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Abstract

Background: Scaffold proteins are known for being crucial regulators of various cellular functions by assembling
multiple proteins involved in signaling and metabolic pathways. Identification of scaffold proteins and the study of
their molecular mechanisms can open a new aspect of cellular systemic regulation and the results can be applied
in the field of medicine and engineering. Despite being highlighted as the regulatory roles of dozens of scaffold
proteins, there was only one known computational approach carried out so far to find scaffold proteins from
interactomes. However, there were limitations in finding diverse types of scaffold proteins because their criteria
were restricted to the classical scaffold proteins. In this paper, we will suggest a systematic approach to predict
massive scaffold proteins from interactomes and to characterize the roles of scaffold proteins comprehensively.

Results: From a total of 10,419 basic scaffold protein candidates in protein interactomes, we classified them into
three classes according to the structural evidences for scaffolding, such as domain architectures, domain
interactions and protein complexes. Finally, we could define 2716 highly reliable scaffold protein candidates and
their characterized functional features. To assess the accuracy of our prediction, the gold standard positive and
negative data sets were constructed. We prepared 158 gold standard positive data and 844 gold standard negative
data based on the functional information from Gene Ontology consortium. The precision, sensitivity and specificity
of our testing was 80.3, 51.0, and 98.5 % respectively. Through the function enrichment analysis of highly reliable
scaffold proteins, we could confirm the significantly enriched functions that are related to scaffold protein binding.
We also identified functional association between scaffold proteins and their recruited proteins. Furthermore, we
checked that the disease association of scaffold proteins is higher than kinases.

Conclusions: In conclusion, we could predict larger volume of scaffold proteins and analyzed their functional
characteristics. Deeper understandings about the roles of scaffold proteins from this study will provide a higher
opportunity to find therapeutic or engineering applications of scaffold proteins using their functional characteristics.
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Background
Cells regulate and integrate various functional modules
to monitor external and internal states, and to execute
the appropriate physiological responses. Generally, cells
can monitor environmental stimuli using sensors like
receptors. This information is then processed by intra-
cellular signaling networks to control various cellular
outputs. Scaffold proteins are known as an important
controller in this process [1]. Scaffold proteins are signal-
ing organizers which can modulate signaling specificity,
integration, crosstalk, feedback, and multiplicity by acting
as a physical platform to assemble signaling components
[2, 3]. Through these regulations, scaffold protein can lead
to dynamic signaling outputs [4]. Scaffold proteins are
involved not only signaling processes but also in the
assembly-line processes and cell-cell communications [1].
Scaffold proteins also control enzymatic activities by con-
formational fine-tuning. Scaffold proteins can engage their
interacting partners and transport them into specific cellu-
lar compartments [5]. To sum up, scaffold proteins basic-
ally need to assemble multiple proteins by protein-protein
interaction using interacting domain to enforce proximity.
Mainly, scaffold proteins regulate spatial organization of
reactions and control dynamics by recruiting modifiers or
acting as catalysts. They also act as a signaling/metabolism
organizer. Through these functionalities of scaffold pro-
teins, it is possible to combine the use of these elements,
protect activated signaling molecules from inactivation,
and control dynamic signaling output.
As mentioned, the characteristics of scaffold proteins

could be applied as therapeutic targets to treat human
diseases and industrial applications to synthesize desired
chemical products by engineering. There has been en-
couraging example of scaffold proteins as therapeutic
applications. Some studies have suggested IQGAP1 pro-
teins are highly expressed in cancer cell lines [6] and
plays a role for scaffold protein IQGAP1 in enhancing
tumorigenesis, but IQGAP1 knockout mice are viable
and fertile, do not show any defects in normal epithelium
and heal wounds normally [7]. Thus, IQGAP1 is a poten-
tial tumor-required scaffold protein that is dispensable for
homeostasis. So, they made scaffold-kinase interaction
blockade (SKIB). SKIB acts using a mechanism distinct
from direct kinase inhibition and may be a strategy to
target overactive oncogenic kinase cascades in cancer [8].
Like this example, aberrant regulation of these various
cellular functions can lead to the development of many
types of diseases, because scaffold proteins act as systemic
regulators in cellular network.
In spite of the importance of scaffold protein, only a

few have been discovered on an individual basis and
their regulatory roles are largely unknown. Zeke et al.
provide a definition for classical scaffold proteins. Clas-
sical scaffold protein can be defined as proteins that: (i)

lack intrinsic catalytic activity relevant for signaling; (ii)
have at least two binding partners with catalytic activity
relevant for signaling; and (iii) have binding partners that
interact with each other in a direct or indirect way [4].
Fidel and Mario firstly predicted potential scaffold pro-
teins from interactomes according to the criteria by
Zeke et al. [9]. However, there was a limitation to find
diverse scaffold proteins because their criteria were re-
stricted to the classical scaffold proteins. In this study,
we searched known scaffold proteins from articles and
database and used that knowledge to give reliability to
scaffold proteins predicted from interactomes.
We newly defined criteria for finding scaffold proteins

focused on structural features to act as scaffold proteins.
We extracted 10,127 proteins which have multiple inter-
acting partners from protein interactomes and defined
2716 reliable scaffold proteins according to our novel
criteria. We carried out the functional association be-
tween scaffold proteins and their recruited proteins and
the disease association were tested. Through functional
enrichment analysis, we could identify the information
of their known function and additional novel implications.
As a result, our discovery can help further investigation to
study or utilize scaffold proteins for engineering and
therapeutics.

Methods
Data collection
Collection of interactome data
To predict scaffold proteins from interactomes by using
structural features, we collected protein-protein inter-
action (PPI), domain-domain interaction (DDI), and
protein-domain, and protein complex data. The protein
domain information were taken from the Pfam database
[10]. PPI and DDI data were collected from integrated
PPI database [11] and integrated DDI database (IDDI)
[12] respectively. Moreover, we downloaded the protein
complex datasets from COFECO [13].

Collection of functional categories
From the UniProtKB, we first obtained totalhuman pro-
teins in SwissProt [14]. Disease-associated genes were
collected from three databases: OMIM, PharmGKB [15],
KEGG DISEASE [16]. Because the naming of disease
status vary among the source databases, we standardized
the disease names by extracting the Unified Medical
Language System (UMLS) [17] IDs using MetaMap. The
UMLS IDs were converted to ICD-10-CM (International
Classification of Diseases, 10th Revision, Clinical Modifi-
cation) once more, using the mapped information that
were provided in the UMLS. Drugs and their targets
data were collected from DrugBank [18]. To compare
the functional associations between scaffolds and their
partner proteins, we prepared data of localization and
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pathway. Localization data is collected from Gene Ontol-
ogy [19] Cellular Compartment. Each identifier of the
Gene Ontology Cellular Compartment is re-organized
into 17 cellular compartments according to the hierarch-
ical structure (cell surface, chromosome, cytoplasm, cyto-
plasmic membrane-bounded vesicle, cytoskeleton, cytosol,
endoplasmic reticulum, endosome, ER-Golgi intermediate
compartment, extracellular region, Golgi apparatus, mito-
chondrion, nucleus, plasma membrane, ribosome, sarco-
plasmic reticulum, vacuole). Pathway data is collected
from four different pathway databases (KEGG [20], PID
[21], Reactome [22], and WikiPathway [23]) and defined
pathway names and their components were extracted.

Collection of known scaffold proteins
To test reliability of our prediction, we defined the gold
standard positive and the negative set using basic text
mining and functional term filtering. For the gold stand-
ard positive set, we collected scaffold protein candidates
from multiple sources. First, we manually gathered scaf-
fold proteins from review articles. Second, we found
candidates using query search from functional descrip-
tions of UniProt database and title/abstract of PubMed.
From those candidates, we filtered out candidates which
already have their known molecular functions as scaffold
activities and complex assemblies. For the gold standard
negative set, we excluded proteins which have molecular
functions and biological functions related to known scaf-
fold proteins.

Criteria for predicting novel scaffold proteins
We proposed criteria for finding scaffold protein candi-
dates: (i) direct interaction with at least two proteins, (ii)
domain-domain interaction between scaffold and two
partner proteins using different domain regions, and (iii)
scaffold and two partner proteins should be components
in the same protein complex (Fig. 1). This criteria is dif-
ferent from Zeke’s definition of classical scaffold protein
[4]. Our criteria can filter out hub proteins which have

multiple competitive interacting partners using same
domain regions.

Characterization of scaffold protein candidates
Gene annotation enrichment analysis
We used the DAVID [24] tools to analyze functional
characteristics of collected scaffold protein candidates.
The functional meaning of the scaffold protein candi-
dates was interpreted using function enrichment analysis
tool in DAVID. We analyzed functional implications in
GO molecular function, GO cellular compartment, GO
biological process and Pfam families. The p-values were
adjusted by multiple testing corrections using Benjamini
and Hochberg’s method [25].

Functional association analysis
We tested the hypothesis of having no association
between scaffold proteins and disease related genes (dis-
ease genes or drug targets). To use chi-square statistics,
we made contingency table. Observed frequency is com-
pared to expected frequency. If there was no association
between scaffold proteins and disease related genes, then
the expected frequency should be almost equal to the
observed frequency, and the value of the chi-square stat-
istic would be small and the probability (p-value) would
be large.

Results
Statistics
Data statistics
We collected various kinds of resources and constructed
database using Oracle 10 g. All proteins were filtered in
Homo sapiens and Swiss-Prot which are manually anno-
tated and reviewed. Protein-protein interaction data was
filtered by experimental detection methods. Domain-
domain interactions were selected which have 3D struc-
tural evidences (Table 1-a). We predicted scaffold protein
candidates and classified into three types, according to the
eligibility criteria. Actually our novel criteria means type I
case, however we allowed to classify into type II and type
III, because our resources of domain, DDI, and protein
complexes were not completely detected (Table 1-b). Both
criteria 2 and 3 make scaffold proteins possible to be exist
with their partner proteins together simultaneously.

Performance test
To evaluate the ability of the prediction performance, we
used a statistical measurement. We defined the gold
standard positive and negative scaffold protein set and
calculated the number of true positive, false positive,
true negative and false negative. Using these four out-
comes, we made 2 × 2 contingency table and we obtained
precision, sensitivity and specificity of our tests (Table 2).

Fig. 1 Structural criteria for predicting scaffold protein candidates
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The precision, sensitivity and specificity of our tests were
80.3, 51.0, and 98.5 %, respectively.

Functional characteristics of predicted scaffold proteins
Enriched functions
We carried out a function enrichment analysis for the
candidates of scaffold proteins using the GO cellular com-
ponent (GOCC), GO biological process (GOBP), GO mo-
lecular function (GOMF) and Pfam family at Bonferroni
corrected p-value of 0.001. Functional enrichment result

showed that 87 GOCC, 284 GOBP, 85 GOMF, and 41
Pfam terms are significantly enriched. We could find
significant functional implications in the scaffold proteins
like ‘metabolic process’, ‘phosphorylation’, ‘cell death’, ‘cell
proliferation’, ‘apoptosis’, ‘signaling pathway’, ‘complex as-
sembly’. According to the cellular component result, scaf-
fold proteins had significant enrichments on the all
cellular compartments. As we expected, binding that are
related to the various molecular functions were signifi-
cantly enriched. Interestingly, some molecular functions
(‘transcription regulator activity’, ‘nucleotide binding’,
‘uniquitin protein ligase binding’) could show that scaffold
proteins might have special cellular functions such as
assembling transcription factor complex or ubiquitin lig-
ase complex. Furthermore, ‘kinase activity’ shows that the
scaffold proteins canalso have catalytic activities and this
is distinguished from characteristics of classical scaffold
proteins. Well-known modular PPI domains are enriched
from Pfam family and it supports binding functions of
scaffold proteins (Fig. 2).

Functional similarity between scaffold and partner proteins
We compared functional information of scaffold pro-
teins with their partner proteins. In case of Type I,
93.0 % of the total scaffold proteins in Type I have cellu-
lar localization information and 99.3 % are matched with
partner’s information (Table 3-a). In the same way,
86.2 % of total scaffold proteins in Type I belong to
pathways and 96.1 % have partner proteins which have
same pathway information (Table 3-b). This result shows
the possibilities to predict novel cellular functions of
scaffold proteins and partner proteins from their known
information.

Disease association
Some studies have suggested the scaffold protein
IQGAP1 as a therapeutic target for inhibiting tumori-
genesis. Like this example, scaffold proteins could be
disease markers or drug targets because of their import-
ant role as a systemic regulator. Hence we tested associ-
ations between scaffold proteins and disease related
genes. Additionally, we tested associations between set

Table 1 Statistics

a) Statistics of collected data

Type Source Statistics

Protein UniProt Protein: 20233
Articles: 269469

Protein-protein
interaction

ComBiCom (BIND, BioGRID,
DIP, HPRD, IntAct, MIPS)

Proteins: 82894
PPIs: 73743

Domain Pfam Domains: 4895
Proteins: 17316

Domain-domain
interaction

iDDI (3DID, iPfam) Domains: 3214
DDIs: 17770

Protein complex COFECO Protein complexes:
3317
Proteins: 4597

Pathway KEGG, NCI-PID, Reactome,
WikiPathway

Pathways: 2620
Proteins: 8413

Cellular location Gene Ontology
Cellular Compartment

GO terms: 635
Proteins: 9820

Disease gene OMIM, PharmGKB, KEGG
Disease

Disease: 502
Genes: 4950

Drug target DrugBank Drugs: 1574
Proteins: 1077

Gold standard set UniProt, PubMed,
Gene Ontology

Positive: 104
Negative: 844

Kinase PhosphoELM, Phosphosite Kinase: 468

b) Statistics of scaffold protein candidates

Class Criteria 1 Criteria 2 Criteria 3 # of scaffold
proteins

Type I O O O 616

Type II O O X 1792

Type III O X O 308

Table 2 2 × 2 contingency table for evaluating the performance of prediction

True condition

Total population Condition positive (158) Condition negative (844) Prevalence 17.1 %

Predicted condition
(2716)

Predicted condition
positive

67 13 Precision (Positive predictive value)
83.8 %

Predicted condition
negative

91 831 False omission rate 9.8 %

Accuracy (89.6 %) Sensitivity (True positive rate)
42.4 %

Fall-out (False positive rate)
1.5 %

Miss rate (False negative rate)
57.6 %

Specificity (True negative rate)
98.5 %
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of kinases and disease related genes for comparison.
Among 616 scaffold proteins in Type I, 188 scaffold
proteins are known as disease genes and 61 scaffold
proteins are drug targets. In kinase case, 136 kinases are
known as disease genes and 92 kinases are drug targets
among total 468 kinases. We made contingency tables
about observed and expected frequency. From these
contingency tables, we could calculate chi-square values.
Table 4 shows that the disease association of scaffold
proteins is higher than kinases. Conversely, drug target
association of scaffold proteins is lower than kinases,
but this result is obvious because kinases have been

Fig. 2 Enrichment of Gene Ontology annotations and Pfam families. The four histograms show significantly enriched Gene Ontology annotations
and Pfam domain families for the 2716 scaffold protein candidates. The x-axis represents the number of scaffold protein candidates belonging to
the respective category

Table 3 Similarity between scaffold protein candidates and
partner proteins

a) Similarity of cellular localization

Type # of scaffold proteins

Total Known Matched with partner’s information

Type I 616 573 (93.0) 569 (99.3)

Type II 1798 1372 (76.3) 1285 (93.7)

Type III 308 264 (85.7) 251 (95.1)

b) Similarity of related pathway

Type # of scaffold proteins

Total Known Matched with partner’s information

Type I 616 531 (86.2) 497 (93.6)

Type II 1798 1178 (65.5) 856 (72.7)

Type III 308 212 (68.8) 142 (67.0)

Table 4 Disease and drug target association of scaffold protein
candidates and kinases

Disease association Drug target association

Scaffold Kinase Scaffold Kinase

Risk ratio 1.26 1.19 1.91 3.94

Odd ratio 1.37 1.27 2.01 4.66

Chi-square value 12.6 5.47 89.12 195.35

p-value 3.85E-04 1.93E-02 2.72E-07 2.16E-44
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researched as drug target candidates until now. Our
result shows that scaffold proteins have association
with diseases and drug targets, so it gives us the reason to
study scaffold proteins as therapeutic targets.

Case study
As mentioned, predicted scaffold proteins show high
association with disease gene and drug targets. Through
the additional analysis, we selected two cases that are re-
lated to disease condition from scaffold protein candidates
(Fig. 3). AXIN1 is already known as a scaffold protein [26]
and in our prediction, it interacts with GSK3B and
CTNNB1. We analyzed a microarray dataset in case–con-
trol designed from the NCBI Gene Expression Omnibus
for type 2 diabetes (GSE29231) [27]. The statistical ana-
lysis of gene differential expression was computed and
then the p-values of each gene were obtained using the
Benjamini & Hochberg method. AXIN1 is down regulated
in diabetes condition and CTNNB1 activation is associ-
ated with an increment in glucose uptake [28]. From these
evidences, we could make hypothesis that type 2 diabetes
is caused by a decrement of glucose import because acti-
vation of CTNNB1 is inhibited by lower expression of
AXIN1.
Our prediction identified PIK3R1 as a scaffold protein

candidate by recruiting GAB1 and PIK3CA. We could
find protein expression level of PIK3R1 in both the

normal cell and the cancer cell using Human Protein
Atlas [29]. Protein expression of PIK3R1 was not de-
tected in normal breast cell, however it was highly
expressed in breast cancer cell. PIK3CA is known as a
gene related malignant neoplasm of breast [30] and in-
hibits apoptosis function. From these evidences, we
could make hypothesis that cancer-specific high expres-
sion of PIK3R1 increases activation of PIK3CA and as a
result, negatively regulated apoptotic function cause can-
cer in breast.

Discussion
Using massive data from high-throughput screening, we
could predict plenty of candidate proteins which may act
as scaffolds. Many of them are not known as scaffold
proteins but they have possibilities to recruitpartner pro-
teins and regulate their functions. Although our text
mining methods can be improved, known scaffold pro-
teins extracted from articles and database might be quite
helpful to corroborate the reliability of scaffold proteins
that are predicted from interactomes. In this study, we
used highly reliable data of protein-protein interaction
and domain-domain interaction. Because there are many
predicted information of protein domain, protein-
protein interaction and domaindomain interaction, there
is a chance to expand predicted scaffold proteins with
scores of reliabilities. If we could utilize functional

Fig. 3 Models of AXIN1 scaffold protein and PIK3R1 scaffold protein candidate. a AXIN1 is a known scaffold protein and AXIN1 interacts with
GSK3B and CTNNB1 using RGS and Axin b-cat bind domain respectively. CTNNB1 is related activation of glucose import. Through gene expression
analysis, AXIN1 is down regulated in type 2 diabetes. b PIK3R1 is predicted as a scaffold protein. RIK3R1 can recruit GAB1 and PIK3CA using SH2
domains. PIK3CA is known as a gene related to malignant neoplasm of blast and inhibits apoptotic function. Protein expression of PIK3R1 is not
detected in normal breast cell, however it is highly expressed in breast cancer cell
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information or condition specific data, predicted scaffold
proteins might be classified into various types by their
functional characteristics, such as localization, pathway
regulation or crosstalk. These functional characteristics
also can be used as a measurements of the reliability
scores. Some of known scaffold proteins recruit more
than two proteins, but we restricted scaffold protein with
two partner proteins, because there are so many possible
combinations of partner proteins sets. We can filter and
find scaffold proteins which can recruit more than two
proteins from our predictions.

Conclusion
Scaffold proteins can precisely control the specificity
and dynamics of information transfer. Furthermore,
scaffold proteins have versatility due to their modular-
ity, which allows recombination of protein domains to
build new signaling pathways. In the past, scaffold pro-
teins were discovered only by chance via experiments
aimed at studying the function of signaling enzymes or
receptors. We carried out extraction of scaffold pro-
teins from articles and database and prediction from
interactomes according to the new criteria we pro-
posed. Through functional enrichment analysis, we
identified not only the known functional implications
of scaffold proteins but novel enriched terms. Using
functional characteristics of partner proteins, we also
predicted new function of scaffold proteins. Finally, we
found that scaffold proteins were highly associated with
diseases and drug targets like kinases. Through future
studies, more can be understood about the role of scaf-
fold proteins, and scaffolds can be used to generate
new and predictable pathway to program useful cellular
behaviors. In this respect, this study can support fur-
ther researches for discovering the target of molecular
engineering and therapy.
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