easy reduction to the maximum clique
problem. The cover we seek is partial since we do not
insist that every vertex must be included in some set.
We exclude sets that are too small (below a size thresh-
old q) or too sparse (below a density threshold δ). The
size parameter q and density parameter δ ensure that we
can focus the computational effort towards those part of
the graph that are more interesting (i.e. of large size and
high density) with the goal of attaining computational effi-
ciency while collecting high quality dense candidate sets.
Note that for δ = 1.0 the PDC(1.0, q) is a subset of the
set of all maximal cliques. While the set of all maximal
cliques can be much larger than |V |, actually a worst case
exponential number [43, 52], the PDC(δ, q) has always at
most |V | elements (and in practical cases quite fewer than
that).

Algorithm Core&Peel in highlight
As noted above, computing a partial dense cover of a
graph is a NP-complete problem. In this section we
describe an efficient heuristic algorithmwhich is based on
combining in a novel way several algorithmic ideas and
procedures already presented separately in the literature.
For each step we give intuitive arguments about its role
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and an intuitive reason for its contribution to solving the
problem efficiently and effectively. We first give a con-
cise description of the four main phases of the Core&Peel
algorithm. Subsequently we describe each phase in more
detail.
Algorithm Overview. Phase I. Initially we compute the

Core Decomposition of G (denoted with CD(G)) using the
linear time algorithm in [53], giving us the core number
C(v) for each node v ∈ V . Moreover we compute for each
vertex v in G the Core Count of v, denoted with CC(v),
defined as the number of neighbors of v having core num-
ber at least as large as C(v). Next, we sort the vertices of V
in decreasing lexicographic order of their core values C(v)
and core count value CC(v).
Phase II. In Phase II we consider each node v in turn, in

the order given by Phase I. For each v we construct the set
NC(v)(v) of neighbors of v inG having core number greater
than or equal to C(v). We apply some filters based on sim-
ple node/edge counts in order to decide whether v should
be processed in Phase III. If |NC(v)(v)| < q we do not pro-
cess this node anymore, being too small a set to start with.
Otherwise we apply one of the following filters. We com-
pute the density δ(v) of the induced subgraphG[NC(v)(v)].
If this density is too small (i.e. δ(v) ≤ δlow) for a threshold
δlow, which we specify later, we do not process this node
any more (filter (f=0)). In the second filter (f=1) we check
if there are at least q nodes with degree at least (q − 1)δ.
The third filter (f=2) is a combination of the previous two
filters. Nodes that pass the chosen filter are processed in
Phase III.
Phase III. In this phase we take v and the induced sub-

graph G[NC(v)(v)] and we apply a variant of the peeling
procedure described in [54] that iteratively removes nodes
of minimum degree in the graph. The peeling procedure
stops (and reports failure) when the number of nodes
drops below the threshold q. The peeling procedure stops
(and reports success) when the density of the resulting
subgraph is above or equal to the user defined thresh-
old δ. The set of nodes returned by the successful peeling
procedure is added to the output cover set.
Phase IV. Here we eliminate duplicates and sets com-

pletely enclosed in other sets, among those passing the
Phase III. We also test the Jaccard coefficient of similar-
ity between pairs of predicted complexes, removing one of
the two predictions if they are too similar according to a
user-defined threshold.

Algorithm description: details
Many of our choices rely in part on provable proper-
ties of the core number and of the peeling procedure
shown in [54], and in part on the hypothesis that the peel-
ing procedure will converge to the same dense subgraph
for both notions of density, when the initial superset of
nodes is sufficiently close to the final subset. However the

connections between these properties, the approximation
to a partial dense cover computed by the algorithm, and
the properties of validated protein complexes in a PPIN
network can be only conjectured. The final justification of
individual choices is mainly based on the good outcome of
the experimental evaluation phase.
Details on Phase I. The core decomposition of a graph

G = (V ,E) associates to any vertex v a numberC(v)which
is the largest number such that v has at least C(v) neigh-
bors having core number at least C(v). Consider now a
clique Kx of size x, for each node v ∈ Kx its core number
is x − 1. If Kx is an induced subgraph of G, then its core
number is at least x − 1, thus C(v) is an upper bound to
the size of the largest induced clique incident to v. Con-
sider a γ -quasi-clique K(x,γ ) of x nodes, for each node v
in K(x,γ ) its core number is at least γ (x − 1). If K(x,γ ) is
an induced subgraph of G, then its core number can only
be larger, thus C(v) is an upper bound to the size of the
largest (in terms of average degree) quasi-clique incident
to v. Thus if the upper bound provided by the core number
is tight, examining the nodes in (decreasing) order of their
core number allows us to detect first the largest cliques (or
quasi-cliques), and subsequently the smaller ones.
In a clique Kx each node is a leader for the clique,

meaning that it is at distance 1 to any other node in the
clique. Thus the first node of Kx encountered in the order
computed in Phase I is always a leader. In the case of quasi-
cliques of radius 1 we have by definition the existence of
at least one leader node. For an isolated quasi-clique the
leader node will have the maximum possible core count
value, thus by sorting (in the descending lexicographic
order) on the core count value we force the leader node to
be discovered first in the order (assuming all nodes in the
quasi-clique have the same core number). For an induced
quasi-clique the influence of other nodes may increase the
value of the core count for any node, but, assuming that
the relative order between the leader and the other nodes
does not change, we still obtain the effect of encountering
the leader before the other nodes of the quasi-clique.
The core number of a node v gives us an estimate of the

largest (in terms of average degree) quasi-clique (or clique)
incident to v, thus it provides a very powerful filter. We
employ the very simple and very efficient algorithm in [53]
that computes the core decomposition of a graph in time
and storage O(|V | + |E|).
Details on Phase II. In Phase II we aim at computing sim-

ple conditions and we decide whether node v should be
processed in the next (more expensive) phase III. The first
condition to test is |NC(v)(v)| < q, i.e. whether the num-
ber of nodes is below the user defined lower bound for the
size (this is applied always). We apply then one of the fol-
lowing filter policies. We define the filter policy f = 0, by
checking a sufficient condition for the existence of a clique
in a dense graph based on the classical results of Turán
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([48]) that guarantees the existence of a clique (or a clique
with a few edges missing) in graphs with sufficiently many
edges (approximately above n2/4 for a graph of n nodes).
This corresponds to setting δlow = 1/2, which indeed did
perform well in our experiments with radius 1. We define
the filter policy f = 1, by checking the necessary condi-
tion for the existence of a δ-quasi clique of at least q nodes
(this condition is that G[NC(v)(v)] must contain at least q
nodes of degree at least (q − 1)δ). Finally, we define the
filter policy f = 2, that is the union of the previous two
filters.
Details on Phase III. The peeling procedure we use is

similar to the one described in [54]. It consists in an iter-
ative procedure that removes a node of minimum degree
and all its incident edges, and iterates on the residual
graph. In [54] the graph of highest average degree con-
structed in this process is returned as output. We modify
this procedure by returning the first subgraph generated
that satisfies the density and size constraints. It is shown
in [54] that this procedure is (1/2)-approximate for the
maximum average degree, i.e. it returns a subgraph whose
average degree is within a factor 1/2 of that of the sub-
graph of highest average degree. Empirically, we rely on
the intuition that the input to the peeling procedure pro-
duced after Phase II is a superset of the target dense
subgraph and that it is sufficiently tight and dense so
that the peeling procedure converges quickly and the tar-
get dense subgraph is isolated effectively. We also use a
novel heuristic to solve cases of ties within the peeling
algorithm in [54]. When two or more vertices are of min-
imum degree the original peeling procedure picks one
arbitrarily. In our variant we compute the sum of degrees
of the adjacent nodes S(v) = ∑

w∈N(v) |N(w)| and we
select the vertex among those of minimum degree mini-
mizing S(.). This secondary selection criterion is inspired
by observations in [55], where the objective is to select
an independent set by iteratively removing small degree
nodes, which is a dual of the problem of detecting cliques.
Details on Phase IV. In order to eliminate duplicate sets,

we collect all the sets passing phase III, we split them in
equal length classes and we represent them as lists of node
identifiers in sorted order. Next we do a lexicographic
order of each class, thus lists that are equal to each other
end up as neighbors in the final sorted order and they can
be easily detected and removed. In order to further exploit
the sparsity of the output of phase III, we represent the
collection of sets {�i} produced in phase III, with dupli-
cates removed, as a graph whose nodes are the sets and
elements of {�i}. The edges represent the inclusion rela-
tion. In this graph the number of 2-paths joining nodes �i
and �j is exactly |�i ∩ �j|. If |�i ∩ �j| = |�j|, we know
�j ⊂ �i and we can remove �j. We can count efficiently
such number of 2-paths by doing a Breadth First Search at
depth 2 starting from each set-node in the bipartite graph

in increasing order of size, and by removing each starting
node after its use. This operation allows us to compute
if a set is a subset of another set, and also the Jaccard
coefficient of similarity of any two non-disjoint sets.

Results and discussion
Used data and preprocessing
We used the following freely accessible data sets to test
our method.

Protein protein interaction networks
Biogrid ([56]): we downloaded both Biogrid homo sapiens
(BIOGRID-ORGANISM-Homo_sapiens-3.2.104.tab2.txt)
and Biogrid yeast (BIOGRID-ORGANISM-Saccharomy
ces_cerevisiae-3.2.104.tab2.txt). String ([38]): we down-
loaded the general String file (protein.links.v9.05.txt.zip)
and then we extracted the two subsets of interest: the
homo sapiens one (related to the 9606 NCBI taxonomy
id) and the yeast one (related to the 4932 NCBI taxon-
omy id). DIP ([57]): we downloaded the yeast db (file
Scere20141001.txt).

Protein databases
From the NCBI web site we downloaded the two
files for homo sapiens (Homo_sapines_gene_info.txt
on 14/10/2013) and yeast (saccharomyces_cerevisiae_
gene_info on 20/09/2013), the Uniprot db (uniprot_
sprot.dat on 26/03/2013), and the Ensembl mapping for
the associations of ensemblproteinid with entrez id for
homo sapiens.

Protein complexes
We downloaded CYC2008 ([58]) and CORUM ([59]) data
on 26/03/2013.

Gene Ontology (GO)
We downloaded the files for homo sapiens
(gene_association. goa_human.gz) on 10/09/2014, and for
yeast (gene_association.sgd.gz) on 10/09/2014

Preprocessing
Files from different sources of PPI are heterogeneous
in many aspects. DIP exploits the Uniprot accession id
(or other db entries as aliases) to represent the proteins
involved in the interaction, Biogrid exploits the NCBI
entrez id , and String uses Ensembl proteins id for homo
sapiens and gene locus or Uniprot accession for yeast. The
first operation was to represent in a uniform way the pro-
teins for both the PPI files and the gold standard files.
We decided to represent each protein with their associ-
ated NCBI entrez-id. In the process we removed possible
duplications, and proteins for which the mapping was not
possible. For the String data we also removed PPI with
a quality score below 700. For the GO file, we identified
and separated the three principal categories of the Gene
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Ontology, which are Cellular Component (CC), Biological
Process (BP), and Molecular Functions (MF). Following
the methodology in [20], these files are filtered to remove
the annotation with IEA, ND and NAS evidence codes
(corresponding to the “Inferred from electronic annota-
tion”, “No biological data available” and “Non-traceable
author statement”, respectively). Each protein associated
to an annotated function is then mapped to its NCBI
entrez id. Eventual repetitions of proteins for an annota-
tion have been removed.

Evaluation measures for protein complex prediction
In order to better capture the nuisances of matching pre-
dicted clusters with actual complexes, we use four scalar
measures (one from [28], and three from [60]) and we
sum them to form a single scalar Aggregated Score (AS).
Each of the four measures differs form the others in some
key aspects: some use a step-function, while other use
cluster-size as weights. All four, however, aim at balanc-
ing precision and recall effects. A similar aggregation of
indices has been used in [20], although we use a different
pool of indices.

F-measure
From [28] we adopted the following f-measure computa-
tion to estimate the degree of matching between the found
cluster and the gold standard complex. Let P be the col-
lection of discovered clusters and let B be the collection
of the gold standard complexes. For a pair of sets p ∈ P
and b ∈ B, the precision-recall product score is defined as
PR(p, b) = |p∩b|2

|p|×|b| . Only the clusters and complexes that
pass a PR(p, b) thresholdω (step function) are then used to
compute precision and recall measures. Namely we define
the matching sets: Np = |{p|p ∈ P, ∃b ∈ B,PR(p, b) ≥ ω}|,
and Nb = |{b|b ∈ B, ∃p ∈ P,PR(p, b) ≥ ω}|. Afterwards:
Pecision = Np

|P| ,Recall = Nb|B| , and the F-measure is the har-
monic mean of precision and recall. In line with [28] and
other authors we use ω = 0.2. Experiments in [61] indi-
cate that the relative ranking of methods is robust against
variations of the value of ω.
From [60] we adopted three measures to evaluate the

overlap between complexes and predicted clusters: the
Jaccard measure, the precision-recall measure and the
semantic similarity measure.

Jaccardmeasure
Let the sets P and B be as above, for a pair of sets
p ∈ P and b ∈ B, their Jaccard coefficient is
Jac(p, b) = |p∩b|

|p∪b| . For each cluster p it is defined Jac(p) =
maxb∈BJac(p, b), and for each complex b it is defined
Jac(b) = maxp∈PJac(p, b). Next, we compute the weighted
average Jaccard measures using, respectively, the clus-
ter and complex sizes: Jaccard(P) =

∑
p∈P |p|Jac(p)
∑

p∈P |p| , and

Jaccard(B) =
∑

b∈B |b|Jac(b)∑
b∈B |b| . Finally, the Jaccard measure is

the harmonic mean of Jaccard(P) and Jaccard(B).

Precision recall product
This measure is computed using exactly the same work
flow as Jaccard, except that we replace the Jaccard coef-
ficient with the precision-recall product score used also
in [28].

Semantic similaritymeasure
Let the sets P and B be as above, for a protein x, we define
P(x) as the set of predicted clusters that contain x: P(x) =
{p ∈ P|x ∈ p}, and B(x) as the set of golden complexes
that contain x: B(x) = {b ∈ B|x ∈ b}. Denote with I(.) the
indicator function of a set that is 0 for the empty set and
1 for any other set. Let Bin(.) denote the set of unordered
pairs of distinct elements of a set. The semantic similarity
of p in B is: Den(p,B) =

∑
(x,y)∈Bin(p) I(B(x)∩B(y))

|Bin(p)| . Analo-
gously the semantic similarity of b in P is: Den(b,P) =∑

(x,y)∈Bin(b) I(P(x)∩P(y))
|Bin(b)| . Next, we compute the weighted

average semantic similarity weighted respectively by clus-
ter and complex size: Density(P) =

∑
p∈P |p|Den(p,B)

∑
p∈P |p| , and

Density(B) =
∑

b∈B |b|Den(b,P)∑
b∈B |b| . Finally, the Semantic Sim-

ilarity Measure is computed as the harmonic mean of
Density(P) and Density(B).

Handling of small protein complexes
The presence or absence of small protein complexes in
the golden standard and in the outcome of the algo-
rithms complicates the evaluation, thus in Additional
file 1: Section 4 we describe a fair method for placing all
algorithms on a level field with respect to this issue.

Evaluation measure for Gene Ontology coherence
For a predicted cluster p ∈ P we compute a q-value score
trying to assess its biological coherence and relevance. Let
G be a collection of Gene Ontology annotations, and g
one GO class. Let M be the set of all proteins. For a pre-
dicted cluster p, we compute the hypergeometric p-value
H(M, p, g) of the association of p to g, when g ∩ p 
= ∅:

H(M, p, g) =
min(|p|,|g|)∑

i=|p∩g|

(|M|−|g|
|p|−i

)(|g|
i
)

(|M|
|p|

) ,

which represents the probability that a subset of M of
size |p| chosen uniformly at random has with g an inter-
section of size larger than or equal to |p ∩ g|. As, in
general, p will have an hypergeometric score for each
Gene Ontology class it intersects, following [20] and [62],
we associate to each p the intersecting Gene Ontology
class of lower p-value. In order to correct for multiple
comparisons we correct the vector of p-values using the
q-value method of [63] which is a regularized version of



The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):372 Page 116 of 212

Table 1 Columns give: PPI name, Species (Sp.)(hs=homo
sapiens, y=yeast), reference, number of proteins |V|, number of
interactions |E|, average degree d̄, and whether a quality filter
(Fil.) has been applied

PPI Sp. Ref. |V| |E| d̄ Fil.

DIP y [57] 4637 21,107 9.1 No

Biogrid y [56] 6686 220,499 65.9 No

String y [38] 5590 133,082 47.6 Yes

Biogrid hs [56] 18,170 137,775 15.1 No

String hs [38] 12,717 193,105 30.3 Yes

the Benjamini Hochberg FDR estimation method. The q-
values for the vector of p-values are computed via the R
package provided at http://genomine.org/qvalue/.

Experiments
Basic direct measures
Basic measures on the PPINs and protein complexes data
sets are reported in Table 1 and in Table 2, respectively.
When we map the known curated complexes onto the
PPI-networks we obtain 5 different data sets in which the
number and density of the embedded complexes is spe-
cific to the involved PPIN (see Table 3). The resulting
embedded complexes have variable density. We report in
Table 3 the 90% and the 50% density percentiles. One of
the assumptions we have used in our algorithm is that for
each embedded complex there is one vertex that is linked
to (almost) all the other nodes in the embedded complex
(egocentricity). This is an important property that mea-
sures on the actual data support (see Table 4). In Table 5
we report on the degree of overlap among complexes by
counting the number of proteins belonging to one, two,
three or more than three complexes. This is an important
feature of the prediction problem since algorithms need
to handle properly overlapping clusters. Human com-
plexes have higher overlap rates than yeast complexes. In
(Additional file 1: Section 6) we report the distributions
of basic measures relative to the graph (degree, core num-
ber, clustering coefficients), and to the embedded PC (size,
average degree, density).

Table 2 Columns give: name of the data set, Species
(Sp.)(hs=homo sapiens, y=yeast), reference, total number of
complexes, number of complexes of size 3 or larger, number of
complexes of size up to 2, total number of proteins covered by
the complexes

Name Sp. Ref. # complexs # compl. # compl. # proteins
size > 2 size ≤ 2

CYC2008 y [58] 408 236 172 1627

CORUM hs [59] 1750 1257 493 2506

Table 3 Columns give: Name of the PPI and complex data set,
number of complexes of size ≥ 3, min size, max size, average size,
number of complexes with density δ greater than 0.9 and 0.5

Name # CX Min Max Mean δ > 0.9 δ > 0.5

DIP-CYC2008 226 3 40 6.02 60 (25%) 131 (55%)

BioGrid-CYC2008 236 3 81 6.67 173 (73%) 223 (94%)

String-CYC2008 236 3 81 6.67 220 (93%) 235 (99%)

BioGrid-CORUM 1257 3 143 6.12 516 (41%) 943 (75%)

String-CORUM 1188 3 133 6.07 621 (52%) 981 (82%)

Quality testing
We report the comparative evaluation of our algorithm vs
several other algorithms, among those considered state-
of-the-art. We used for these experiments an Intel core i7
processor (4 cores) at 2.6 GHz, with 16 Gb RAMmemory,
and with Mac OS X 10.8.5.
We have selected 10 algorithms, namely: MCL, Coach,

MCODE, CMC, MCL-CAW, ProRank+, SPICi, Clus-
terOne, RNSC, and Cfinder among those in literature. A
brief description of each is in Additional file 1: Section 1.
In the selection we applied these criteria: (a) we selected
algorithms that appeared in several surveys and compar-
ative evaluations, and well cited in the literature; (b) we
included both old classical algorithms and more recent
ones; (c) we have included algorithms using definitions
of density similar to the one we adopt; (d) we included
algorithms with available implementation in the public
domain or obtainable from the authors upon request; (e)
we preferred implementations based on widely available
(i.e. non-proprietary) platforms; (f ) we avoided algorithms
that make use of additional biological annotations (e.g.
gene expression data); (g) we preferred methods with a
clear and unique underlying algorithm (e.g. “ensemble”
methods are not included); (h) we preferred methods
that aim at “protein complex detection” vs. those that
aim at “functional module discovery”, since the evaluation
methodologies for these two classes are quite different,
although many methods could be construed as dual-use.

Table 4 Columns give: name of the PPI and complex data set,
number of complexes of size ≥ 3, number of complexes with at
least one center at distance 1 (r = 1) for a fraction of at least 0.9
of its size and at least 0.5 of its size. Similar data for a center at
distance 2, (r = 2)

Name # CX r1 > 0.9 r1 > 0.5 r2 > 0.9 r2 > 0.5

DIP-CYC2008 226 131 (55%) 197 (83%) 163 212

BioGrid-CYC2008 236 216 (91%) 234 (99%) 234 236

String-CYC2008 236 235 (99%) 236 (100%) 236 236

BioGrid-CORUM 1257 891 (70%) 1162 (92%) 1176 1246

String-CORUM 1188 923 (77%) 1139 (95%) 1085 1188

http://genomine.org/qvalue/
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Table 5 Columns give: name of the PPI and complex data set,
number of proteins covered by some complex, number of
protein covered by one, two, three or more then three complexes

Name # P 1 CX 2 CX 3 CX > 3 CX

DIP-CYC2008 1175 1005 (86%) 134 (11%) 23 (2%) 13 (1%)

BioGrid-CYC2008 1342 1166 (87%) 139 (10%) 24 (2%) 13 (1%)

String-CYC2008 1341 1165 (87%) 139 (10%) 24 (2%) 13 (1%)

BioGrid-CORUM 2227 909 (41%) 483 (21%) 233 (11%) 602 (27%)

String-CORUM 2067 852 (42%) 430 (20%) 217 (10%) 568 (28%)

Each method has its own pool of parameters to be set.
For the quality score shown in Section Evaluation mea-
sures for protein complex prediction we have considered
for each method an extensive range of input parameter
values (see File Additional file 1: Section 2 and 3) and we
selected for each quality measure used in the Aggregated
Score the best result obtained. Note that each best value
for the four base quality measures may be obtained with
slightly different values of the control parameters. Missing
measures indicate that, for a specific algorithm and data
set, the computation would not complete within a reason-
able amount of time (without any sign of progress) or it
generated fatal runtime errors.

Comparative evaluation
Performance of protein complex prediction
Figures 1, 2, 3, 4 and 5 report the F-measure, the Semantic
Similarity, the J-measure, the PR-measure and the Aggre-
gated Score (as defined in Section ‘Evaluation measures
for protein complex prediction’) for three data sets relative

to yeast PPIN (DIP, Biogrid and String). Out of 15 mea-
surements, Core&Peel has the best value in 12 cases,
CMC in 2 cases, and ClusterOne in 1 case. The Aggre-
gated Score, which balances strong and weak points of
the four basic measures, indicates that Core&Peel, CMC
and ClusterOne have about the same performance for the
medium-size PPI newtwork DIP. But for Biogrid data and
even more for String data Core&Peel takes the lead, even
with a wide margin.
Figures 6, 7, 8, 9 and 10 report the F-measure, the

Semantic similarity, the J-measure, the PR-measure and
the aggregated score for three data sets relative to homo
sapiens PPI (Biogrid and String). During the evaluation of
the predicted clusters for Biogrid data we realized that the
Biogrid PPI network had one node of very high degree
corresponding to the Ubiquitin (UBC) protein. This fact
has a straightforward biological explanation. Since UBC
is involved in the degradation process of other proteins,
UBC is linked to many other proteins at a certain time
in their life-cycle. Given this special role of UBC, when
protein degradation is not the main focus of the intended
investigation, it may be convenient to consider also the
same PPI network with the UBC node and its incident
edges removed (Rolland et al. in [64] also remove interac-
tions involving UBC in their high quality human PPIN.)
We labelled this graph BG-hs-UBC. We tested also the
other PPI network used in our study and this is the
only case in which removing a node of maximum degree
changes significantly the outcome of the prediction. Out
of 15 measures, Core&Peel has the best value in all 15
cases. Good performance is obtained on some measures
by CMC and Spici.

Fig. 1 F-measure score for 11 algorithms and 3 random baselines on yeast data. Runs optimizing the f-measure for each algorithm
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Fig. 2 Semantic similarity score for 11 algorithms and 3 random baselines on yeast data. Runs optimizing the ss-measure for each algorithm

It is interesting to notice how the algorithms perform
differently on the BG-hs with and without UBC. On
Biogrid data without UBC, Core&Peel, Spici and Clus-
terOne improve their AS value, while RNSC and COACH
have a reduced AS value. The improvement in absence of
UBC can be easily explained by the fact that UBC appears
only in a few complexes of the golden standard, thus the
evaluation phase is mademore precise by its removal from
the network and thus from the predicted clusters. The bet-
ter results attained by RNSC and COACH on the graph

with UBC may be a hint that, for these two approaches,
the presence of UBC helps in homing in more quickly on
the true complexes hidden in the graph.
We include as a sanity check also three random pre-

dictions (Rand1, Rand2, and Rand3). The purpose of this
check is to assess how well the measure we are using are
able to discriminate the predictions on real data sets from
those generated randomly by generators allowed to access
some partial knowledge about the structure of the golden
standard.

Fig. 3 J-measure score for 11 algorithms and 3 random baselines on yeast data. Runs optimizing the J-measure for each algorithm
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Fig. 4 PR-measure score for 11 algorithms and 3 random baselines on yeast data. Runs optimizing the PR-measure for each algorithm

The method Rand1 is given the size distribution of the
sets in the golden standard and produce a random collec-
tion of sets out of the vertices of the PPI with the same size
distribution. The method Rand2 is as Rand1 except that
the random sets are generated starting from the subset of
all vertices in the PPI that belong to some complex in the
golden standard. The method Rand3 is obtained by taking
the golden standard and applying to it a random permu-
tation of the nodes of the PPI. Note that this approach
besides preserving the size distribution preserves also the

distribution of the size of the intersections of any number
of sets of the golden standard.
In terms of performance, Rand1 behaves almost like

Rand3, while Rand2 (having stronger hints) attains better
results. The semantic similarity measure is the one that
has better discrimination power vs all the three random
test cases.
Core&Peel has better SS performance on all the 6 PPIN

tested than the 10 competing methods. Semantic similar-
ity is the only measure that explicitly places a premium

Fig. 5 Aggregated score for 11 algorithms and 3 random baselines on yeast data
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Fig. 6 F-measure score for 11 algorithms and 3 random baselines on homo sapiens data. Runs optimizing the f-measure for each algorithm

in correctly identifying the proteins that simultaneously
belong to multiple complexes, thus we can infer that
Core&Peel successfully uncovers the overlapping struc-
ture of the the known protein complexes.

Coherence with Gene Ontology annotation
The second index is the number of predicted clusters with
an associated functional annotation (Biological Processes
(BP) of Gene Onontology (GO)) below a given False Dis-
covery Rate (FDR) threshold. Note that here we use a

non-normalized measure (absolute count) since we want
to favor algorithms with a rich high quality output. We
are safeguarded against rewarding unduly methods that
inflate their output since we operate each algorithm with
the parameters that optimize the (balanced) F-measure.
Moreover, even though none of the methods we use incor-
porates GO as part of its model, it is relatively safe to
assume that, in most cases of interest, GO annotations are
indeed available and may be used for a post-processing
re-ranking or filtering of the predictions.

Fig. 7 Semantic similarity score for 11 algorithms and 3 random baselines on homo sapiens data. Runs optimizing the SS-measure for each algorithm
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Fig. 8 J-measure score for 11 algorithms and 3 random baselines on homo sapiens data. Runs optimizing the J-measure for each algorithm

The biological function enrichment measure (using the
BP annotation in GO) is shown in Figs. 11, 12, 13, 14, 15,
and 16. We used in abscissa the FDR thresholds ranging
from 10−2 to 10−7 on the q-value.
Core&Peel has a larger or equal absolute number of high

quality predictions below q-value 10−3 than the compet-
ing methods on five data sets out of six. For the BG-hs-
UBC dataset Core&Peel leads below q-value 10−4. The
overall trend is fairly consistent for all the six data sets
tested.
Table 6 reports examples of predicted clusters with a

notable low p-value, and the corresponding GO class.

The top 10 predicted clusters we identify have p-value for
their prevalent GO-annotation (all distinct) in the range
10−191 − 10−72. For a comparison, the top 10 functional
modules detected by the recent method ADM (Adaptive
Density Modularity) of Shen et al. ([65] Table 3) relative
to the same GO BP annotation have p-values in the range
10−63 − 10−28.

Robustness against noise in the PPIN graph
We have tested our method for its robustness against
injection of random noise in the input network. Starting
with the the Biogrid HS network we have added randomly

Fig. 9 PR-measure score for 11 algorithms and 3 random baselines on homo sapiens data. Runs optimizing the PR-measure for each algorithm
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Fig. 10 Aggregated score for 11 algorithms and 3 random baselines on homo sapiens data

additional (noise) edges for a number of additions rang-
ing from 5 to 25% of the initial number of edges in steps
of 5%. We have generated 10 networks for each class and
taken the mean value of the 4 basic quality indices of
Section ‘Evaluation measures for protein complex predic-
tion’. The results are remarkably robust showing for three
indices no variation up to the fourth decimal digit, and
for the f-measure a variability of 0,001 across the range of
noise values. Further tests with large random graphs are
described in Additional file 1: Section 7, where we use the

two stage multiple hypothesis test proposed in [66, 67] to
bound the false discovery rate (FDR) associated with the
identified complexes.

Running times
Figures 17, 18, 19, 20, 21, and 22 report in logarithmic
scale the running times (seconds) for the 11 algorithms
on the six data sets, with the parameters optimizing the
f-measure. For MCL-caw we report the post-processing
time in the graphic, thus a timing comparable with those

Fig. 11 Number of predicted clusters with GO enrichment q-value below threshold, as a function of the threshold, for DIP yeast data
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Fig. 12 Number of predicted clusters with GO enrichment q-value below threshold, as a function of the threshold, for Biogrid yeast data

of the other methods requires adding the MCL datum.
Spici is the fastest method on all the data sets, often com-
pleting in less than a second. Core&Peel comes second in
speed in all the data set (except for DIP where it is third).

Some predictions with support in the literature
In the long run the effectiveness of a protein-complex
prediction method hinges upon its capability to uncover
interesting and unexpected new phenomena of biological
relevance. As an intermediate step we report on predic-
tions made by Core&Peel that involve a known complex

and one or two additional proteins, for which there is evi-
dence of a biological function in the literature.We take the
clusters detected by Core&Peel in the Biogrid and String
homo sapiens network, we rank them by the highest value
of the Jaccard correlation coefficient (jacc) and the seman-
tic similarity (SS) with a matching known complex, we
analyze the discrepancies (i.e. proteins non listed in the
known complex but with a large number of PPI connec-
tions to it) and we highlight the literature supporting the
functional relevance of the interaction. We chose here the
parameter setting maximizing the f-measure.

Fig. 13 Number of predicted clusters with GO enrichment q-value below threshold, as a function of the threshold, for String yeast data
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Fig. 14 Number of predicted clusters with GO enrichment q-value below threshold, as a function of the threshold, for Biogrid Homo sapiens data

Case 1 (rank=2 , jacc=0.875) This predicted cluster
matches almost perfectly with the 20S proteasome com-
plex (Corum-id 191). Moreover the predicted cluster
includes two additional proteins: UBC (Ubiquitin C) and
IQCB1 (IQ motif containing B1). The hitpredict database
(http://hintdb.hgc.jp/htp/) also predicts high quality inter-
actions between IQCB1 and six PSA plus three PSB pro-
teins. The functional connection of UBC and the protea-
some complex within the protein degradation pathway is
also well known (see e.g. [68]).

Case 2 (rank=5, jacc =0.875) This predicted cluster
matches almost perfectly with complex TFIIH (transcrip-
tion factor complex TFIIH)(Corum-id 5495). Moreover
the predicted cluster includes an additional protein: AR
(androgen receptor). Indeed the phosphorilation action of
TFIIH upon AR is reported in [69].

Case 3 (rank=9, jacc=0.833) This predicted cluster
matches almost perfectly with the TFIIIC contain-
ing complex (corum-id 1105), (and also with TFIIIC2,

Fig. 15 Number of predicted clusters with GO enrichment q-value below threshold, as a function of the threshold, for Biogrid Homo sapiens data
(UBC removed)

http://hintdb.hgc.jp/htp/
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Fig. 16 Number of predicted clusters with GO enrichment q-value below threshold, as a function of the threshold, for String Homo sapiens data

a second TFIIIC containing complex, corum-id 1101).
Moreover the predicted cluster includes an additional
protein: GTF3C6 (general transcription factor IIIC,
polypeptide 6). Dumay et al. [70] identified a sixth human
TFIIIC subunit, specificallyGTF3C6, which corresponds
to a previously uncharacterized 213-amino acid human
protein (C6ORF51).

Case 4 (rank=14, jacc=0.823) This predicted cluster
matches almost perfectly with the 20S proteasome com-
plex (Corum-id 191). Moreover the predicted cluster
includes two additional proteins: PSMB8 (Proteasome
subunit beta type-8) and POMP (proteasome maturation

protein). The protein encoded by the POMP gene is
a molecular chaperone that binds the 20S prepro-
teasome components and it is essential for 20S pro-
teasome formation. The POMP protein is degraded
before the maturation of the 20S proteasome is com-
plete. A mutation in the 5’ UTR of this gene has
been associated with KLICK syndrome, a rare skin
disorder ([71]).

Case 5 (rank 15, jacc = 0.818) This predicted cluster
matches almost perfectly with PA700 complex (26S pro-
tease/19S protease) (corum-id 32). Moreover the pre-
dicted cluster includes an additional protein: UCHL5

Table 6 Data set STRING-CORE (homo sapiens). Functionally enriched clusters found with min size 8 and filtering policy 1

GO annotation Type GO id Clust. size Inters. Class size Hyp. p-value

mRNA splicing, via spliceosome BP GO:0000398 91 90 183 8.23E–191

G2/M transition of mitotic cell cycle BP GO:0000086 52 52 121 5.62E–120

Mitotic cell cycle BP GO:0000278 68 68 384 6.24E–118

G-protein coupled receptor signaling pathway BP GO:0007186 126 97 918 1.16E–101

Type I interferon signaling pathway BP GO:0060337 33 33 65 4.48E–86

O-glycan processing BP GO:0016266 30 30 55 7.44E–81

Platelet degranulation BP GO:0002576 32 32 82 4.14E–79

Interferon-gamma-mediated signaling pathway BP GO:0060333 30 30 70 1.33E–76

Extracellular matrix organization BP GO:0030198 40 40 272 2.26E–75

Transferrin transport BP GO:0033572 24 24 32 2.40E–72

We report the top ten clusters by hypergeometric p-value. Each row reports: the GO annotation class, GO class type (BP=Biological Process), the GO id, the size of the cluster,
the size of the intersection, the size of the functional class, and the hypergeometric p-value
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Fig. 17 Time (in seconds) in Log10 scale for DIP data. Runs optimizing
the f-measure for each algorithm

(ubiquitin carboxyl-terminal hydrolase L5). Interestingly,
Darcy et al. [72] report that a small molecule (b-
AP15) inhibits the activity of two 19S deubiquitinases
regulatory particles: ubiquitin C-terminal hydrolase 5
(UCHL5) and ubiquitin-specific peptidase 14 (USP14),
resulting in accumulation of polyubiquitin, which in turn
induces tumor cell apoptosis. Thus Darcy et al. sug-
gest that the deubiquitinating activity of this regula-
tory molecule may form the basis for a new anticancer
drug.

Case 6 (rank=16, jacc=0.818) This predicted cluster
matches almost perfectly with BAF complex (Synonyms:
SWI/SNF complex A) (corum-id 1251 and 1237). More-
over the predicted cluster includes two additional pro-
teins: BCL7B (B cell CLL/lymphoma 7B) and ARID1B

Fig. 18 Time (in seconds) in Log10 scale for Biogrid yeast data. Runs
optimizing the f-measure for each algorithm

(AT rich interactive domain 1B SWI1-like). A con-
nection of the SWI/SNF complex with the first pro-
tein (BCL7B) is described in [73] where it is reported
a proteomic analysis of endogenous mSWI/SNF com-
plexes, which identified several new dedicated stable sub-
units of SWI/SNF complexes, including, among others,
BCL7B.

Case 7(rank=20, jacc=0.8) This predicted cluster
matches almost perfectly with corum-id 1097, eIF3
complex (which is made of 13 proteins). Moreover
the predicted cluster includes an additional protein:
Gag-Pol [Human immunodeficiency virus 1]. It is
reported in [74] that “A conserved structure within
the HIV gag open reading frame that controls trans-
lation initiation directly recruits the 40S subunit and
eIF3”.

Case 8 (rank 27, ss=0.952) This predicted cluster
matches almost perfectly with SAP complex (Sin3-
associated protein complex) (corum id 591). Moreover
the predicted cluster includes an additional protein:
ING2 (inhibitor of growth family, member 2). It is
reported in [75] that “Besides the paralogous pro-
teins, including HDAC1/HDAC2, mSin3A/mSin3B,
and the histone-interacting RbAp46/RbAp48 proteins,
the mammalian Rpd3L/Sin3L complex comprises
at least five other subunits, including SAP30, Sds3,
SAP180/RBP1, SAP130, and ING1b/ING2, whose
precise roles at the molecular level are poorly under-
stood but most likely involve targeting the complex
to specific genomic loci via one or more interaction
surfaces".

Case 9 (rank 28, ss= 0.92) This predicted cluster
matches almost perfectly with the Ribosome complex
(corum-id 306). Moreover the predicted cluster includes
an additional protein: SIRT7 (Sirtuin 7). Tsai et al. [76]
investigate the role of Sirtuin 7 in the Ribosome biogen-
esis and protein synthesis.

Case 10 (String-hs data, rank=10, jacc=0.916) This
predicted cluster matches almost perfectly with the Exo-
some (11 prot) complex (corum-id 789). Moreover the
predicted cluster includes an additional protein: XRN1
(5’-3’ exoribonuclease 1). Li et al. [77] describe the com-
peting role played by XRN1 and the Exosome complex in
Hepatitis C-Virus RNA decay.
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Fig. 19 Time (in seconds) in Log10 scale for String yeast data. Runs optimizing the f-measure for each algorithm

Conclusions
The experimental results reported in Section ‘Experi-
ments’ show that Core&Peel is remarkably consistent in
finding known complexes across 1 medium and 5 large
data sets, ranking first in aggregated score against ten
state-of-the-art methods in all 6 cases (CMC is second
trice; SPICi twice, and Clusterone once).
Core&Peel also leads in the ability to produce cluster

predictions that are highly consistent with GO-BP anno-
tations. The specific complex-protein interaction predic-
tions listed in Section ‘Some predictions with support in
the literature’ have all a strong support in the literature.
Although such predictions may not always correspond to

Fig. 20 Time (in seconds) in Log10 scale for Biogrid homo sapiens
data. Runs optimizing the f-measure for each algorithm

actual complexes, they do indeed point at functionally
relevant phenomena.
The Core&Peel algorithm exploits properties of com-

plexes embedded in PPINs (egocentricity, density) that are
more evident the larger the PPINs become, and it does
not suffer from phenomena of combinatorial explosion
(as both the theoretical analysis and the empirical run-
ning time attest). Thus we believe that Core&Peel can
become a method of choice when even larger PPINs are
built and analyzed, such as those arising in multi-species
PPIN studies (see [37]) and those arising in immunology
studies (see [40]).
Core&Peel is fast and easy to use, requiring the setting of

very few natural parameters relative to the minimum size,
density and separation of the target complexes. Indeed,
having a small sample of the type of complexes to be
sought, these parameters can be extracted directly form
the sample.
Core&Peel uses very little biological information except

that embedded in the PPIN topology. Thus we believe fur-
ther gains can be achieved by augmenting our scheme
with the ability to handle PPINs endowed with edge
weights modeling, for example, PPI quality, or other
types of a priori knowledge), or by incorporating GO
annotations-based filters within the basic algorithmic
framework (See discussion in Additional file 1: Sec 5).
Improvements and tests along these lines are left for
future research.
In this paper our main focus is to compare our pro-

posed algorithm versus 10 competing algorithms on a
sufficiently diverse pool of test data (2 species, 3 repos-
itories, 6 PPIN, 2 PC golden standard sets) so to gain
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Fig. 21 Time (in seconds) in Log10 scale for Biogrid homo sapiens data without UBC. Runs optimizing the f-measure for each algorithm

confidence in the robustness of the main thesis (i.e.
the suitability of Core&Peel for discovering PC in large
PPIN). We do not aim at suggesting that a particular
type of PPIN repository should be preferred over others,
and we do not even aim at implying that one should
always use large PPIN in place of smaller ones (see e.g.
[78]). Both questions are worthy of attention but fall out-
side the scope of the present article. The choice of the
PPI data to be used for a given study is a non-trivial
choice since many hidden biases could be implicit in the
data (due both to its experimental origin, and to sub-
sequent filtering) [79], thus these issues should be con-
sidered carefully at the initial stage of any experimental
design.

Fig. 22 Time (in seconds) in Log10 scale for String homo sapiens
data. Runs optimizing the f-measure for each algorithm

Additional file

Additional file 1: Detailed Experimental settings. Protein complex
prediction for large protein protein interaction networks with the Core&Peel
Method- Supplementary Materials. Description of the parameters and
settings used in testing the competing sw for PC detection in Large PPIN.
Description of data sets features distributions. Analysis of Asymptotic
Complexity for Core&Peel. (PDF 1284 kb)
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