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Abstract

Background: There has been paid more and more attention to supervised classification models in the area of
predicting drug-target interactions (DTls). However, in terms of classification, unavoidable missing DTls in data
would cause three issues which have not yet been addressed appropriately by former approaches. Directly labeled
as negatives (non-DTls), missing DTls increase the confusion of positives (DTls) and negatives, aggravate the
imbalance between few positives and many negatives, and are usually discriminated as highly-scored false
positives, which influence the existing measures sharply.

Results: Under the framework of local classification model (LCM), this work focuses on the scenario of predicting
how possibly a new drug interacts with known targets. To address the first two issues, two strategies, Spy and
Super-target, are introduced accordingly and further integrated to form a two-layer LCM. In the bottom layer,
Spy-based local classifiers for protein targets are built by positives, as well as reliable negatives identified among
unlabeled drug-target pairs. In the top layer, regular local classifiers specific to super-targets are built with more
positives generated by grouping similar targets and their interactions. Furthermore, to handle the third issue, an
additional performance measure, Coverage, is presented for assessing DTl prediction. The experiments based on
benchmark datasets are finally performed under five-fold cross validation of drugs to evaluate this approach. The
main findings are concluded as follows. (1) Both two individual strategies and their combination are effective to
missing DTls, and the combination wins the best. (2) Having the advantages of less confusing decision boundary
at the bottom layer and less biased decision boundary at the top layer, our two-layer LCM outperforms two former
approaches. (3) Coverage is more robust to missing interactions than other measures and is able to evaluate how
far one needs to go down the list of targets to cover all the proper targets of a drug.

Conclusions: Proposing two strategies and one performance measure, this work has addressed the issues derived
from missing interactions, which cause confusing and biased decision boundaries in classifiers, as well as the
inappropriate measure of predicting performance, in the scenario of predicting interactions between new drugs
and known targets.
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Background

It is a crucial step in drug discovery to identify targets
(the druggable proteins related to diseases) for novel
drug candidates [1, 2]. However, testing a large number
of candidates in experiments would be still costly in
both money and time. Based on the well-accepted as-
sumption that similar drugs tend to interact with similar
targets, computational methods (i.e. supervised machine
learning) are able to predict novel drug—target interac-
tions (DTIs) on a large scale by drug similarities and/or
target similarities.

Generally, there are four scenarios of predicting inter-
actions [3, 4] between (S1) known drugs and known tar-
gets; (S2) new drugs and known targets; (S3) known
drugs and new targets; and (S4) new drugs and new tar-
gets. Here, a known (approved) drug is the drug having
one or more known interactions with a targeted protein;
a known target is the target interacting with one or more
approved drugs; a new drug, referred to as a “drug can-
didate”, has no any known interaction; and a new target
is the potential target having no known interaction with
any drugs. It is remarkable that the appropriate cross
validations for different scenarios should be adopted
when assessing computational approach. Otherwise,
over-optimistic results are perhaps obtained [4].

Since a set of known DTIs can be represented as a bi-
partite graph [5], network inference-based algorithms
(e.g. [6]) are applied to predict new interactions by ana-
lyzing the topology of this graph. However, these algo-
rithms cannot work well when the inference involves the
drugs and/or the targets having no connection to the
graph (e.g. in S2, S3 and S4). Matrix factorization algo-
rithms have also been performed on the adjacent matrix
of DTI graph to predict potential DTIs [7]. They sup-
pose that a drug and a target may interact with each
other if they share similar features in a common latent
feature space (usually having fewer dimensions than the
number of drugs and the number of targets). However, it
is still hard to apply this approach in S2, S3, and S4,
which are corresponding to the well-known cold-start
problem. In addition, matrix factorization usually bears
larger computational complexity.

Supervised classification models have been gained
many concerns in DTI prediction [3, 4, 8—12], because
they are able to handle all predicting scenarios and have
the advantage of elucidating explicitly why a drug inter-
acts with a target. Former supervised models can be
approximately grouped into two categories: local classifi-
cation model (LCM) and global classification model
(GCM). LCM considers that the interactions between
drugs and a focused target or between targets and a spe-
cific drug follow a common distribution [3, 8-10]. In
contrast, GCM follows the assumption that DTIs
crossing all drugs and all targets follow a common
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distribution [4, 10—12]. Usually, GCM needs much more
memory space than LCM, because it always operates
Kronecker product on both drug similarity matrix and
target similarity matrix.

In common, supervised classification models regard
existing DTIs as positive instances and unlabeled drug-
target pairs (DTP) as negative instances respectively.

However, unlabelled DTPs include many unapproved
DTPs as well as few potential DTIs which are not ap-
proved yvet. In fact, few out of unlabelled DTPs are true
DTIs but not collected when people extract DTI data-
sets. We call both potential DTIs and uncollected DTIs
as missing DTIs in the context of DTI prediction be-
cause they have no technical difference.

From the point of view of supervised learning, a well-
trained supervised classification model should have a
decision boundary that separates positives and negatives
significantly. In addition, an appropriate performance
measure is crucial to fairly reflect the power of predict-
ing models. Thus, missing DTIs would cause three im-
portant issues. Firstly, directly regarded as negatives,
they induce a confusing decision boundary in the trained
model, which usually cannot separate positives and neg-
atives clearly. Secondly, they also cause a biased decision
boundary in the classifier, by which positives tend to be
determined as negatives. Thirdly, they are always dis-
criminated as highly-scored false positives by predicting
model, so as that the performance under existing mea-
sures is sensitive to missing interactions. Though some
of the former approaches (e.g. [13, 14]) provided a start
to address the first issue, they have not yet addressed the
remaining two issues.

This work focuses on the prediction in scenario S2. To
address the first two issues, we shall first introduce two
strategies, Spy and Super-target, and further integrate
them to form a two-layer local classification model.
Then, to cope with the third issue, we shall present a
new performance measure, Coverage, to assist the as-
sessment of predicting model on the data containing
missing DTIs. In addition, we shall demonstrate the su-
periority of our approach by comparing with two former
approaches, one semi-supervised approach and one su-
pervised approach, respectively.

Methods

DTI prediction as locally supervised classification

The interactions between m known drugs ({d;},i=1,
...,m) and n known targets ({¢},j=1,...,n) could be
organized by an interaction matrix A,,., in which
a(i,j) = 1 if there is a known interaction between drug
d; and target ¢;, and a(i, j) = 0 otherwise. In S2, given a
new drug d,, the task is to predict the interaction be-
tween d, and a known target f; or determine how
likely it interacts with ;. It can be also treated as a
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problem of regular supervised classification as follows:
(1) labelling the known drugs d; as a positive instance
if a(i,j) =1 (d; interacts with #;), or as a negative in-
stance (d; doesn’t interact with #;); (2) training the
classifier with the labels of {d;} and their pairwise simi-
larities; (3) discriminating d, as a positive or a negative
instance in binary, or assigning it with a confidence score
of being a positive instance by the trained classifier. The
confidence score will be directly used to evaluate the per-
formance of DTI prediction (Section Assessment).

The classifier used in our approach is Regularized
Least Squared (RLS) classifier because its training only
involves the solution of a linear system and its prediction
at new testing samples is very elegant [15, 16]. Usually,
for a testing sample x (corresponding to d,), its score of
belonging to the j-th class is generated by the trained
RLS classifier as follows,

(%) = K@, Xern) (K (Xerns , Xerm) +AD 'Y, (1)
where fi(x) is the predicted score of x, K is the kernel
matrix directly derived from drug similarity matrix, the
1 x m matrix K(x, X,,,,) contains pairwise similarities be-
tween d, and m known drugs, the m x m matrix K(X,,
X)) contains pairwise similarities between m known
drugs, A is the regularization parameter (usually equal to
0.5), I is the m x m identity matrix and Y; is the m x 1
class label vector of training samples corresponding to
the j-th column of adjacent matrix (target £). In the con-
text of predicting interactions, fi(x) is just taken as d,’s
confidence score S(d,, t;) of interacting with ¢;.

Spy strategy for identifying reliable non-DTls (negatives)
Since unlabeled drug-target pairs contain missing DT1Is,
simply regarding them as negative instances may cause
a bad classifier (a bad predicting model) which has a
confusing decision boundary between positives and
negatives. In other words, it cannot separate newly-
coming positives and negatives clearly. Aiming to re-
cover those hidden positive instances in the unlabeled
instances, we first utilized a semi-supervised strategy,
Spy [17], to identify the reliable negatives (RN) from
unlabeled instances. Since RN is significantly different
to positives, a better classifier of less confusing bound-
ary can be trained by positives (known DTI) and RN
(reliable non-DTTI).

Denote the set of labeled instances (known DTI) as P
and all the unlabeled instances as . A small set of la-
beled instances, S, are randomly selected from P and
injected into U. Name the remaining labeled instances
in P as P’ and the union set of U and S as U respect-
ively. Behaving similarly to the unknown positive in-
stances in U, the instances in S act as “spy” instances in
U'. Therefore, they allow us to investigate the behavior
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of the unknown positive instances in U by the following
steps: (1) the instances in P’ and U’ are labeled as posi-
tives and negatives respectively to build an ordinary clas-
sifier; (2) each instance in U is assigned with a
predicting score of being a positive by this trained classi-
fier; (3) the minimum of the scores of “spy” instances is
taken as the threshold ¢ to identify RN; (4) the instances
in U having the scores less than t are determined as RN;
(5) a new classifier is finally trained on P and RN to per-
form DTI prediction. Figure 1 illustrates this strategy.

Because the drug similarity matrix used in local classi-
fication model is unique, we assume that the thresholds
of identifying RN in different local classifiers are identi-
cal. In practice, we estimated this unified threshold from
the target which has the maximum number of drugs
interacting with itself. The procedure is listed as follows:
(1) randomly selecting 10 % “spy” instances out of P to
determine the threshold, (2) repeating the selection ten
times and obtaining ten thresholds, and (3) averaging
the ten thresholds as the final threshold.

| I RNI I

Traditional
Classifier

. Positives . Unlabeled

D Spy Positives . Reliable Negatives

Fig. 1 Spy strategy to identify reliable non-DTI. Positives (P), unlabeled
instances (U), spy instances(S) taken from positives, and reliable negatives
(RN) identified among unlabeled instances, are rendered with red bars,
gray bars, red frames and blue bars respectively. The traditional classifier
is trained by positives and unlabeled instances (treated as negatives
directly). The Spy-based classifier is built by injecting S into U and
investigating the behavior of S to identify RN. The final classifier

Classifier
With Spy

Classifier
With RN

is trained with positives and RN
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Super-target strategy for grouping similar DTls (positives)
as many as possible
In DTI data, most of the targets may interact with only
one or very few drugs. For example, 485 out of 664 tar-
gets in Enzyme dataset interact with less than 3 drugs
(445 drugs in total), and 288 targets interact with only
single drugs respectively [12]. In this case of instance im-
balance, the training would build a classifier having a
biased decision so as that the testing instances tend to be
discriminated as negatives. Missing interactions aggravate
the imbalance between few positives and many negatives.
Inspired by compound screening, Super-target strategy
is able to increase the number of positives by grouping
similar targets and their interacting drugs [3]. A group of
similar targets is named a super-target (Fig. 2). Super-
target creates an additional layer of classifiers, which
should further be incorporated into a regular local model
to form a two-layer local model because our final goal is
to determine how likely d, interacts with #;. In this layer, a
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classifier of less biased boundary is trained under the con-
dition of as many DTIs as possible. It is especially usefully
in the case that no or only a few similar drugs interact
with individual targets while more similar drugs interact
with the super-target of those individual targets [3].

To predict how likely d, interacts with st,, an ordinary
classifier at the level of super-target is built by labeling
all drugs linking to super-target st, as positives and
those not linking to it as negatives. Likewise, the confi-
dence score S(d,, st;) of d, interacting with st;, can be
calculated by formula (1).

However, the original Super strategy in [3] did not
consider that drugs interacting with all the target in a
super-target are significantly different. The interactions
between these drugs and a super-target are called the
fake interactions of super-target, which may cause a bad
classification boundary. We identified fake interactions
by the following rule. If a drug interacting with a super-
target ST, cannot find any of its top-K nearest neighbors

t1 t2 t4 t3 t5

di d2 d3

Fig. 2 Super-target strategy to gather more similar DTls (positives). (a) DTl graph and its adjacent matrix. (b) The groups of similar targets and
their corresponding columns in the adjacent matrix. (€) Drug-supertarget interaction graph and its adjacent matrix. The graph (left) and the
adjacency matrices (right) are different ways to represent the interactions between four drugs and five targets. The drugs (circles), targets (squares)
and super-targets (dashed rectangles) are labeled by the names starting with “d”, “t” and “st” respectively. Similar targets are in the same color. The
adjacency matrix between the drugs and super-targets (bottom right) is obtained from the original DTI matrix (top right) by performing the union
operation on the columns corresponding to targets belonging in the same super-target

di| 0 1 0 0 0
d2 | 1 0 0 1 0
d3 | 0 0 1 1 1
dd | 0 0 0 0 1
dx | ? % ? % %

t1 t2 t3 t4 5
di 0 1 0 0 0
d2 1 0 0 1 0
d3 0 0 1 1 1
dd | 0 0 0 0 1
dx | cl | c2 | c3 | c4 | c5

stl st2
di| 1|0
d2| 1|0
d3 [ 1 1
da | 0 1
dx | C1 | C2
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(e.g. K=3) among other drugs interacting with ST, its
interaction with ST is marked as a fake. After checking
all the super-targets with this rule, we removed the fake
interactions to obtain the cleaned super-targets which
group similar positives as many as possible.

Two-layer local classification model

We integrated two strategies for missing interactions to
form a two-layer local classification model. For target ¢,
in the top layer, the model clusters similar targets into
super-targets and predicts how likely d, interacts with a
super-target st, which contains ¢ by a traditional super-
vised learning. Then, in the bottom layer, it predicts how
likely d, interacts with ¢; € s, via the Spy-based classifier
built by positives and RN. The final confidence score of
d,, interacting with ¢; is calculated by

S(der ) = \/S(du st,)S (d. tyesty) 2)

Because some super-targets may contain fewer similar
positives and more dissimilar positives, an adaptive rule
was designed to determine when to apply Super-target:
(1) for each drug interacting with st;, counting the oc-
curring number nf of its K nearest neighbors (e.g. K =3)
among other drugs interacting with st,; (2) for all the
drugs interacting with st,, averaging the occurring num-
bers by 71, = Y nl/U, where U is the number of drugs
interacting with st;; (3) rejecting the Super-target strat-
egy if 71, < K/2, otherwise accepting it.

Such combination has the following advantages.
Super-target enables the training under the condition of
as many similar DTIs as possible, so as to relax the in-
stance imbalance and generate the less biased decision
boundary. Meanwhile, training with positives and reli-
able non-DTIs, Spy strategy guarantees a less confusing
decision boundary between DTIs and non-DTIs.

Assessment

The validation for predicting interactions between known
targets and new drugs should be appropriately designed [4],
otherwise the prediction is over-optimistic (e.g. [9] and
[13]). We followed the five-fold cross validation (5-CV) in
[3, 4, 14] to evaluate the proposed approach. The drugs in a
given dataset are randomly split into 5 non-overlapping
subsets of approximately equal sizes. Out of the five sub-
sets, one is used as the testing set and the remaining sub-
sets are taken as the training set. This process is then
repeated five times, to use each of the five subsets as the
testing set in turn.

In each round of CV, the predicting performance is
usually measured by the Area under the Receiver Operat-
ing Characteristic Curve (AUC). The corresponding
average of AUC in five rounds is taken as the final indi-
cator of assessment. In practices, AUC is defined as
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AUC=(n +05n")/(n +n), (3)

where n’ and n"” are the numbers of the cases that posi-
tives are larger than and equal to negatives in terms of
predicting scores respectively. The larger, the better. De-
riving from the traditional supervised classification, the
calculation of AUC has the need to compare all positives
with all negatives. AUC reflects how often positives are
greater than negatives on the average in terms of the
scores assigned by the predicting model.

Like compound or target screening, computational ap-
proaches predict potential interactions (positives) from
unlabeled drug-target pairs by selecting the instances of
high scores as the candidates. Thus, missing DTIs in the
testing negative instances would be recognized as poten-
tial interactions if they are assigned with high scores
(lower ranks). However, they are usually counted as false
positives in assessment since they are simply labeled as
negatives. Unfortunately, the calculation of AUC cannot
reflect the situation. In consequence, there is a need for
another performance measure to assist the assessment.

A new measuring index, Coverage, is presented to add-
itionally assess the prediction on the data containing
missing interactions. It is defined as follows

1 )4
Coverage = 1—72 rtn%x{mnk(di, £)}-1, (4)
=1 =l

where p is the number of the testing drugs and 7; de-
notes the set of the targets interacting with d;. The
smaller, the better. When predicting interactions for a
new drug, Coverage is able to evaluate how far, on the
average, we need to go down the target list in order to
cover all the proper targets of the drug.

We believe that the number of unlabeled positives
(missing data) is small, and most of them are assigned
with the scores higher than the lowest scores of known
DTIs. In other words, Coverage can embrace as many
missing interactions as possible even though they are
treated as negatives during the assessment. Therefore,
Coverage is more robust than AUC when missing inter-
actions occur. A toy example of calculating the values of
AUC and Coverage is shown in Fig. 3. Totally, a good
predicting approach is able to generate high AUC as well
as low Coverage.

Results and discussion

Data

The adopted datasets in our experiments were originally
collected by [12] and further used in subsequent works
[3, 4, 6-11, 13, 14] as the benchmark. All the DTIs in
the original work were split into four subsets in terms of
the type of protein targets, including enzyme, ion chan-
nel, GPCR and nuclear receptor. Here, the four DTI
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Profile without missing DTIs 1 [} 0 ) 1 0 0 0 1 1
Profile with missing DTls 1 [1] (1] 0 1 0 0 [} 0 1
Score 0.45 | 0.30 [0.10 | 0.23 [0.60 | 0.05 | 0.20 | 0.60 [0.78 | 0.90
Rank 5 6 9 7 3/4 (10 |8 3/4 (2 1

Fig. 3 A toy case showing the difference between AUC, AUPR and
Coverage. The first row denotes an interaction profile between a drug
and 10 targets. The second row denotes an interaction profile with one
missing interaction by removing the 9-th interaction from the first row.
The third row contains the predicted scores generated by performing a
predicting approach on the second row. The last row lists the ranks
corresponding to the predicted scores. The values of AUC, AUPR and
Coverage accounting for the first row, are 0833, 0683 and 4 respectively.
In contrast, after labelling the missing interaction as a positive correctly,
those value of AUC and AUPR (corresponding to the first row) would
change to 0938, 0912, but the value of Coverage doesn't change. AUPR
is significantly sensitive to the missing interaction, AUC is moderately
sensitive and Coverage is the most robust

datasets are shortly denoted as EN, IC, GPCR and NR
respectively. Former publications generally used chemical-
structure-based drug similarities and sequence-based target
similarities respectively when predicting DTIs [3, 12]. The
pairwise drug similarity was measured by aligning the
chemical structures of two drugs [18]. The pairwise target
similarity was derived from by Smith-Waterman alignment
[19]. More details can be found in the original work [12].
Because the drugs having different structures may interact
with common targets and the proteins having different se-
quences may be targeted by common drugs, we also
adopted additional non-structure-based drug similarity and
non-sequence-based target similarity which were proposed
in [3]. The new pairwise drug similarity was calculated by
comparing the class labels of two drugs according to Ana-
tomical Therapeutic Chemical (ATC) Classification System.
The new pairwise target similarity was calculated by com-
paring the functional categories of two targets according to
the annotation of HUGO Gene Nomenclature Committee
(http://www.genenames.org/). The details of similarity cal-
culation can be obtained in [3]. The final drug/target simi-
larity matrix we used was just the average of the new
similarity matrix and the previous similarity matrix. Based
on DTI adjacent matrix, drug similarity matrix was used to
train classifiers and target similarity matrix was used to
form super-targets. The datasets used in the following
experiments can be downloaded from the web address pro-
vided in [3, 12].
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The effectiveness of individual strategies and their
combination

To validate the effectiveness of two proposed strategies
and their combination, we first run the ordinary local
model (RLS); then run the model incorporated with Spy
strategy alone (RLSm_spy); after that, run the model
extended by only Super-target strategy (RLSm_super);
last, combined two strategies and run the model again
(RLSm_comb). The performance was measured by
both AUC and Coverage (Table 1). Compared with
RLS, RLSm_spy is better because of the less confusing
boundary generated by positives and reliable-negatives
at the level of targets. RLSm_super outperforms RLS
as well because of the less biased boundary generated
by grouping similar DTIs as many as possible at the
level of super-targets. As expected, RLSm_comb wins
the best among above all approaches and improves the
prediction significantly (compared with RLS). These
results demonstrate the effectiveness of our strategies
for missing interactions.

Comparison with other approaches

Furthermore, our approach was compared with two re-
cent approaches, NetCBP [14] and KronRLS [4] (Table 2).
Both of them adopted the same 5-CV to validate the pre-
diction. NetCBP, a semi-supervised approach, only used
AUC to measure its performance, while KronRLS, an or-
dinary supervised approach, used AUC as well as AUPR
(the Area under Precision-Recall Curve) to measure its
performance. Their results were generated by only using
chemical-structure-based drug similarity and sequence-
based target similarity [4, 14]. To make a fair comparison
with these approaches, using exactly same similarity
matrices, we run the proposed two-layer local model and
assessed it by both AUC and AUPR (the results denoted
as RLSm-comb-less). In addition, we listed the results
obtained by combined similarity matrices (Section Data)
together. The comparison shows that our approach is su-
perior to these two approaches (Table 2).

Analysis on AUC, AUPR, and coverage

Different performance measures should be applied in ap-
propriate cases. In a supervised classification problem,
when the number of negatives greatly exceeds the number

Table 1 Comparing local model with the models having Spy and Purified Super-target strategies respectively

RLS RLSm-spy RLSm-super RLSm-comb

AUC Coverage AUC Coverage AUC Coverage AUC Coverage
EN 0.844 129.596 0.847 123.966 0.848 121.769 0.853 119.265
IC 0.843 50.186 0.844 45.824 0.844 45671 0.847 43.162
GPCR 0.856 18.752 0.869 16.850 0.890 16216 0.895 14.423
NR 0.878 4.846 0877 4.900 0.889 4.000 0.889 4073

The bold entries denote the best results on the benchmark datasets
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Table 2 Comparison with other approaches

Page 607 of 643

EN IC GPCR NR
AUC|AUPR AUC|AUPR AUC|AUPR AUC|AUPR
NetCBP 0.825]- 0803 0.824]- 0.839)-
KronRLS 0.837/0361 0.802/0.258 0852/0378 0.846/0.493
RLSm-comb-less 0816/0.381 0.805/0.386 0.858]0.459 0.871/0.496
RLSm-comb 0.853(0.432 0.847|0.430 0.895(0.487 0.889|0.549

RLSm-comb-less is our approach running with chemical-structure-based drug similarity and sequence-based target similarity. The bold entries denote the best

results in terms of both AUC and AUPR

of positives, AUC is an optimistic measure [20]. Such in-
stance imbalance in DTI prediction is significant. In this
case, AUPR is more appropriate than AUC since it per-
forms great penalty on highly-scored false positive predic-
tions [20]. However, such penalty may cause pessimistic
results because those highly- scored false positives are
possibly unlabeled positives mixed in negatives.

A toy example in Fig. 3 illustrates how missing interac-
tions influence the values of AUC, AUPR, and Coverage.
Suppose that the values of AUC (0.833), AUPR (0.683)
and Coverage (4.000) are calculated respectively when
the interaction between the drug and the ninth target is
missing. Remarkably, when the missing interaction is
found back, the corresponding values are 0.938, 0.912
and 4.000 accordingly. Obviously, AUPR is quite sensi-
tive to missing interactions assigned with high predicting
scores since AUPR’s value changes sharply. In contrast,
AUC is moderately sensitive and Coverage is the most
robust (it doesn’t change in this case). This is the reason
why we didn’t use AUPR but use both AUC and Cover-
age to assess the prediction when investigating the strat-
egies for missing. When assessing the performance of a
predicting approach, one should keep above points in
mind. The further analysis about Coverage is depicted in
the next section.

Message from coverage

To elucidate the message behind Coverage, we compared
our approach with two boundary-line approaches, Ran-
dom prediction, and Oracle prediction. The former ran-
domly assigns the confidence scores to all drug-target
pairs, while the latter supposes both known interactions
and unlabeled pairs are perfectly labeled with 1's and 0’s
respectively. Since the values of AUC generated by these
two boundary-line approaches definitely ~0.5 and 1.0 re-
spectively, we only focused on their values of Coverage,
which denoted as C,,,40m and C,,,q. respectively. These
two values were further used to normalize the Coverage
value of the proposed approach into [0, 1]. The normal-
ized Coverage is defined as NC = (Coverage — Cyuere)/
(Crandom = Coracte)- The smaller, the better. In addition, we
calculated the ratio (C/# T) between Coverage and the

number of targets as well. Both of NC and this ratio facili-
tate the comparison across different datasets of varied
sizes (Table 3).

Three messages can be observed from the results in
Table 3. (1) RLSm-comb is significantly better than Ran-
dom prediction in terms of Coverage value. (2) The sig-
nificant difference between RLSm-comb and Oracle
prediction highlights the needs to extract better drug
similarities and to develop better models for DTI predic-
tion. (3) Most importantly, related to the cost of screen-
ing, both NC and C/# T reflect that ~20 % out of all the
targets along the candidate list, on the average, should
be checked to cover all the proper targets interacting
with the drug. Therefore, Coverage is able to indicate
the predicting performance more informatively than
AUC or AUPR.

Conclusions

In this paper, when predicting potential targets for new
drugs under the framework of local classification model,
we have addressed three important issues caused by
missing DTIs. First, simply treating directly unlabeled
instances as negatives would cause the confusing deci-
sion boundary between positives and negatives. To cope
with it, we have adopted a semi-supervised strategy, Spy,
which can identify reliable non-DTIs (negatives) from
unlabeled DTP (unlabeled instances) by investigating the
behavior of DTI (positives) among unlabeled DTP. Thus,
Spy enables the training to be under the condition of
positives and reliable negatives, so as to generate a less
biased decision boundary.

Table 3 Message from Coverage

Crandom Coracle Coverage NC #T C/#T
EN 437076 5.575 119.265 0.263 664 0.180
IC 147557 6.029 43.162 0.262 204 0212
GPCR 61.148 1.848 14423 0.212 95 0.152
NR 14.185 1.667 4.073 0.192 26 0.157

#T is the number of targets in dataset, C/#T is the ratio between Coverage and
#T, Crandom is the Coverage derived from random prediction, and Coace-is the
Coverage corresponding to oracle prediction and NC is the normalized Coverage
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Secondly, directly aggravating the toughness of few posi-
tives, missing DTTs also cause a biased decision boundary
which tends to predict newly-coming positives as negatives.
To address it, we have adopted the strategy, Super-target,
to cluster similar targets as well as the drugs interacting
with them. Super-target creates an additional layer of the
Spy-based local classification model. In this layer, a classifier
of less biased boundary is trained under the condition of as
many DTIs as possible. According to the number of similar
drugs interacting with a super-target, we have also intro-
duced the adaptive combination of two strategies to form a
two-layer predicting model.

Thirdly, existing measures (e.g. AUC and AUPR) of pre-
dicting performance do not consider missing interactions,
which are always assigned with high scores by predicting
models and counted as false positives in assessment. As a
complementary, we presented Coverage which is robust
to highly-scored missing interactions. Besides, it en-
ables us to evaluate how far we need to walk along the
list of targets in order to visit all the proper targets of
the queried drug.

In short, having less confusing and less biased decision
boundaries at the levels of target and super-target respect-
ively, the proposed two-layer model first predicts how
possibly a new drug interacts with a super-target, then
predicts how possibly it interacts with a member target
contained in that super-target, and its performance is
assessed by the new measure (Coverage), in addition to
the traditional measure (AUC).

Finally, based on four real benchmark datasets, we have
demonstrated that our approach is able to not only cope
with missing interactions but also perform superiorly to
two other approaches with respect to the problem of pre-
dicting interactions between known targets and new drugs.
Moreover, our approach can be applied to the symmetric
predicting scenario S3 as well.

Nevertheless, we are still walking on a long road. The
performance of DTI prediction, especially measured by
Coverage, reminds us that predicting potential targets
for new drugs still remains a tough challenge. More ef-
forts on drug similarity metric, as well as the predicting
model and the appropriate assessment for missing inter-
actions, should be done.
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