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Abstract

Background: Metagenomics is a cultivation-independent approach that enables the study of the genomic composition
of microbes present in an environment. Metagenomic samples are routinely sequenced using next-generation
sequencing technologies that generate short nucleotide reads. Proteins identified from these reads are mostly of partial
length. On the other hand, de novo assembly of a large metagenomic dataset is computationally demanding and the
assembled contigs are often fragmented, resulting in the identification of protein sequences that are also of partial
length and incomplete. Annotation of an incomplete protein sequence often proceeds by identifying its homologs in a
database of reference sequences. Identifying the homologs of incomplete sequences is a challenge and can result in
substandard annotation of proteins from metagenomic datasets. To address this problem, we recently developed a
homology detection algorithm named GRASP (Guided Reference-based Assembly of Short Peptides) that identifies the
homologs of a given reference protein sequence in a database of short peptide metagenomic sequences. GRASP was
developed to implement a simultaneous alignment and assembly algorithm for annotation of short peptides identified
on metagenomic reads. The program achieves significantly improved recall rate at the cost of computational efficiency.
In this article, we adopted three techniques to speed up the original version of GRASP, including the pre-construction of
extension links, local assembly of individual seeds, and the implementation of query-level parallelism.

Results: The resulting new program, GRASPx, achieves >30X speedup compared to its predecessor GRASP. At the
same time, we show that the performance of GRASPx is consistent with that of GRASP, and that both of them
significantly outperform other popular homology-search tools including the BLAST and FASTA suites. GRASPx was also
applied to a human saliva metagenome dataset and shows superior performance for both recall and precision rates.

Conclusions: In this article we present GRASPx, a fast and accurate homology-search program implementing a
simultaneous alignment and assembly framework. GRASPx can be used for more comprehensive and accurate
annotation of short peptides. GRASPx is freely available at http://graspx.sourceforge.net/.
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Background
Metagenomics allows for a snapshot of the genomic con-
tent of all microbes within a specific environmental niche
and is not limited by current microbial cultivation barriers.
High-throughput shotgun sequencing is routinely applied
on collected metagenomic samples, generating a large
number of short DNA sequences (reads). A key analysis
step is to infer the functions of the protein sequences pre-
dicted from these reads, hereafter referred to as annotation.
The annotation problem is conceptually equivalent to the
homology detection problem: given a reference sequence
with known annotation, finding all homologous reads of
the reference from the read set and subsequently transfer-
ring the annotation of the reference to the homologs. Intui-
tively, the problem can be solved using a direct alignment
approach, simply aligning the reference against the
individual reads (e.g. using BLAST [1], FASTA [2], RAP-
Search [3, 4], and DIAMOND [5] etc.). An alternative de
novo assembly approach assembles the individual reads into
contigs (e.g. using SPAdes [6], Meta-Velvet [7], Meta-IDBA
[8], and SOAPdenovo [9] etc.), which correspond to near-
complete or complete protein sequences that are easier to
annotate. Given the annotation of the contigs, the annota-
tion of the reads can be inferred through their placement in
the contigs. It has been shown that, for protein-sequence
reconstruction, the assembly of short peptides (identified
from DNA reads using MetaGeneAnnotator [10] or Frag-
GeneScan [11] etc.) is more effective than the assembly of
the nucleotide reads themselves [12, 13]. Either or both of
the direct alignment and the de novo assembly approaches
could be applied depending on specific applications and
available computational resources.
Each of the direct alignment and the de novo assembly

approaches has its own limitations. Gene calling and
homology search with short reads are, in general, more
challenging than with complete sequences. On the other
hand, reconstructing full-length genome (assembly) is time
consuming and can frequently ignore low-coverage organ-
isms, therefore making the detection of low-abundant
genes difficult and incomplete. To tackle these limitations,
the annotation problem can be reformulated into the gene-
centric assembly problem, which, given a reference protein
of interest, attempts to identify its homologs in a database
of short peptide sequences while also assembling these
homologs into complete protein sequences [14] (see the
methods section for formal definitions of the gene-centric
assembly problem). The simultaneous alignment and as-
sembly algorithm was developed to solve the gene-centric
assembly problem and was implemented into a program
called GRASP (Guided Reference-based Assembly of Short
Peptides) [14]. GRASP outputs both the sequencing reads
that are homologous to the reference (similar to other
homolog search programs such as BLAST) as well as the
corresponding assembled contigs.

GRASP is well suited to solve the gene-centric assembly
as well as the annotation problem because it simultan-
eously alleviates the above mentioned limitations of the
direct alignment and de novo assembly approaches. First,
the sequence similarity is computed between the query
and the contig (instead of the individual reads), more ac-
curately reflecting the true homology. Second, alignment
is performed between the query and the target (a path in
the sequence overlap graph) as the assembly algorithm
traverses the sequence overlap graph, estimating the se-
quence similarity that is later used to guide the traversal
towards the correct path. The more informed graph tra-
versal allows for more effective pruning of false paths and
meanwhile the identification of low-abundant true homo-
logs. GRASP achieves ~20 % higher recall rate than PSI-
BLAST based on simulation, and identifies ~3 times more
true homologous reads than PSI-BLAST from a real meta-
genomics data set without loss of precision. However,
GRASP’s computational efficiency is adversely impacted
by the assembly module and it requires substantial
speedup for applications on large data sets.
In this article we present GRASPx, a computational effi-

cient improvement of GRASP through substantially rede-
signed algorithm and data structure. Its application as a
homology detection program is benchmarked with its pre-
decessor GRASP (to compare running time), BLASTP, PSI-
BLAST [1] (NCBI v2.2.28+) and FASTM (v36) [15] (to
compare performance). GRASPx is >30X faster than
GRASP; it also has a similar running time as PSI-BLAST
(with 3 iterations) and therefore is feasible for genome-wide
analysis of databases containing tens of millions of se-
quences. As confirmed by simulation-based benchmark re-
sults, GRASPx has a similar accuracy as GRASP, and both
of them demonstrate ~20 % higher recall than PSI-BLAST,
and ~30 % higher recall than BLASTP and FASTM at the
same precision level. GRASPx also demonstrates the best
performance among all programs being tested when ap-
plied to a real human saliva metagenomic data set. We an-
ticipate that GRASPx will receive wider application for
metagenomic analysis because of its high accuracy and sub-
stantially improved computational efficiency. GRASPx is
freely available at http://graspx.sourceforge.net/.

Methods
In this section, we first formulate the gene-centric assem-
bly problem and discuss its relationship with the hom-
ology detection problem. We then briefly summarize the
original GRASP algorithm [14] for solving these two prob-
lems. We finally present the intuition and details for the
new GRASPx algorithm.

The gene-centric assembly problem
Here we formally define the gene-centric assembly prob-
lem: Given a query protein sequence q and a set of short
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peptide reads R, identify a set of contigs P (or more
precisely Pq; we use P for simplicity when q is clear in the
context) such that each sequence p ∈ P has a sequence
similarity with q above a certain threshold (e.g. BLASTP E-
value cutoff), and that p is an assembly of a set of short
peptide reads Rp such that Rp R. Intuitively, such a for-
mulation allows some otherwise low-similarity reads to be
assembled with other high-similarity reads and together be
identified as homologs of the query q [14]. Note that the
regular homology search problem that can be solved using
the direct alignment approach is a special case of the gene-
centric assembly problem with the constraint |Rp| = 1. Also
note that solving the gene-centric assembly problem imme-
diately solves the homology detection problem: ∪

p∈P
Rp is the

set of homolog reads of the query q and they can inherit
the annotation of q. In summary, the metagenomics read
annotation problem can be first transformed into homology
detection problem and then solved under the gene-centric
assembly formulation.

Summary of the GRASP algorithm
The GRASP algorithm takes the query (or reference) pro-
tein sequence as a guide and assembles contigs from the
short peptide sequence database such that the alignment
score of each contig with the reference sequence meets a
pre-specified cutoff. The assembly algorithm of GRASP
shares conceptual similarities with sequence overlap-
based approaches (e.g. using data structures such as
overlap-graph [16], string graph [17], or de bruijn graph
[18]), except that the graph is not explicitly built in
GRASP but that the overlap information is resolved
through suffix-array searches whenever needed. The
GRASP algorithm that extends towards the C-terminus of
the reference sequence (right extension) is presented as
follows (extension algorithm towards the N-terminus, i.e.
left extension, is analogous to the right extension).

1. Seeding: GRASP first identifies exact k-mer matches
in the reduced-alphabet space [14], which improves
sensitivity and selectivity in filtering alignment can-
didates [3]. It uses the seed in the target (database)
sequence as the initial contig to be extended.

2. Suffix array search: GRASP searches the fixed-length
suffix of the current contig against the suffix array
[19] built on the database, and identifies all candi-
date reads that overlap with the current contig.

3. Redundancy removal: The suffix array search returns
a list of suffixes that begin with the queried
sequence. GRASP traverses the entire list of
returned suffixes to identify a set of maximal
extension sequences (MESs), where each MES is
defined as a suffix that is not contained in any other
suffixes as a substring.

4. Alignment: GRASP concatenates the current contig
with each of the MESs, and reevaluates the
alignment scores between the reference and the
extended contigs using a banded Needleman-
Wunsch algorithm [20]. It utilizes the recomputed
alignment scores as a filter (similar to BLAST’s bit-
score drop-off ) to select a subset of promising contig
extensions. GRASP retains the promising contigs
and further extends them by executing the 2nd

through the 4th steps iteratively.

Improvements implemented in GRASPx
Prebuilt extension links for maximal extension sequence
determination
The GRASP algorithm identifies MESs through search-
ing the suffix array followed by redundancy removal
(Fig. 1a). Note that although the computing time for
each step is short (the suffix array search is approxi-
mately linear to the read length given a fixed database
size, and the redundancy removal is linear to the num-
ber of suffixes returned by the search), these steps are
performed in each iteration and thus the accumulated
computations become a rate-limiting step. To speed up
the algorithm, GRASPx pre-builds extension links with
respect to reads in the given database, allowing for
constant-time determination of the MESs for each con-
tig extension (Fig. 1a).
An extension link is defined as a directed edge be-

tween two reads, where the sink read is an MES of the
source read. It is further required that each source read
can be linked to no more than a fix number of sink
reads (empirically set to 20 for balanced performance
and computational efficiency, data not shown). This is
because reads with minor sequence differences (which
could due to sequencing errors, single-nucleotide varia-
tions, or imperfect repeats) can be recruited through a
post-mapping step (see below). In this sense, construct-
ing all extension links is conceptually similar to con-
structing an alternatively defined string graph (see
Additional file 1 for more details). Given the extension
links, the algorithm is able to retrieve the MESs directly
through following the extension links, therefore bypass-
ing the original rate-limiting suffix array search and re-
dundancy removal steps.
The computational overhead incurred by the extension

link is controlled through the development of a novel
linear-time construction algorithm (with respect to the
short-peptide database size). The algorithm first builds a
suffix array and the corresponding Longest Common
Prefix (LCP) array from the short-peptide database,
followed by a linear traversal of both of the arrays to
identify the extension links. In practice, the algorithm
runs only slightly slower than the original indexing step
(see detailed comparison in the Results section). The
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extension link construction algorithm and the corre-
sponding pseudocode are presented in Additional file 1.
Memory-wise, as the main alignment/assembly module
of GRASPx adopts the extension link, it is therefore pos-
sible for it to discard the suffix array that is originally re-
quired for identifying the MESs. Hence, GRASPx
requires similar physical memory as GRASP.

Local assembly strategy for each identified seed pair
It has been observed that using a single seed is not
selective enough to filter non-homologous seeds for
alignment initialization (i.e. a seed match can be identi-
fied from a pair of non-homologous sequences by
chance); therefore it is desirable to require multiple
seeds to improve selectivity. The idea was initially devel-
oped in Gapped-BLAST, which requires two seed pairs
for alignment initialization [1]. Currently, GRASP only
requires a single seed, and its computational efficiency
can be further improved based on such an intuition.

However, it is difficult to directly require multiple
seeds in GRASPx, because the distance between the
seeds in the target sequence is unknown. Estimating
such a distance requires the assembly of contigs that
contain these seeds, which is itself the central problem
to solve here. To circumvent this Catch-22, a local as-
sembly strategy is adopted in GRASPx. Specifically, each
seed is allowed to be extended with a predefined max-
imum depth (by default 20 extensions), and the exten-
sion is terminated disregarding the drop-off score after
reaching the limit. This strategy saves computation time
by not extending the non-homologous seeds to the very
ends (see Fig. 1b) orange seeds).
Using this strategy, long homologous contigs would be

broken into smaller pieces; however, the broken contigs
can be re-assembled because multiple seed pairs are ex-
pected between homologous sequences (Fig. 1b, blue
seeds). On the other hand, the non-homologous contig
pieces are unlikely to be re-assembled, as multiple seed
pairs rarely exist in non-homologous sequences. A

Fig. 1 Summary of the major improvements of GRASPx. Q is the reference/query sequence. a Prebuilt Extension Link: The original GRASP algorithm
first searches the suffix x (green) of the current contig P against the suffix array SA (which is built on the sequencing read set R), and then identifies the

MESs p
→ � (pink). GRASPx simply follows the pre-built extension links (black dashed arrows) to identify all MESs. b Local Assembly: The original GRASP

algorithm extends the contig until significant score drop-off is observed, which might lead to unnecessary extensions of the random seeds (orange).
GRASPx extends each seed with a pre-set maximal depth. Homologous contigs (with corresponding blue seeds) that are broken by this strategy are
re-assembled through a recalibration step based on sequence overlap (highlighted by the vertical double-sided reverse arrows). c Query-level
Parallelism: GRASP spawns a thread (gray box) for each seed extension. GRASPx spawns a thread for each query sequence
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recalibration step is incorporated into GRASPx for re-
assembly, which greedily merges the overlapping contigs
based on the lengths of the overlaps. The recalibration
step also re-evaluates the alignment scores and E-values
for the re-assembled contigs.

Query-level parallelism for minimizing inter-thread
communication
The current implementation of GRASP allows parallel
execution; however its efficiency is adversely impacted
by the intensive inter-thread communication (a 2-fold
speedup was observed while using 4 threads [14]). Spe-
cifically, GRASP spawns a thread for the extension for
each seed pair, where the thread needs to consult a
shared pool of already assembled reads before it can use
it for the current extension (if the read is consumed by
other threads, the current extension is deemed redun-
dant and subsequently terminated). Correspondingly, the
thread also needs to notify the shared pool regarding the
reads that have been exploited in the current extension.
In this case, it is expected to minimize the inter-thread

communication through spawning a dedicated thread
for each query sequence (Fig. 1c). However, it is not a
trivial task because GRASP uses a large amount of phys-
ical memory to record the constituent reads (i.e. the
reads that are substrings of the assembled contigs) as
well as their placement information. Simply spawning
threads at a per-query level would consume a large
amount of physical memory. In GRASPx, information
regarding the constituent reads is discarded while per-
forming assembly, and subsequently recovered through a
post-mapping step that aligns all reads against the as-
sembled contigs (minimum alignment of 60 % of the
read length with at maximum 3 substitution errors). This
strategy enables GRASPx to spawn multiple threads at a
per-query level with reasonable memory consumption. For
example, GRASPx requires ~14G of physical memory for
searching ~6 million reads with 16 threads, while GRASP
requires ~13G for the same search. The overhead incurred
by the post-mapping step is trivial compared to that of the
assembly stage, as the reads are only mapped to the assem-
bled contigs. For example, GRASPx spends ~36 min for
searching 198 marker genes from ~6 million reads, while
taking <2 min for post-mapping.

Description of the GRASPx algorithm
The GRASPx algorithm consists of the following main
steps:

1. Database indexing: GRASPx pre-builds extension
links on a given database, which allows for constant
time determination of each MES with respect to a
given contig extension. GRASPx performs the index-
ing step only once.

2. Seeding: GRASPx adopts the same strategy as
GRASP for seeding, which identifies exact k-mer
matches between the query and the target database
sequences in the reduced-alphabet space.

3. Extension: GRASPx simply follows the pre-built ex-
tension links to determine all MESs of the given
contig. It replaces the second and the third steps of
the GRASP algorithm with this computationally effi-
cient look-up step.

4. Alignment: GRASPx adopts the same alignment
strategy as GRASP (i.e. banded Needleman-Wunsch
algorithm [20]). In additional to detecting potential
termination criteria, it also terminates the extension
if the depth of the extension exceeds a predefined
threshold (local assembly). The third and the fourth
steps are performed iteratively for each of the identi-
fied seed pairs until termination.

5. Recalibration: The local alignment strategy would
potentially break an otherwise complete contig into
smaller pieces. GRASPx attempts to repair the
broken contigs using this greedy re-assembly step.

6. Post-mapping: To reduce memory consumption,
GRASPx does not keep track of the constituent
reads for the assembled contigs. To recover this
information, GRASPx maps all reads against the
assembled contigs to identify the assembled
homologous reads. Note that the reads that cannot
be assembled due to minor sequencing errors or
single-nucleotide polymorphism can be recruited in
this stage through allowing mismatches in the
alignment.

Results and discussion
Data sets
GRASPx was benchmarked with four other homology
search programs, i.e. GRASP [14] (not used for large-
scale genome-wide benchmark because of its relatively
lower computational efficiency), BLASTP, PSI-BLAST
[1], and FASTM [15]. For consistency of the benchmark
data sets, we selected two data sets that were previously
used to benchmark GRASP [14]:

� DS1: This simulated data set was generated from 20
marine microbial genomes (with staggered
abundances; details available from reference [12])
using WGSIM [21] at 10X coverage with an
expected length of 100 bp and an error rate of 1 %
(for the Illumina technology). Short peptides were
identified from the simulated reads using
FragGeneScan [11], resulted in 6,273,043 short
peptide reads.

� DS2: This real data set was generated from a human
saliva sample by the Human Microbiome Project
[22, 23]. It was downloaded from NCBI’s Sequence
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Read Archive (SRA) with accession number
SRS013942. Short peptides were also called from the
nucleotide reads using FragGeneScan [11]. The
resulting database contained 12,036,685 short
peptide reads.

Parameters
All experiments were performed on an in-house server
equipped with four Intel Xeon X7350 @2.93GHz proces-
sors and 256GB physical memory. GRASPx, GRASP,
BLASTP, PSI-BLAST, and FASTM were invoked using
their default sets of parameters, or are otherwise detailed
as follows. PSI-BLAST was run with three iterations.
FASTM was run using the BLOSUM62 scoring matrix
with gap opening and gap extension penalties of -11 and
-1, respectively (by specifying the ‘-s BL62’ argument), to
match the settings used by the other programs.
Below we detailed the set of default parameters that

are configured for GRASPx, which were used in all ex-
periments presented in this article. GRASPx requires a
6-mer perfect match between the query and the target
in the GBMR10 reduced alphabet [3] for identifying seed
pairs. It further requires that the alignment score be-
tween the two sequences of the seed pair is at least 6 *
0.7 * a, where a is the mean of the diagonal scores of the
scoring matrix in use. GRASPx adopts a minimum over-
lap of 10aa between reads during the extension link con-
struction phase; and it extends the assembly with a
maximum depth of 20 towards each direction (for local

assembly). For the alignment module, GRASPx utilizes
the BLOSUM62 matrix with gap opening and extension
penalties of -11 and -1, respectively. GRASPx adopts the
same approach as in BLAST to compute the bit score
and E-value, and it also uses the same drop-off score
cutoff as BLAST, i.e. 25 bits. The default band size for
sequence alignment is 40.

Running time improvement of GRASPx
Both the indexing time and the alignment/assembly time
of GRASPx were measured and compared with those of
GRASP. The wall-clock indexing time of both programs
on databases with different sizes (generated by random
sub-sampling with different proportions from DS1) are
shown in Fig. 2a. The indexing time of GRASPx is lon-
ger than that of GRASP, potentially due to the additional
works that are required to create the extension links.
However, the actual indexing time for both programs re-
mains comparable. The wall-clock alignment/assembly
time of GRASPx for searching 198 Dehalococcoides sp.
CBDB1 marker genes [24] against DS1 is shown in
Fig. 2b. The results show that GRASPx is significantly
faster than GRASP in the alignment/assembly phase.
The speedup is more significant when more threads are
used (8X speedup when both programs were run with a
single thread and 31X speedup when both run with 16
threads), showing the advantage of the redesigned
parallelization strategy of GRASPx. The results indicate
that GRASPx algorithm achieves significant alignment/

Fig. 2 Running time of GRASPx. Running time evaluated by searching the 198 D. sp. CBDB1 Amophora2 marker genes against DS1. a Total
indexing time of GRASP and GRASPx on simulated data sets that were randomly sampled from DS1 with various sizes. b Total runtime of GRASPx
and GRASP (numbers above bars indicate speedups) when run with the corresponding number of threads. c GRASPx’s runtime (single-threaded)
for searching a single protein sequence SGO_0049 (344 aa) against simulated data sets that were randomly sampled from DS1 with various sizes.
d GRASPx’s runtime (single-threaded) for searching Amphora2 marker genes against DS1
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assembly speedup at a cost of marginally increased
indexing time.
The empirical time complexity of GRASPx (for the

alignment/assembly phase) is shown by searching a sin-
gle protein sequence against different databases with
various sizes (Fig. 2c), as well as searching different pro-
tein sequences with various sizes against a fix-sized data-
base (Fig. 2d). It is observed that the running time of
GRASPx grows linearly in both cases, indicating that
GRASPx is scalable for large-scale analysis.
Finally, the running time of GRASPx on searching a

much larger number of query protein sequences (~2000)
against DS2 was summarized in Table 1. By comparing
the GRASPx and the PSI-BLAST running time (running
time of BLASTP and FASTM are not included because
of their lower search performances), it is observed that
PSI-BLAST requires less (approximately 1/5) CPU time
compared to GRASPx for the searches. However,
GRASPx is capable of more effectively utilizing multiple
threads than the current implementation of PSI-BLAST,
resulting in a comparable wall-clock running time.

Performance of GRASPx on DS1
GRASPx was benchmarked with GRASP (post-mapping
step included for optimized performance, as described in
[14]), BLASTP, PSI-BLAST, and FASTM on DS1.
Define the ground-truth set of homolog reads with re-

spect to a query sequence q as follows. Recall that DS1
was simulated through random sampling of reads from
the 20 marine microbial genomes described in [12]; de-
fine G as the concatenation of the 20 reference genomes.
Also note that in cases of simulation, it is trivial to rec-
ord where (in terms of a genomic interval in G) a read
was sampled. Let I (more precisely IG; we used I for sim-
plicity when G is clear in the context) be an arbitrary set
of genomic intervals in G, and correspondingly denote
the set of reads that were sampled from I as RI. (In prac-
tice, RI includes reads that have >60 % of their sequences
sampled from I.) For a given query sequence q, define its
homolog intervals in G through searching q against G
using TBLASTN with E-value cutoff 10-3; denote the set
of homolog intervals as Iq. The ground-truth homolog
read set for q is thus defined as RIq .

Subsequently, define TP (true positive) as the reads
that are both in RIq and identified by the search (using a
specific program), FP (false positive) as the reads that
are not in RIq but identified by the search, and FN (false
negative) as the reads that are in RIq but not identified
by the search. Recall, precision, and F-measure can sub-
sequently be computed as:

recall ¼ TP
TP þ FN

; precision ¼ TP
TP þ FP

; and F

¼ 2 � recall � precision
recall þ precison

;

The performances of all programs were investigated
with different E-value cutoff ranging from 10-10 to 10,
which were then plotted as the Receiver Operating
Characteristics (ROC) curves. Subsequently define the
Area Under the ROC Curve (AUC) as:

AUC ¼
X

k

recallkþ1 þ recallkð Þ precisionk−precisionkþ1ð Þ
2

;

where recallk and precisionk are the recall rate and preci-
sion rate for the kth ascending E-value cutoff,
respectively.
Two small sets of query protein sequences were first

used to measure the performances of the programs. The
first query set contained 16 D. sp. CBDB1 genes partici-
pating in the glycolysis pathway (KEGG [25] pathway
ID: KO00010). The second query set contained 198 D.
sp. CBDB1 marker genes that were collected in the Am-
phora2 database [24]. The ROC curves for glycolysis and
Amphora2 protein searches are shown in Fig. 3a and b,
respectively. The results confirm that GRASPx has a
comparable performance with the original GRASP (with
mapping, denoted in Fig. 3 as “GRASP +mapping”). It is
also observed that GRASPx has improved the recall rate
of PSI-BALST by at least 20 % at the same precision
level for both experiments, suggesting potential applica-
tions of GRASPx in both functional (e.g. glycolysis path-
way) and taxonomic (e.g. Amphora2 marker genes)
analysis of metagenomics sequencing data.
The performance of GRASPx was further bench-

marked on searching all 1458 protein sequences anno-
tated in the D. sp. CBDB1 genome (GRASP was not

Table 1 Running time comparison of GRASPx and PSI-BLAST on DS2

Query Num. GRASPx PSI-BLAST

genome prot. CPU Wall Perc. CPU CPU Wall Perc. CPU

SGO 2051 148h55m 9h36m 1553 % 29h20m 9h52m 304 %

PAC 2297 157h40m 10h01m 1574 % 26h27m 8h35m 315 %

‘Query genome’ indicates the genome from which the query sequences were obtained; SGO: Streptococcus gordonii; PAC: Propionibacterium acnes. ‘Num. prot.’
indicates the number of protein sequences that are annotated in the corresponding genome and used as the queries. ‘CPU’ and ‘Wall’ indicate the CPU time and
wall-clock time for the corresponding program to search all query proteins sequences against DS2, respectively. ‘Perc. CPU’ indicates the percentage of CPU used
for the search (both programs were assigned with 16 CPUs; PSI-BLAST only used 4 CPUs at maximum)
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included for its lower computational efficiency) against
DS1. Homologous reads with respect to each query pro-
tein sequence were further classified as close (TBLASTN
E-value cutoff 10−10), moderate (TBLASTN E-value cut-
off 10−3) and remote (TBLASTN E-value cutoff 10) ho-
mologs reads. The performances (the optimal F-measure
and the AUC) of the search programs are summarized

in Table 2 (with performances of several important
metabolic pathways highlighted). For most of the
GRASPx searches, the optimal performances were
achieved with E-value cutoff ranging from 10−1 to 10−3,
which is consistent with the results shown in Fig. 3.
GRASPx achieves the highest performance on the ma-
jority of the searches of individual pathways as well as

Fig. 3 Performance of GRASPx on the simulated data set DS1. Performances were measured for GRASPx, GRASP +mapping, FASTM, PSI-BLAST
(with 3 iterations), and BLASTP on searching (a) 16 glycolysis related D. sp. CBDB1 genes and (b) 198 D. sp. CBDB1 Amphora2 marker genes against
DS1. Dashed lines indicate extrapolated performances. GRASPx shows marginally improved performance over GRASP +mapping, and both of
them significantly outperform the other programs

Table 2 Performances of four programs on searching all 1458 D. sp. CBDB1 protein sequences against DS1

Pathway BLASTP PSI-BLAST FASTM GRASPx

C4 M5 R6 C M R C M R C M R

TCA cycle1 0.61 0.38 0.37 0.69 0.44 0.42 0.57 0.32 0.28 0.88 0.64 0.59
2 0.66 0.44 0.42 0.75 0.55 0.52 0.44 0.10 0.08 0.88 0.74 0.69

Pentose 0.67 0.71 0.64 0.76 0.76 0.68 0.54 0.52 0.40 0.85 0.78 0.64

phosphate 0.61 0.62 0.50 0.71 0.72 0.61 0.41 0.41 0.26 0.87 0.84 0.74

Fructose 0.61 0.48 0.38 0.53 0.52 0.42 0.38 0.38 0.26 0.75 0.66 0.53

mannose 0.50 0.51 0.38 0.56 0.58 0.45 0.38 0.38 0.22 0.80 0.75 0.64

Pyruvate 0.55 0.41 0.40 0.64 0.48 0.45 0.42 0.25 0.22 0.72 0.56 0.52

0.59 0.43 0.40 0.69 0.56 0.53 0.32 0.08 0.07 0.78 0.66 0.63

Methane 0.57 0.38 0.27 0.63 0.43 0.31 0.56 0.31 0.21 0.75 0.56 0.44

0.66 0.49 0.35 0.70 0.56 0.42 0.57 0.28 0.12 0.82 0.67 0.53

Nitrogen 0.54 0.53 0.51 0.56 0.55 0.54 0.05 0.05 0.05 0.59 0.59 0.58

0.35 0.34 0.34 0.53 0.52 0.51 0.01 0.01 0.01 0.69 0.69 0.68

Sulfur 0.79 0.72 0.68 0.83 0.75 0.70 0.56 0.48 0.38 0.84 0.75 0.68

0.75 0.65 0.57 0.80 0.71 0.64 0.22 0.15 0.12 0.86 0.78 0.73

Overall3 0.59 0.51 0.30 0.66 0.57 0.36 0.52 0.43 0.22 0.71 0.64 0.44

0.65 0.59 0.40 0.72 0.65 0.47 0.59 0.49 0.23 0.77 0.72 0.55
1: The first row indicates the area under curves (AUC) for the corresponding programs. 2: The second row indicates the F-scores for the corresponding programs. 3:
The overall performance is calculated on all 1458 protein sequences annotated in the D. sp. CBDB1 genome. 4: ‘C’ indicates close homologs (defined by TBLASTN
E-value cutoff 10-10). 5: ‘M’ indicates moderate homologs (defined by TBLASTN E-value cutoff 10-3). 6: ‘R’ indicates remote homologs (defined by TBLASTN E-value
cutoff 10). The highest performances among all programs are bolded
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the overall search. GRASPx shows more significant im-
provement when searching remote homology. For ex-
ample, the optimal F-measure and AUC of GRASPx is
8 % higher (i.e. on average 8 % higher recall and preci-
sion rate) than PSI-BLAST when detecting remote hom-
ology, compared to 5 % higher when detecting close
homology.

Performance of GRASPx on DS2
For the real data set DS2 where the ground-truth homo-
log intervals cannot be defined (no complete reference
genome available for real data sets), we alternatively
measured TP (instead of recall rate) and precision rate
of the programs. Given the query q and its correspond-
ing Pfam model Fq retrieved from KEGG [25], define TP
for a given search as the identified reads that can be
classified as a member of Fq (using HMMER3 [26] with
the default trusted E-value cutoff 10-2), or the identified
reads that are substrings of some assembled sequences
p such that p can be classified as a member of Fq (in
practice we allow up to 3 substitution errors and require
that >60 % of the read aligned to p). Also define FP as
the identified reads that are not TP. Precision rate can
be subsequently computed in the same way as for DS1.

Annotated protein sequences from Streptococcus gor-
donii and Propionibacterium acnes genomes (2051 and
2297 sequences respectively) were used as queries for
this experiment. The search results for the two sets of
query proteins are shown in Fig. 4a and b, respectively.
The left panel of Fig. 4 shows the precisions of the cor-
responding experiments while the right panel shows the
raw numbers of TPs. As shown in the left panel of Fig. 4a
and b, 88.5 to 97.5 % (corresponding the E-value cutoff
ranging from 10 to 10−9) of the reads identified by
GRASPx corresponds to true homologous reads, com-
pared to only ~40 % of the other programs. The high
precision of GRASPx indicates that it is capable of as-
sembling more reads into annotatable contigs (which
can be unambiguously classified as a member of the cor-
responding protein family). On the other hand, many of
the individual homologous reads predicted by the other
programs are difficult to annotate, potentially because
they are not sampled from the conserved domains of the
protein family. The right panel of Fig. 4 shows that
GRASPx is also capable of identifying much more reads
than the other programs (at least 4 times). In summary,
the results suggest that GRASPx can identify more true
homologous reads from real metagenomic data sets with

Fig. 4 Performance of GRASPx on the real data set DS2. Performances were measured for GRASPx, FASTM, PSI-BLAST, and BLASTP on searching
(a) all (2051) protein sequences annotated in the S. gordonii genome and (b) all (2297) protein sequences annotated in the P. acnes genome
against DS2. Left panel: precision rate. Right panel: number of true positive (TP) predictions

Zhong et al. BMC Bioinformatics 2016, 17(Suppl 8):283 Page 619 of 643



higher precision rate than other programs; and at the
same time assemble them into annotatable contigs that
significantly facilitate downstream functional analyses.

Utility of GRASPx in pathway reconstruction
Here we demonstrate the utility of GRASPx in pathway
reconstruction. MinPath [27] was used to reconstruct
pathways using, respectively, GRASPx and PSI-BLAST
identified homologous reads while searching all P. acnes
encoded proteins against the human saliva data set DS2.
The P. acnes genome was chosen because it is known to
be rare from healthy human saliva samples; and it simu-
lates a challenging scenario where one happens to choose
the protein sequences of low-abundant bacteria as refer-
ences. GRASPx identified 2,326,282 reads with E-value
cutoff 10−10; MinPath reconstructed 73 pathways using
these reads. On the other hand, PSI-BLAST identified
24,739 reads for the same search with E-value cutoff of
10−10; MinPath reconstructed 71 pathways from these
reads. The set of 73 pathways reconstructed using
GRASPx predicted reads fully contains the set of 71 path-
ways reconstructed using PSI-BLAST predicted reads.
The two pathways that were uniquely identified using

GRASPx predictions are KO00071: fatty acid degrad-
ation and KO00520: amino acid sugar and nucleotide
sugar metabolism. They have been reconstructed from
human saliva metagenomics data independently by mul-
tiple research groups [28–30]. The reconstruction of
both pathways suggests high detection power of
GRASPx: it is possible to use low-abundant and distantly
related sequences as the references, and accurately iden-
tify homologous sequences and estimate their abun-
dances. Such an advantage allows for functional analysis
of metagenomic sequences without requiring complete
reference genome sequences.
While the results can be used to establish high recall

rate for GRASPx, it is possible that PSI-BLAST did not
identify reads correspond to these pathways simply be-
cause there is no sequence that is closely-related (by
close we mean with PSI-BLAST E-value cutoff 10−10,
which is used for the search) with P. acnes exists in DS2.
To investigate such a possibility, it was found that the
two pathways are not reconstructed because PSI-BLAST
did not identify any homologous reads for two querying
P. acnes proteins, namely pac:PPA1632 (long-chain acyl-
CoA synthetase, involved in pathway KO00071) and
pac:PPA0343 (glucose-1-phosphate thymidylyltransfer-
ase, involved in pathway KO00520). To verify whether
DS2 contains closely-related homolog sequences of P.
acnes, the GRASPx identified contigs were aligned to
the corresponding queries using BLASTP. The best E-
value achieved for pac:PPA1632 was 2 × 10− 94; and for
pac:PPA0343 was 2 × 10− 172 (see Additional file 1).
While it is still unclear that, in biological sense, whether

these contigs are closely related with P. acnes; these con-
tigs indeed share high sequence similarity with the quer-
ies and thus should be detected for the given E-value
cutoff. The results confirm that the reconstruction of
pathways of KO00071 and KO00520 is due to the high
recall rate of GRASPx, rather than the lack of closely-
related homologs in the database.
MinPath only predicts the presence/absence of the path-

ways and ignores their actual abundances [27], such that it is
recalcitrant to less-sensitive homology predictions and has
successfully reconstructed majority of the pathways even
using PSI-BLAST predictions. On the other hand, while
using abundance-aware pathway reconstruction tools (e.g.
HUMAnN [31]), the reconstruction results for using
GRASPx and PSI-BLAST predictions could be even more
significant. Meanwhile, the performance of these abundance-
aware pathway reconstruction tools could also be improved
by using GRASPx for that it more accurately estimates the
true abundances of the proteins of interest [31].

Conclusions
In this work we present a computational efficiency im-
provement of the simultaneous alignment and assembly
algorithm. The improvement is made possible by three
technical redesigns of the original algorithm. The con-
struction of the extension links pre-computes the over-
lap information, speeding up the path extension step of
the assembly module. The use of the local assembly
strategy adopts a similar filtering heuristic implemented
in the Gapped-BLAST, alleviating the bottleneck of
searching extremely long query protein sequences. Fi-
nally, the re-implemented parallelization strategy allows
for more effective usage of multi-core resources, render-
ing the search of multiple queries at a time possible. The
resulting program is named GRASPx.
In conclusion, GRASPx was developed as a simultaneous

alignment and assembly program suitable for metagenomic
data analysis in this work. GRASPx is capable of perform-
ing reference-based search (similar to the BLAST suite, the
FASTA suite, and RAPSearch etc.) as well as gene-centric
assembly of the identified reads. According to our bench-
mark test, GRASPx is more than 30X faster than its prede-
cessor GRASP while keeping the same level of
performance. GRASPx has a similar running time as PSI-
BLAST, enabling genome-wide homolog detection on large
metagenomic data sets with superior sensitivity and specifi-
city. Practically, GRASPx allows assembly and search of
homologous reads with respect to all protein sequences
encoded in a bacterial genome against a moderate-sized
metagenomic data set (e.g. ~40 million reads and ~100 bp
per read) within approximately 12 h using 16 threads. We
expect that GRASPx would substantially improve metage-
nomic applications such as gene abundance estimation and
pathway reconstruction.
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Additional files

Additional file 1: Algorithm for constructing extension links and BLASTP
alignments between selected P. acnes proteins and their predicted
homologous contigs. The file contains detailed algorithm and pseudo-
code for linear construction of extension links. The file also contains NCBI
BLASTP alignments of two P. acnes proteins, whose homologous reads
were not identified by PSI-BLAST from DS2 but were identified by
GRASPx. (PDF 813 kb)
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