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Abstract

Background: Genomic regions with recurrent DNA copy number variations (CNVs) are generally believed to
encode oncogenes and tumor suppressor genes (TSGs) that drive cancer growth. However, it remains a challenge
to delineate the key cancer driver genes from the regions encoding a large number of genes.

Results: In this study, we developed a new approach to CNV analysis based on spectral decomposition of CNV
profiles into focal CNVs and broad CNVs. We performed an analysis of CNV data of 587 serous ovarian cancer
samples on multiple platforms. We identified a number of novel focal regions, such as focal gain of ESR1, focal loss
of LSAMP, prognostic site at 3g26.2 and losses of sub-telomere regions in multiple chromosomes. Furthermore, we
performed network modularity analysis to examine the relationships among genes encoded in the focal CNV
regions. Our results also showed that the recurrent focal gains were significantly associated with the known
oncogenes and recurrent losses associated with TSGs and the CNVs had a greater effect on the mRNA expression

of the driver genes than that of the non-driver genes.

Conclusions: Our results demonstrate that spectral decomposition of CNV profiles offers a new way of

understanding the role of CNVs in cancer.
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Background

DNA aberrations in cancer can take many different
forms, ranging from mutations, translocations, inversions
and copy number variations (CNV) [1, 2]. The scope of
the aberrations can range from single nucleotides to whole
chromosomes. Recent analyses of CNVs in various types
of cancers showed that their scope primarily exhibits two
modes: it is either focal, which is limited to a small frac-
tion of a chromosome, or very broad, which extends to a
large fraction of a chromosome arm [3, 4]. Mechanistic-
ally, it was found that the focal CNVs (fCNVs) occur due
to errors in DNA repair and the broad CNVs (bJCNV)
occur due to incorrect segregation of chromosomes dur-
ing mitosis [1, 5, 6]. Regions of frequent fCNV are particu-
larly important in cancer studies because they are believed
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to encode key genes driving cancer growth [7]. Many of
the known oncogenes, such as ERBB2, EGFR and CCND1,
are frequently amplified [8—12] and many of the known
tumor suppressor genes (TSGs), such as CDKN2A, PTEN,
NF1 and RBI, are frequently depleted in various types of
cancers [13-15]. Thus, it is generally believed that recur-
rent focal gains are associated with oncogenes_ENREF_3
and focal losses associated with TSGs [16].

However, it remains to be a challenge to delineate the
targeted oncogenes and TSGs from the recurrent CNVs
[17-19]. For example, from an analysis of over 3000 can-
cer genomes, Beroukhim et al. identified 150 focal regions
[4] that were supposed to be the hotspots of cancer driver
genes, but only less than 25 % of the regions contained
known oncogenes or TSGs. To explain the phenomena, it
was proposed that some CNVs may rise from inherently
fragile sites and gene poor regions. Solimini et al. pro-
posed a ‘gene island’ theory [16]: genes that stimulate/in-
hibit tumor growth may distribute very unevenly across
the genome. Such genes are not classical oncogenes or
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TSGs as they only have minor effects on tumor growth in-
dividually. However, the minor effects collectively can
make a big difference through evolution of the cancer cells
and produce the patterns of frequent gains/losses as we
have observed. Sharon J. Diskin et al. [20] developed a
statistical model called Significance Testing for Aberrant
Copy number (STAC) to evaluate the randomness of the
distribution of CNVs in tumors. STAC uses p-values to
prioritize regions for down-stream analysis.

To better understand how CNVs are related to cancer
driver genes, we analyzed CNVs in serous ovarian can-
cer, which is a type of cancer that contains relatively
more CNVs than others. The dataset contained samples
collected from 587 patients assayed on three different
microarray platforms (Additional file 1: Table S1). Both
primary tumors and adjacent normal tissues were assayed.
An analysis of the dataset was reported previously by the
TCGA consortium [21]. A statistical algorithm called GIS-
TIC was used in several studies [3, 22, 23] to identify the
regions that were highly enriched with copy number
gains/losses. Several well-known cancer driver genes, such
as RB1, PTEN and NF1, were suggested to be the targets
of the regions. However, the targeted cancer genes of 70
(62 %) of the 113 regions are not known. The results
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reported by the TCGA consortium were largely consist-
ent with earlier analyses of ovarian cancer, which used
smaller sample sizes and obtained CNVs at lower reso-
lution [24—29].

We developed a new method aimed at identifying the
focal CN'Vs that drive cancer progression (See in Fig. 1a).
The method is designed to decompose a CNV profile
into a focal profile and a broad profile based on the hy-
pothesis that a genomic region may undergo multiple
modes of aberrations during cancer progression. We
viewed a CNV profile as a spectrum, in which the high
frequency component corresponded to fCNVs and the
low frequency component corresponded to HCNVs.
Figure 1b illustrates the method schematically. To ob-
tain the bCNV profile, we used the running median
smoothing algorithm, which was originally proposed
by Tukey [30]_ENREF 2 to smoothen time series data
that follow a piecewise-constant model. The algorithm
works by taking the median value in a scanning window
over the CNV profile (See details in method section). The
focal profile is computed from the difference between the
CNV profile and the bCNV profile. This method is ap-
pealing because it preserves the shape of abrupt change
points and it is robust for data that follow piecewise
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Fig. 1 Analysis framework. a The flowchart of our analysis. b Schematic illustration of spectral decomposition of CNV profile. The red line on the
left shows a CNV profile with vertical position representing the copy number and horizontal position representing chromosomal location. The
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constant model. As shown in Fig. 1, the magnitude of
broad CNV segment e/ is not affected by focal CNV seg-
ment fg as long as fg span less than the half size of the
scanning window. Using Fourier or wavelet transforma-
tions, it is also possible to separate high frequency from
low frequency components from a CNV profile [31-35],
but those transformations are not robust, nor do they pre-
serve the shape of abrupt change points.

Methods

To identify focal copy number variations and their puta-
tive cancer genes, our method consists of the following
parts, which elaborate detailed steps of data collection
from the TCGA data portal, CNV probe-level data de-
noising and decomposition, identification of focal gains
and losses, identification of peak regions and further
downstream functional analysis (Network module and
survival analysis).

The computational time for the CNV decomposition
process is about 10-12 h on the high performance clus-
ter (six nodes with 24 cores per node, Linux operating
system); while for the rest procedures the time is less
than 1 h. The proposed algorithm can be easily achieved
using the detailed steps in method section, and the
source R code is available at https://drive.google.com/
drive/folders/0B6Q6G-z3ELntWIIEd2910VpyYzA.

Data source

Copy number and mRNA expression data were downloaded
from TCGA Data Portal (https://tcga-data.ncinih.gov/tcga/
dataAccessMatrix.htm) before September, 2012. Sample in-
formation of the 587 patients, progression free survival data,
were summerized in Additional file 1: Table S1. Version
hg18, Human Build 36.1 were used for annotating the gen-
omic coordinates.

CNV data processing

Let x be the vector of logarithm-transformed (base = 2)
probe signals ordered according to the chromosomal po-
sitions in a sample. x is called a copy number profile.
First, the profile is normalized using

Xnormalized = x_mOde(x) (1)

where mode(x) is mode value of x, i.e., the peak position
of density distribution funciton of x.
Second, the profile is smoothed to reduce noise,

Xsmoothed = runmEd(xnormalizeda W) (2)

where runmed is the running median smoothing func-
tion with a scanning window of w, which was chosen to
be 51, 51, 99 on the Agilent array, Illumina array, and
Affymetrix array, respectively. The total number of probes
are 9.6x10°, 1.19x10% 1.87x10° for the Agilent,
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[lumina, and Affymetrix arrays, respectively. Conse-
quently, the chosen window sizes corresponded to ap-
proximately the same size on the chromosomes, circa
120 kb. The smoothing algorithm treated CNV events that
spaned less than half of the window size as noise and ig-
nored them. Thus, gain/loss fragments that were smaller
than 59 kb were omitted in the subseqeunt analysis.

Third, because there is little change in the smoothed
profile between neighboring probed sites, we chose to
represent the smoothed profile at a lower resolution to
reduce data dimension, ie.,

Xreduced — xsmoothed[L 1 + W/ga 1 + 2W/3, ceey l’l] (3)

where 7 is length of X,,.001e4-
To obtain the broad CNV profile and focal CNV profile,
we used

KXbeny = runmed(xreduceda Wb) (4)
Xfenv = Xreduced ~Xbcnv (5)

where wb was chosen to be 641, 641, 793 on the Agilent,
[llumina, and Affymetrix arrays, respectively. The win-
dow sizes correspond to approxmiately 32 Mb on the
chromosomes, which means that CNV segments longer
than 16 Mb are treated as broad changes and CNV seg-
ments shorter than 16 Mb are treated as focal changes.
The results obtained in this study were not very sensitive
to the choice of whb. Additional file 2: Figure S1 showed
that the results were similar for wb between 30 and
40 Mb.

Identification of focal gains or losses
At any genomic locus, the copy number has three states:
gain, neutral, loss, which was determined as follows:

> 3e: gain;
Xy > —3e and < 3e: neutral, (6)
< -3e: loss

where ¢ is the estimated error of xy,,.

Identification of peak positions and their confidence
intervals

To identify peak positions of focal CNV distribution, we
used a scanning window of 41 x,, sites to search for
local maximums. Peaks with maximum value less than 8
were ignored.

To estimate the confidence intervals of the peak posi-
tions, a bootstrapping method [36, 37] was used. Boostrap
samples were constructed using random sampling with re-
placement from the 587 focal CNV profiles. 500 sets of
bootstrap samples were created, each set containing 587
profiles. For each set of the profiles, peak positions were
identified. Because the number of such peak positions
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from bootstrap samples may be different from number of
the original peaks, it is not possible to pair-up the two
kinds of peaks one-to-one. To identify a new peak position
for each orginal peak, we used the nearest peak position
in the bootstrapping set with regard to each original peak
to represent bootstrapped peak position. From the 500
sets of bootstrap samples, 500 sets of peak positions
were obtained. The top 2.5 percentile and bottom 2.5
percentile of the bootstrapped peak positions were
used as the estimates of 95 % confidence interval of
each original peak.

Identification of copy number polymorphism (CNP) from
normal tissues

To identify CNPs that rise from germline mutation, we
used focal CNV profiles of adjacent normal tissue sam-
ples. Because some of the samples appeared to be out-
liers as they contained a large number of CNPs, we
suspected that they have been contaminated by tumor
cells or the data had poor quality and decided to exclude
them. We computed the number of CNPs for each sam-
ple as number of sites with |[fCNV| > 5¢, where € is the
estimated error. Five samples on the Agilent platform
with largest number of CNPs were determined as out-
liers and were excluded. Similarly, 61 and 48 normal
samples were excluded from Affymetrix and Illumina
arrays, respectively. After the removal of outliers, 240,
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identification on the Agilent, Illumina, and Affymetrix
arrays, respectively.

Putative cancer driver genes based on fCNV and literature
search

We created a list of cancer related genes from combining
the cancer genes lists in OMIM database (http://omim.org/),
Cancer Gene database of MSKCC [38], Sanger cancer gene
census [39], TAG (http://www.binfo.ncku.edu.tw/TAG/)
and TSGene databases (http://bioinfo.mc.vanderbilt.edu/
TSGene/). The list contains 11,595 gene symbols.

An overlapping gene set of 200 genes was obtained
between focal region genes and this cancer gene list.

We found 1245 mRNA transcripts were located in the
42 focal regions that were identified from our analyses.
200 out of the 1245 were contained in the list of cancer
related genes.

For each of the 200 genes, we examined the references
listed on GeneCards (http://www.genecards.com). A
gene was defined as an oncogene if it has been reported
that over-expression or activation mutation of this gene
can cause cancer, promote cancer growth or metastasis.
A gene was defined as a TSG if knockdown or deleteri-
ous mutation of this gene can cause cancer, promote
cancer growth or metastasis.

Survival analysis
We used Cox proportional hazard model to search for

512 and 466 samples were included for CNP  genomic loci where fCNVs or hJCNV are correlated with

a.

> &7

[5)

C o

© S

ORRS

[o3

® o-

L

>

b

O

' 1 2 3 4 5 6 7 8 9 10 1 122 13 5 17 20 X
Chromosome

pe

@ o

58

o

L o

2 o

Q §7

o

1 2 3 4 5 6 7 8 9 0 11 12 13 15 17 20 X
Chromosome
Fig. 2 Distribution of focal and broad CNVs in 587 ovarian cancer samples. a fCNV; (b) bCNV. The x-axis shows the chromosomes. Data regarding
the Y-chromosome were removed. The y-axis shows the numbers of samples with gains as positive numbers in red and numbers of samples with
losses as negative numbers in green. Numerical data of the distributions can be found in Additional file 1: Table S2
J



http://omim.org/
http://www.binfo.ncku.edu.tw/TAG/
http://bioinfo.mc.vanderbilt.edu/TSGene/
http://bioinfo.mc.vanderbilt.edu/TSGene/
http://www.genecards.com/

Zhang et al. BMC Bioinformatics (2016) 17:222

progression free survival. At each the ;™ genomic site,
we constructed two models:

My penylj] = coxph (Surv(time, status)” Xy [j] + Xpeny b])
(7)

Mewlj] = coxph(Surv(time, status) xeulj]) (8)
where x4, is fCNV, and ., is the hCNV, and x,,, =
Xfeny + Xpeny cOxph is an R function that constructs an
object of the cox proportional model [40]. Surv() creates
a survival data object with censored time and status.
Model A used the decomposed CNV profiles. Model B
used CNV profiles without the decomposition.

Cox model for screening of prognostic sites based on
mRNA Expression data
For each gene i, a single-variate Cox model is set to be:
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M; = coxph(Surv(time, status)~ g;)

where g; is the logarithm transformed mRNA expression
levels of the gene and coxph is an R function to con-
struct an object of the cox proportional survival model.
Surv() creates a survival data object with censored time
and status.

Network/module analysis on genes in fCNV regions

We used the NetBox server (http://cbio.mskcc.org/netbox),
which is pre-loaded with a Human Interaction Network
(HIN) derived from curated literature. HIN contains 9264
nodes and 68111 edges. The genes in the focal regions
identified from our analyses were mapped to HIN to iden-
tify the core modules. The parameters used in the NetBox
analyses were as follows: shortest path threshold = 2;
p-value threshold = 0.05; number of global trials = 1000;
number of local trials = 100.
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Assessment of sensitivity and specificity based on
computer simulated data

To generate simulated CNV profile, we conducted the
simulation as follows: we set the dimension of a CNV
profile having L = 1.6 x 10* probes for N =500 patients.
The measurement error of the probe signals is set to fol-
low normal distribution with a standard deviation €= 1.
Each patient has a normal CNV profile and a tumor
CNV profile. A fraction of the patients (f*N) have an
amplicon in their tumor CNV profile. The height (k)
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and the width (represented as number of probes n) of
the amplicon are set to be variable. We then apply the
decomposition algorithm to identify status of gain/loss
at the center of the CNV profiles. False positive rates,
true positive rates, true negative rates, and false negative
rates were calculated according to nominal truth. The
significance p-value is calculated based on the test of
whether the number of focal gains is significantly greater
than the number of focal losses in the tumors at a
particular genomic locus.
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Results and discussion

Using the decomposition method, we performed the
analysis of focal copy number identification for the ovar-
ian cancer data from the TCGA data portal. We found
focal regions contain putative cancer driver genes, and have
significant co-occurrences with tumor suppressors and on-
cogenes. Also, we investigated the relationship between
gene expression alterations and their copy number varia-
tions in focal copy number regions. Finally, we checked if
focal copy number variations play a role in patients’ sur-
vival. Detailed results are elaborated in the following (or in
Additional file 2: Supplementary information).

Identification of focal regions containing putative cancer
drivers

Figure 1a shows a flowchart of our analysis process. First,
we obtained the distributions of focal changes and broad
changes across the human genome (Fig. 2 and Additional
file 1: Table S2). We evaluated the distributions for tumor
and normal tissue samples separately on each of the three
microarray platforms (Additional file 2: Figure S2). Then
we identified the peak positions of the fCNV distribution
and calculated the confidence interval (CI) of the peak po-
sitions using bootstrap samples (See in methods). We
searched for focal regions that met the following criteria:
(1) Peak height > 8; (2) The 95 % CI of the peak position is
less than 1 million base pairs. (3) Less than 4 gains or
losses were found in the normal tissue samples within the
95 % CL. This criterion filtered out regions that are poly-
morphic in the healthy population; (4) The number of
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focal gains must be significantly different from the num-
ber of losses in the same region.

We identified 42 focal regions that met our criteria,
which are composed of 26 focal gain regions and 16
focal loss regions (Additional file 1: Table S3). These re-
gions collectively encode 1245 transcripts (809 gene
symbols). Based on literature search, we found 47 onco-
genes in the focal gain regions and 15 TSGs in the focal
loss regions, which we regarded as putative driver genes
(Additional file 1: Table S3).

We compared results with previous analysis of ovarian
cancer [21] using GISTIC, which found 50 focal regions
with peak-width less than 1 Mb. 25 of the 50 had over-
laps with the focal regions in our analysis. Additionally,
we compared our results with a report of GISTIC ana-
lysis of multiple cancer types [41], which found 75 focal
regions with peak-width less than 1 Mb, and 29 of them
overlapped with our focal regions.

We noticed a number of features that had not been re-
ported in the previously. Our analyses unveiled recurrent
focal gains in the midst of broad losses. For example, 6q
loss is common in many cancers (Fig. 2b). Surprisingly, we
found a focal gain region around 6q25.1. The focal gains in
tumors were observed on all the three microarray platforms
(Fig. 3a) but not in normal tissues (Fig. 3c, d). The region
encodes an oncogene ESR1 known in many cancers includ-
ing ovarian cancer [42-45]. The focal gain in the tumor
samples was not identified using GISTIC 2.0 (Additional
file 2: Figure S3), presumably because the gain of ESR1 can
only be identified after CNV decomposition.
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Similarly, LSAMP located at 3q26 is an example of focal
losses in the midst of broad gains (Figs. 2b and 4). The focal
losses in tumors were observed on all the three microarray
platforms (Fig. 4a) but not in normal tissues (Fig. 4c, d).
LSAMP was identified as a candidate tumor suppressor and
focal deletion LSAMP were reported in other cancers
[46-50]. Expression of LSAMP was also shown to be associ-
ated with osteosarcoma progression [50]. GISTIC analysis of
LSAMP region identified no significant deletions (Fig. 4e).

Relationship between gains/losses and oncogenes/TSGs

Although it is widely believed that oncogenes are associ-
ated with the gains and TSGs associated with losses, the
associations have not been evaluated quantitatively in
previous studies. We have tested this association using
our results. Figure 5 showed the numbers of focal re-
gions that contained known cancer driver genes in the
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42 focal regions identified in our analysis. Most of the
regions contained oncogenes as well as TSGs. However,
the oncogene-to-TSG ratio in the focal gain regions was
different from that in the focal loss region: The ratio is
22:14 in the focal gain regions and 2:11 in the focal loss
regions. The ratios differ by 8.6-fold, which is statistically
significant (p-value = 8.30x107>, Fisher’s exact test.)
Third, there were 9 regions of focal losses located at
the ends of chromosomes (4p, 4q, 8p, 9p, 9q, 11p, 11q,
16p and 19p, in Fig. 5), which may be related to telomere
loss in serous ovarian cancer [51-53]. In four of the focal
regions, no known oncogenes or TSGs were found.

Network modularity analysis of genes encoded in the
focal regions

To explore the underlying relationship among the 1245
genes encoded in the 42 focal regions, we performed a
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244 K and Affymetrix U133A, corresponding to the panels on the left, middle and right, respectively. The differences in the effect sizes are significant
(p-values =0.012, 0.0059, 0.020, for the left, middle and right panels, respectively)

network modularity analysis using NetBox [54]. 809 of 1245
transcripts can be mapped into the background network
stored in NetBox. The NetBox analysis found a sub-network
of 14 modules consists of 130 genes and 188 edges (Fig. 6).
This sub-network has an overlap of 31 with the 62 putative
drivers. This level of overlap is statistically significant
(p-value = 6.45 x 107, Fisher’s exact test), which suggests that
the driver genes are more “connected” than other genes.

Association between focal CNVs and genes expression
To further explore the functional role of focal CNVs, we
assessed association between focal CNVs and gene

expression. We found that the focal changes have a
greater effect on putative drivers (Fig. 7). Using gene ex-
pression data obtained on the RNAseq platform, the mean
fold change in the gene expression in response to focal
gain/loss is 0.54 for cancer driver genes and 0.39 for other
genes, respectively. On the Agilent 244 K platform, the
corresponding values were 0.48 and 0.36. And on the Affy-
metrix U133A platform, the values were 0.40 and 0.29.

Association between focal CNVs and patient survival
We searched for genomic loci where CNVs were associ-
ated with patient survival. We used Cox proportional

Table 1 Prognostic loci of ovarian cancer progression. The (Wald test) p values were obtained from Cox proportional hazard model
with fCNV and bCNV data on the Affymetrix array platform as covariates

Chr Region(Mb) p-value Representative genes

1 239.017-239.540 2.7E-04 KMO

3 171.107-174.249 1.0E-05 ECT2, EIF5A2, CLDNT1, MYNN, LRRC31, EVI1
4 19.677-20.283 8.2E-06

12 22.873-23.388 6.5E-04 KIAA0528

18 24.633-24.729 1.7E-04

X 32.237-32418 5.8E-06
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hazard model with the disease progression free survival
(PES) data of the patients. At each genomic site, we used
fCNV and bCNV as two covariates to evaluate their as-
sociation with PFS. We obtained similar results are simi-
lar on all of the three microarray platforms (Additional
file 2 Figure S4 and Additional file 1: Table S4). The
most significant loci for prognosis are listed in Table 1.
Additional file 2: Figure S5 showed the p-values of the
SCNV and bCNV in the Cox models. One of the most
significant site was located at 3q26.2 (genome coordin-
ate: Ch3:171-174 Mb). We found that mRNA expres-
sion of the genes encoded in the region is also
significantly associated with PFS (Fig. 7). Interestingly,
EIF5A2, which is one of the genes in the region, was
found to be prognostic in ovarian cancer [55], colorectal
carcinoma [56] and urothelial carcinoma [57]. Several
other genes also had expression values significantly asso-
ciated with PFS (p-value < 0.001, Wald test). These asso-
ciations lend further support of the genomic with
prognostic value.

Test of fCNV detection algorithm with computer
simulated data

To evaluate the performance of the algorithm that we
developed for fCNV detection, we applied the algorithm
into the computer-generated data. The simulated data
were generated following a very simple scenario: The
profile contains only one amplicon at the center (See
Method section for details). Detection of the amplicon
depends on the amplitude (height /) of the amplicon
over the noise level (g), and the width of the amplicon
(n, number of probes). The false positive rate approaches
to 0 when //e>0.9 and # > 30 (Additional file 2: Figure
S6.1 and $6.2). In addition, since one of the prerequisites
of oncogenes is that the number of focal gains ought to
be significantly greater than the number of focal losses,
it follows that the frequency of patients with the ampli-
con cannot be too low for the positive/correct identifica-
tion. We found that f should be greater than 0.02 such
that we can have a p-value <0.05 when 500 patients were
tested (Additional file 2: Figure S6.3). These results sug-
gested that we may not be able to identify the cancer
driver genes if the frequency is less than 2 % of the
patients in our study, or the focal CNVs are too short
(e.g., with fewer than 30 probes covering the aberrant
genomic region).

Conclusions

In this study, we developed a new approach to CNV ana-
lysis based on spectral decomposition CNV profile that
separates focal CNV from broad CNVs. Using this ap-
proach, we performed an analysis of 587 serous ovarian
cancer samples and found significant focal regions that
are likely to contain cancer drivers. These regions have
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partial overlaps with regions that had been reported in
previous analyses, but significant differences were also
noted. Our results yielded a list of interesting findings,
such as focal gains around ESRI1, focal loss around
LSAMP, prognostic site at 3q26.2 and sub-telomeric
losses. 29 of the 42 focal regions from our analysis over-
lapped with the focal regions reported by previous pan-
cancer analysis using GISTIC, which suggests that our
results are in general agreements with previous analyses
but also offered new focal regions of interest, which de-
mand further investigations.

We also formerly tested the association between gain/
loss and oncogene/TSG. Our results confirmed that the
recurrent focal gains were significantly associated with
the known oncogenes and recurrent losses associated
with TSGs and the CNVs had a greater effect on the
mRNA expression of the driver genes than that of the
non-driver genes. Our results also showed focal CNVs
had greater effects on expression of cancer driver genes
than that of the non-driver genes. Our study demon-
strated that spectral decomposition of CNVs offers a
powerful new way of understanding the role of CNVs in
cancer.

Additional files

Additional file 1: Table S1. Sample information of 587 ovarian patients
and normal tissue samples with Copy number variation and mRNA data
on different platforms. Table S2. Distributions of focal gains/losses in
primary tumors and adjacent normal tissue separately on each of the
three microarray platforms. Table S3. List of genes encoded in the
recurrent focal event regions. Table S4. Prognostic results of ovarian
cancer progression using fCNV on three platforms. (XLSX 20403 kb)
Additional file 2: The additional file contains all the details of

additional/supplementary figures (Figure S1-S6) and tables (Table S1-
S4). (DOCX 1574 kb)
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