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Abstract

Background: In this paper, we study the problem of RNA motif search in long genomic sequences. This approach
uses a combination of sequence and structure constraints to uncover new distant homologs of known functional
RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms.

Results: We have designed a new algorithm for RNA motif search and implemented a new motif search tool
RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better
characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time
of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled
way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously

published tools.

Conclusions: We have developed a new method for RNA motif search that allows for a significant speedup of the
search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of
DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo.
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Background

Functional RNAs are often more conserved in their struc-
ture than in sequence. Thus to find RNAs related to
a known example, we look for sequences capable of
assuming the appropriate secondary structure. Here, we
investigate the problem of RNA motif search based on
user-defined descriptors. RNA motif descriptors spec-
ify restrictions on base-pairing structure of the target
RNA, as well as sequence constraints characterizing
conserved functional sites. As opposed to popular
fully-automated systems based on probabilistic models
[1-3], this approach allows expert users to handcraft motif
descriptors and highlight the most important features of
the target RNAs, thus better targeting a particular bio-
logical phenomenon [4-7]. In this paper, we revisit the
problem of descriptor-based search and present a new
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tool, RNArobo, that improves the speed of such searches
compared to previous methods, including RNAbob [5],
RNAMotif [8], RNAMot [4] and RaligNAtor [9].

Currently, most popular tools for RNA motif search,
such as InferRNAI [3] or CMFinder [2], are not based on
handcrafted motif descriptors. Instead, they use covari-
ance models founded on stochastic context-free gram-
mars, that are built automatically from a set of known
occurrences of the target RNA. This approach addresses
many shortcomings of descriptor-based methods, most
notably the difficulties in deciding which parts of the motif
are important for recognizing a particular RNA, as well as
high false positive rates of less specific descriptors.

Covariance models are relatively rich probabilistic mod-
els, and consequently many examples are required to build
a model of a given RNA family. This precondition can be
sometimes easily satisfied, most notably in cases where
an alignment of the target family is already present in a
database, such as Rfam [10].

However, if only a few examples are known for a partic-
ular RNA motif, we are under the necessity to find more
occurrences before such parameter-rich models can be
employed. In such cases, motif descriptors have been used
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with great success to uncover the distribution of small
structured RNAs in the genomic space. These functional
RNAs include hammerhead ribozymes [11-17], hepati-
tis delta virus(HDV)-like ribozymes [7, 18-20], as well
as genomic aptamers, including the first known human
aptamers [21].

This approach is particularly useful for searching for
structures that are hard to predict from simple ther-
modynamic models, such as pseudoknots and nested
multi-pseudoknots. HDV-like ribozymes, which have
only five conserved, non-contiguous nucleotides out
of approximately 50 necessary to form the minimal
catalytically-proficient double-pseudoknot [18, 20], rep-
resent a particularly striking example of a functional
RNA with low sequence conservation and strict struc-
tural requirements. Loose descriptors with low sequence
requirements tend to yield large numbers of matches in
low-complexity genomic sequences (such as long AT and
GT repeats); on the other hand, overly strict descrip-
tors often yield too few or no examples of the sought-for
functional RNA. To maximize the yield of bona fide exam-
ples of functional RNAs with low sequence requirements,
their motif descriptors require careful tuning and mul-
tiple runs through available genomic sequences. There
is thus a great need for efficient descriptor-based search
algorithms.

The specific search problem addressed by our method
is NP-hard [22]; hardness was also proved for other sim-
ilar problems involving alignment with arbitrary non-
nested interactions [23, 24]. On the other hand, structures
without pseudoknots or with simple pseudoknot con-
figurations can be solved by dynamic programming in
polynomial time [6, 24, 25], but the running time is at
least cubic in the size of the sequence. Nevertheless, even
algorithms with worst-case exponential time were shown
to be effective in practice, such as backtracking algo-
rithm of RNAMot [4] or non-deterministic finite-state
automata with node rewriting of RNAbob [5]. Many other
tools were subsequently developed, including Locomotif
[6], Palingol [26], RNAMotif [8], PatSearch [27], and
RNAMST [28]. Individual tools differ in descriptor capa-
bilities and post-processing options; an extensive review
can be found in [29].

To speed up the search, some tools use advanced data
structures to build an index of target DNA. For example,
Structator [30] and RNAPattMatch [31] use affix arrays
[32] and RaligNAtor [9] uses enhanced suffix arrays [33].

Here, we present a new tool, RNArobo, which builds
on the descriptor format of RNAbob and the backtrack-
ing algorithm of RNAMot. We improve these tools in two
ways. First, we extend the RNAbob descriptor format to
allow insertions representing bulges in helical elements.
In our experiments, we demonstrate that this seemingly
minor change helps to better characterize certain fami-

Page 2 of 10

lies of ribozymes and aptamers and even enables discovery
of new occurrences of these motifs that are likely bio-
logically active. Second, we developed a new method for
improving the running time of the backtracking algo-
rithm, in some cases speeding up motif searches more
than 100-fold compared to other tools.

Each RNA structure descriptor consists of several struc-
tural elements. In our algorithm, individual elements are
aligned to the DNA sequence by dynamic programming,
with backtracking guiding the search for successive ele-
ments to appropriate locations with respect to the already
matched elements.

The performance of backtracking depends greatly on
ordering of elements in the search. Ideally, the first ele-
ments will have few matches, filtering out most of the
sequence from further processing. Such filtering is a com-
mon theme in many text search methods, such as the
popular sequence similarity search tool BLAST [34]. Find-
ing the best element ordering for the backtracking search
is an interesting and non-trivial problem, due to com-
plex dependencies between locations of individual ele-
ments. We approach this as an on-line problem, using
the observed performance of the search so far to adjust
the ordering on-the-fly. We demonstrate that this strategy
leads to a significant reduction in the running time on real
data, especially for complex descriptors.

The rest of the paper is organized as follows. First,
we define descriptors and their capabilities, and describe
the basic backtracking algorithm. Then we introduce
our data-driven element ordering strategy. Finally, we
demonstrate effectiveness of our approach by revisiting
the results of several biological studies and compare our
running time with several existing tools. The software
tool RNArobo implementing improvements described in
this paper is available at http://compbio.fmph.uniba.sk/
rnarobo.

Methods

Descriptor-based search for RNA motifs

Here, we briefly describe the search algorithm imple-
mented in our tool RNArobo which is loosely based on the
algorithm of RNAMot [4]. The input for the algorithm is
a descriptor specifying the desired RNA structural motif
and a DNA sequence. The goal is to find all occurrences of
the motif in the sequence. A descriptor consists of three
parts:

1. a motif map — a list of individual structural elements
ordered from 5’ to 3’ end along the sequence,

2. adetailed specification of each structural element,

3. an optional search order.

Each structural element is either single-stranded or
paired (helical). Single-stranded elements are regular
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expressions, similar to those used in PROSITE [35]. The
user can also allow a fixed number of mismatches and
insertions to appear anywhere in the motif. Paired ele-
ments correspond to helices in the RNA structure and
consist of two interacting regions of the DNA sequence.
The descriptor can specify the minimum and maximum
length of the helix, sequence constraints in the form
of a regular expression, as well as constraints on the
paired bases (for example, we can consider only canoni-
cal Watson-Crick base-pairs, or allow U-G pairs as well).
Again, users can allow a certain number of mispairs
between paired bases, mismatches with respect to the
sequence constraints, and insertions of single-base bulges.
Each paired element occurs twice in the motif map, speci-
fying the location of both strands. We place no restrictions
on the relative order of elements in the motif map, and
thus the descriptor can specify arbitrary pseudoknotted
structures. An example of a descriptor is in Fig. 1, and the
full description of the file format is given in Additional
file 1: Section S1.

The user can optionally specify the search order in
which individual elements will be considered in the back-
tracking search. The search order has a large influence
on the running time, and the main focus of this paper is
automated selection of appropriate search orders.

Algorithm outline The algorithm uses a simple back-
tracking strategy with a fixed search order of elements
e1,en,...,ey,. First, we find all matches of element e; in a
certain sequence window 7. Then we consider each match
of e; in turn and try to expand it to an occurrence of the
complete motif by recursively searching for matches of
e, ...,ey in appropriate relative positions with respect to
the match of e;. An illustration of the search procedure is
depicted in Fig. 2.

To find matches of element e;, we devised general
but relatively slow dynamic programming algorithms. For
single-strand elements with no wild cards or insertions,
we use a much faster bit-parallel bounded nondetermin-
istic DAWG matching algorithm [36]. For the rest of
the single-strand elements, we first use bit-parallel shift-
and forward filtering [37] to identify sequence positions
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with possible element occurrences, and only subsequently
we verify matches by the full dynamic programming
algorithm.

The dynamic programming tables of our algorithms
have many dimensions, because we need to keep track of
the number of insertions, mismatches, and for paired ele-
ments also mispairs. In a typical sequence search scenario,
each of these differences is assigned some negative score
and the goal is to optimize the overall score. In contrast,
we have a separate upper bound for each type of differ-
ence from the motif; therefore, each type adds another
dimension to the dynamic programming table.

For example, for paired elements, our table H has seven
dimensions. The value of Hy, , 4 m,i» is TRUE if and only
if prefix P[ 1. .. p] of the regular expression can be aligned
with a suffix 77 of T[1...#] with m mismatches, a pre-
fix P'[1...p] of the regular expression for the reverse
strand can be aligned with a prefix T” of T[¢,...|T|]
with no mismatches, and the alignment of 7" and T” to
each other contains i insertions and r mispairings. Fur-
thermore, since we do not allow insertions to be adjacent,
we use a binary flag b such that b is true if and only if one
of T[#1] and T[¢;] is an insertion. The complete dynamic
programming recurrences can be found in Additional
file 1: Section S2.

The number of allowed insertions, mismatches, and
mispairs is typically very small, and thus the dynamic pro-
gramming runs in O(¢2k) time, where ¢ is the length of the
sequence window T and k is the length of the motif. The
search procedure divides the whole sequence into win-
dows of size max{20L, 3000}, where L is the maximum
length of an occurrence. Successive windows overlap by
length L so that each occurrence is guaranteed to be
completely contained in at least one window.

For the first element e; in the search order, we run the
search on the whole window. For the successive elements,
we compute a search domain in which this element may
occur and restrict the dynamic programming accordingly.
The search domain is determined based on the positions
of the closest matches on the left and on the right already
fixed in the previous steps of the backtracking search and
by the flexibility in the length of the elements separating
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for individual positions are expressed in the IUPAC notation [51]

Fig. 1 Anillustration of an ATP aptamer motif and its corresponding descriptor based on genomic adenosine aptamers [21]. Nucleotide constraints
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Fig. 2 An illustration of the RNArobo search procedure for the motif
of ATP aptamer. The search follows the order of elements s1, 83, h2,
hl,s2

the matches of previously fixed elements from the current
element, as illustrated in Fig. 3.

The overall running time of our algorithm can be, in the
worst case, exponential in the number of elements of the
descriptor. However, the number of these elements is typ-
ically small, and if we use a well-chosen search order, the
early branching elements will have relatively few matches,
thus limiting the degree of the search tree. Many branches
of the search are terminated early, because no match of an
element is found in its search domain.

Element ordering
The search order of elements significantly affects the run-
ning time. In this section, we present our data-driven
element ordering (DDEO) strategy. In general, it is advan-
tageous to start with elements that have few matches, thus
eliminating a large portion of the sequence to be searched.
Once the matches of some elements are found, it is also
important to consider flexibility of the placement of a new
element with respect to those that are already matched.
While these principles are quite natural, it is difficult
to transform them into an effective criterion for creating
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good search orders. Therefore, we propose a data-
driven method for finding a close-to-optimal element
ordering.

Our approach consists of two parts. First, we use a
heuristic approach to create a set O of candidate order-
ings. We then use these orderings on sequence windows,
measure their actual performance, and select the best one.
We do this while processing the initial segment of the
query sequence, thus limiting the amount of overhead
spent on selecting a suitable search order.

Heuristic proposal of element orders
To create the proposal set O, we concentrate on the first k-
tuple of elements in the search order (in experiments, we
use k = 3). We create all possible k-tuples and score them
by the heuristic scoring function described below. All the
k-tuples with scores above some threshold are then aug-
mented to complete search orders forming the proposal
set O. In experiments we select k-tuples that achieve score
that is at least 85 % of the maximum among all k-tuple
scores. We limit the size of O to 50 if there are too many
good candidates.

The goal of this initial heuristic evaluation is to select
a small subset of k-tuples to be evaluated empirically.
We want this subset to include k-tuples that can be aug-
mented to complete search orders yielding running times
close to the optimum. Conversely, we should not include
too many tuples yielding slow running times, because
their evaluation will increase the overall running time.

The score of a k-tupleey, . . ., e is a weighted sum of two
heuristic functions evaluated for individual elements

k

,er) = Z2k_i (c1-h1(e) +ca-haeq,. ..
i=1

h(el,... :ei))

(1)

Function /;(e;) approximates the information content
of element e; and function /y(eq,...,e;) considers flexi-
bility of element e; with respect to the already matched
elements ey, . .., e;_1. Note that element weights decrease
exponentially, because elements placed earlier in the

[ e e

A

necessary coverage interval

s1 match max length of s2 A max length of s4 s5 match

—_—

min length of s2

~

possible coverage interval

min length of s4

Fig. 3 Computation of the search domain for a single-stranded element s3. Here we have a partly matched motif composed of five single-stranded
elements s1,..., s5. Assume that elements s1 and s5 have already been matched. The match of s3 has to start in the left green interval and end
in the right green interval, and it has to completely cover the red interval in the middle
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search order tend to be searched in a larger portion of
the sequence. We set the weight c; in the linear function
to —0.2, while ¢; is 1 for paired elements and 3 for single-
strand elements to reflect that the search for unpaired
elements is considerably faster.

Information content heuristic

The first heuristic function 4; is an approximation of
the information content of an element, favoring elements
that pose more specific constraints. Thus this function
follows the fail-first rule generally used in backtracking
searches [38]. Information content is a measure of uncer-
tainty reduction about an outcome once we have received
a new piece of information. In particular, it is the differ-
ence in the entropy of a random variable before and after
some message has been received. The entropy of a dis-

crete random variable X with possible values x1, x5, ... is
defined as
HX) = - P[X =x]log, P[X = x]. (2)

14

Let us first consider a single-stranded element S, and let
N be the longest possible occurrence of this element. In
our setting, the random variable is a sequence of length N
and the message is that the sequence starts with a match
of the pattern. To estimate the background entropy before
receiving the message, we consider all 4V sequences of
length N equally likely, obtaining

4N
1 1

Hpefore = — Z - logz — = 2N. (3)
2. 3x 08

We compare this value with the entropy of the uniform
distribution over all sequences of length N that have an
occurrence of the element starting at the first position. If X
is the number of such sequences, we have Hyer = log, X
and the information content of S is

h1(S) = Hpefore — Hafter = 2N — 10g2 X. (4)

Since the value of X is hard to compute for complex ele-
ments, we use an upper bound X;; > X (which leads to a
lower bound for the information content of S). To obtain
the upper bound X;;, we count different ways of obtain-
ing a sequence matching S, disregarding the fact that some
sequences may be obtained in several different ways and
consequently counted multiple times.

In the simplest case, element S does not contain any
flexible-length wild cards and does not allow for any dis-
tortions (mismatches, insertions). The element specifies
for each position i the set of allowed nucleotides; let C[ {]
be the size of this set. The value of X is then simply

N
X = ]_[ Cli]. (5)
i=1
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Next we extend the bound to cases when S contains
wild cards. Each wild card corresponds to an arbitrary
nucleotide or to an empty string. A block of k consecutive
wild cards thus corresponds to an arbitrary sequence of
length up to k. Let X; be the value obtained by formula (5)
if we consider only non-wild card positions in S. A single
block of k consecutive wild cards increases the value of N
(the length of the longest occurrence of S) by k. These k
additional nucleotides can be arbitrary, and are split into
a block of length i matching the block of wild cards and a
block of length k — i located after the element occurrence
(this block corresponds to the unused wild cards). Since
the value of i can be any integer between 0 and k, this leads
to the upper bound of X; (k 4 1)4% sequences matching S.
If S has multiple blocks of wild cards of lengths ki, . . ., k,
each of them can be split into two blocks independently,
leading to the upper bound

b
Xy =X - [[45ki + D). (6)
i=1

Similarly, we adjust the value of X to account for mis-
matches and insertions allowed in the element to obtain
the final upper bound X;;; see details in Additional file 1:
Section S3. For practical reasons, we handle mismatches
using a formula which is not guaranteed to be an upper
bound of the real set size X for each motif, but works well
in practice.

The situation is analogous for paired elements. Let H
be an element consisting of two paired strands H; and
Hj, and let N be the maximum length of a match to
one of these two strands, after accounting for wild cards
and insertions. Since we now consider sequences of total
length 2N, the background entropy is

Hyefore = 10g2 42N — 4N,

We use Hyfrer = logy X, where X is the number of pairs
of sequences of length N such that H; occurs in the first
sequence starting at the first position, and Hy occurs in
the second sequence ending at the last position, and these
two occurrences satisfy the complementarity constraints
with up to allowed amount of distortion. We again use an
approximate upper bound Xj; instead of the actual count
X, counting different ways that such a matching can occur.

As with single-stranded elements, we first count the
number of sequences that match H without considering
wild cards and distortions. Let P[ i] be the number of valid
base pairs between position i of H; and the correspond-
ing position of Hy. The value of P[i] is determined by
both complementarity constraints specified by H and by
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sequence constraints for the respective positions in H;
and Hj. As before, the number of matching sequences is
the product

N
Xy =]]rli. )
i=1

To obtain the final bound Xi;, we adjust the value of
X1 to account for wild cards, mismatches, and insertions,
similarly as in the single-stranded case. We also adjust
the bound for allowed mispairs, where the two paired
nucleotides do not form a valid base pair. Details can be
found in Additional file 1: Section S3.

Domain flexibility heuristic

The second heuristic scoring function /3 (e;) measures the
flexibility of positioning element e; with respect to already
matched elements ey, ..., e;_1. The matches of these ele-
ments specify the search domain for element e;, as shown
in Fig. 3. Longer domains require more time for finding
matches and are also likely to yield more matches, each of
which will be then examined individually in backtracking.
Therefore, we set the weight c in (1) to be negative.

To compute the exact size of the search domain, we need
to know positions of matches of ey, ...,e;—1. In order to
score a particular search order before the search starts, we
need to approximate flexibility of e; without this knowl-
edge. For an unpaired element e;, we find the nearest fixed
element ey on the left side of e; (one of ey, ...,e;_1). Then
we sum up the flexibilities of all elements between e; and
e; in the descriptor, where the flexibility of an element
is the difference between its maximum and minimum
length. We denote this sum Fief;. Analogously, we obtain
Fiight for the right side of e;. If there is a fixed element on
both sides of e;, we take the minimum of Fieft and Frigpy, as
both are upper bounds on the search domain size for e;:

hz(el, Cen

If there is no fixed element at one side, we only use the
other side to compute /. For a paired element e;, we first
compute flexibilities of the two strands individually, while
considering the other strand to be fixed. Then we take the
maximum of these two.

se;) = min{Feft, Fright}~ (8)

Candidate order elimination

The heuristic function defined above is used to select
promising initial k-tuples for search orders. These are
then completed to full search orders by adding remain-
ing elements in the order determined by the infor-
mation content heuristic, forming the initial candidate
set O.

The initial candidate set contains a mix of good and bad
orderings. We process several window s of the sequence
to determine which orderings are good. For each window,
we sample a random search order x from O and use it
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in the search procedure, measuring its performance Ty.
In particular, we record nanoseconds used by the process
(measured by an available system function) and normalize
it by the window size. Based on the gathered data, we con-
tinually eliminate orderings with bad performance using a
statistical test.

We treat T, as a random variable, and approximate it
by the normal distribution with an unknown mean and
variance. Our goal is to pick from the set of candidate
orderings O the ordering leading to the shortest mean exe-
cution time. Formally, we want to find x* € O, such that
for each y, E[ T,+] < E[T,]. Given several observed val-
ues of T and T, we use Welch’s t-test [39] to test the null
hypothesis E[ T,] > E[ T,] against the alternative hypoth-
esis E[ Ty] < E[ T]. This test is used for hypothesis testing
concerning difference between the actual means of two
normally distributed populations with possibly unequal
variances, based on independent sets of samples from
these distributions [40].

Each time we gather a new sample from T for some
x € O, we test x against the rest of O. When we observe a
statistically significant difference between two candidates
(at the level « = 0.01), we eliminate the one with the
higher mean time of execution from set O. If two candi-
dates cannot be shown significantly different, even after
both were sampled many times (75 samples from each),
we simply eliminate the ordering with the higher sample
mean.

Once we eliminate all but one search order from set O,
we start to refine this final ordering. Recall that it con-
sists of an initial k-tuple extended to a full ordering by
the information content heuristic. We drop this heuris-
tic extension, and start training the following k-tuple in
the search order with the first k-tuple already fixed. We
continue until we completely fix the search order.

Performance of DDEO

We have evaluated DDEO heuristic on the hepatitis
delta virus like ribozyme (HDV) descriptor (Fig. 4). Even
though the entropy-based heuristic is not perfect and

hl s1 h3 r4 s2 r4’ hl’
h1l 0:0 GNNNNN:x:xNNNNNY

s4 h4 s5 h4’ s7 h3’ s8

sl 0 N[50]

h3 0:0 NNNNNN s : % « NNNNNN
r4 0:0 NNN:NNN TGCA

s2 0 TYYHCOG+Y

sd4 0 RN

h4 0:0 NNNNNx*:«NNNNN

sb 0 NNNs*

s7 0 CNRAx*

s8 0 NNNNNN

Fig. 4 Descriptor for HDV-like ribozyme with structured P4 region.
The motif contains four paired elements organized in a double
pseudoknot
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the candidate set contains bad orderings in addition to
the good ones, the orderings with bad performance are
eliminated after only a few samples (in some cases as few
as two). These “bad runs” thus do not increase the overall
running time significantly. (More details can be found in
Additional file 1: Section S4).

Results and Discussion

We have performed several experiments comparing
RNArobo with other established RNA motif search tools:
RNADbob ([5], software version 2.2.1 from 2012), RNAmo-
tif ([8], software version 3.0.7 from 2010), RNAMot
([41], software version 2.1 from 1994), and RaligNAtor
[9]. We have concentrated on both the speed and
the ability to discover biologically meaningful motif
occurrences.

Accuracy of hits Table 1 shows the results of an experi-
ment, where we revisited several scientific studies involv-
ing discovery of ribozymes and aptamers [7, 16, 42]. We
have constructed RNA descriptors for RNAbob and used
both RNAbob and our new tool RNArobo to identify
motif occurrences. Extended description of the experi-
ment and the descriptors are included in Additional file 1:
Section S5. As expected, the results of the two programs
were identical, with RNArobo running much faster (data
not shown, but see speed evaluation below). Almost all
of the hits found by the programs were occurrences of
known targets also identified in the original studies, con-
firming the accuracy of the algorithm (see exceptions
below).
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Novel findings Compared to RNAbob, RNArobo allows
insertions (bulges) in helix elements, enabling much more
flexible descriptors better characterizing certain families.
For example, in the case of hammerhead type I ribozyme
(HHR type I, 4 bp), the descriptor with insertions iden-
tified 15 known occurrences in Yarrowia lipolytica (“YIi”
family) [16], compared to a single occurrence identified
without insertions.

Allowing insertions, we have also discovered several
new candidate occurrences. Firstly, three new hits of ham-
merhead ribozyme (HHR type II) in B. cereus are likely
false positives as determined by the Fold-Filter pipeline
[43]. This pipeline uses tools from ViennaRNA package
[44] and DotKnot [45] to determine if an occurrence of a
motif is likely to assume the secondary structure implied
by the descriptor.

On the other hand, a novel GTP aptamer (GTP class I)
in Davis and Szostak library is likely functional, since the
library was selected for GTP binding.

In case of hammerhead ribozyme (HHR type I, 3bp) in
Y. lipolytica, the number of hits increased massively from
4 to 54 by allowing insertions. These hits form two dis-
tinct families. The first contains previously known “Yli”
ribozymes, as identified by Perreault et al. [16]. How-
ever, the ten hits of the second family are novel and pass
through the Fold-Filter pipeline. They likely represent a
novel HHR family in Y. lipolytica genome similar to a large
family of HHRs in the Schistosoma mansoni genome (see
also Additional file 1: Figure S7); no HHR type I families
besides the “Yli” ribozymes were previously found in Y.
lipolytica.

Table 1 Summary of reproducing results from the literature using RNArobo. Searches were extended by allowing for insertions in
structurally conserved elements that are known to tolerate single base insertions. This extension led to improved sensitivity and

yielded several new putatively functional ribozymes

Sequence Descriptor #hits Known targets found Note
In vitro selected library GTP apt. class | 9 yes
(~65 kBp scanned) GTP apt. class I w/ins 10 yes [42] novel hit
Yarrowia lipolytica HHR I (4 bp) 1 Yli-1-3
(~41 MBp scanned) HHR | (4 bp) w/ ins 15 Yli-1-3 through YIi-1-11
HHR 1 (3 bp) 4 Yli-1-3 and Y1i-1-13
HHR 1 (3 bp) w/ ins 54 Yli-1-3 through YIi-1-11, novel family
and Yli-1-13 [16] (10 hits)
Bacillus cereus HHRI 1 Bce-1-1
(~11 MBp scanned) HHR Il w/ ins 4 Bce-1-1[16]
Anopheles gambiae chr2l HDV (loose P4) 7 Agam-1-1
(~98 MBp bases scanned) HDV (loose P4) w/ ins 36 Agam-1-1 and Agam-1-2 [7]
Strongylocentrotus purpuratus HDV (stem P4) 11 yes
(~2.1 GBp scanned) HDV (stem P4) w/ ins 1 yes
HDV (loose P4) + FF 15 yes
HDV (loose P4) w/ ins + FF 16 yes [7] novel hit

FF: only hits passing the Fold-Filter are reported
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Allowing insertions in HDV-like ribozymes in S. purpu-
ratus genome did not yield any new hits (HDV stem P4
descriptor). We have attempted to loosen the constraints
on the P4 region, which yielded numerous hits both with
and without insertions. Consequently, we have applied
Fold-Filter and kept only hits passing the pipeline. The
descriptor with insertions yielded a previously uniden-
tified hit that aligns well with other HDV ribozymes,
thus likely being functional. The above examples show
that RNArobo can be helpful in finding interesting novel
occurrences, even for known families established in the
literature.

Speed comparison Table 2 shows the comparison of
running times of scanning both strands of the whole
human genome for occurrences of nine realistic RNA
motifs. In most cases, RNArobo is the fastest tool, in many
cases speeding up the search more than 100-fold. Note
that running times of both RNAbob and RNAmotif greatly
depend on the complexity of the motif, while RNArobo
does not show pronounced dependency on the descriptor.
This is most apparent for the HDV descriptors which
feature a double pseudoknot. Allowing insertions in the
helices does not significantly slow down RNArobo search.

RaligNAtor [9] is a recent addition to the family of
descriptor-based search tools. In contrast to the previ-
ous works, the authors add a preprocessing step building
index data structures that help to speed up the subsequent
searches. Unfortunately, the structural pattern definition
language of RaligNAtor is very different from that used by
other tools; therefore it is difficult to translate RNArobo
patterns to RaligNAtor and vice versa. Nevertheless, we
defined approximate counterparts of two patterns (IRES
from RaligNAtor tests and generalized tRNA from our
tests) in the other descriptor language in order to compare
the two tools. Results convincingly show that RNArobo
outperforms RaligNAtor in terms of the running time
from four-fold to more than 1000-fold (Additional file 1:
Table S2). These results hold whether we used exact or
approximate patterns, with or without preprocessing (see
Additional file 1: Section S7).
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Comparison to convariance-model-based tools
Descriptor-based tools, such as RNArobo, are used by
researchers to explore motif families for which only a
few occurrences are known, and are heavily based on
incorporating user’s intuition in building motif descritors.
On the other hand, covariance models, such as InfeRNAI
[3], can be used to search for new instances for motif
families where many occurrences are already known, and
their common features are extracted automatically and
encoded in the covariance model. Due to this substan-
tial difference, it is difficult to design a fair comparison
between these two classes of algorithms.

Nevertheless, we have attempted to compare RNArobo
to InfeRNAI in case of the hammerhead ribozyme fam-
ily that has been previously extensively studied by several
groups. InfeRNAI was generally 3—10 times slower than
RNArobo when searching for these motifs in Yarrowia
lipolytica. Both programs identify bona fide ribozymes;
however, InfeRNAI also identifies candidates with muta-
tions in the active site of the catalytic RNA, making these
instances most likely inactive. Such results may be useful
for RNAs that tolerate a certain level of global mutation
rate, but in our case we most likely find false positives.
The descriptor of RNArobo allows specification of regions
that are under strong purifying selection and need to
be conserved; on the other hand, allowing insertions in
helices allowed RNArobo to discover a new putative fam-
ily of Yarrowia lipolytica hammerhead ribozymes that
InfeRNALI did not find.

Conclusions

In this work, we have developed a new tool RNArobo
for RNA motif search. RNArobo allows expert human
users to describe the most relevant features of a target
RNA structure and then to search for distant homologs
in available genomic data. The focus of our work was an
automated strategy for element ordering in the backtrack-
ing search employing a heuristic scoring function based
on information content and search domain size estimates.
We used statistical tests to eliminate candidate orderings
that do not perform well in practice. Our experiments

Table 2 The running times (in seconds) of different programs searching for various descriptors in the whole human genome

ATP apt. GTP apt. generalized HHR-I HHR-II HHR HDV HDV HDV
class | tRNA (4 bp) (3 bp) extended (loose P4) (stem P4) (mispairs)
RNAbob 3,419.03 2,744.30 7/450.07 923.53 5,027.33 2,269.35 209,932.57 43,430.78 36,459.87
RNAmotif 80.78 22254 737432 87.69 265.09 116.15 26,259.79 2,513.90 9,240.83
RNAMot unf unf unf unf unf unf unf 4,538.92 8,925.31
RNArobo 80.91 151.09 250.63 96.48 110.64 108.46 171.16 169.90 111.30
RNArobo-ins - 153.38 - 98.22 13747 - 173.82 171.54 -

Experiments were run on Intel Xeon E5520 CPU. RNArobo-ins is RNArobo run with modified descriptors allowing insertions in helical elements. RNAMot did not finish on
most of the inputs within time limit of three days. Only results that finished within three days are shown. Since DDEO is randomized, we show the average running time of
five runs of RNArobo. Standard deviation was up to 3 % or 5 sec, with the exception of the HHR extended descriptor, where the running time ranged from 98 to 125 sec

Boldface numbers represent the best running times for a particular descriptor
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demonstrate that RNArobo is much faster for complex
motifs than existing tools, thus facilitating large-scale
whole-genome searches.

Our work leaves open further avenues for research. The
problem of finding the best element ordering, or even
estimating the expected number of matches of a single
element in a random sequence, is very intriguing from
the theoretical point of view. Even though our simple
elimination scheme proved to be effective in practice, it
would be interesting to treat the problem as an on-line
learning problem and develop a theory that would allow
us to estimate how fast a particular elimination algo-
rithm converges to the best (or close to the best) ordering.
Our heuristic scoring function can perhaps be improved
by adding more partial scores and combining them with
weights estimated by regression techniques from perfor-
mance data observed on several descriptors. Finally, DNA
sequences are non-uniform, and a scheme that could
adapt to changing character of sequences as they are pro-
cessed would likely lead to further improvement of our
algorithm. An interesting application of our algorithm
would be assigning basic structural motifs to sequences as
they are produced by high-throughput sequencers.

A logical extension of our problem is to construct
descriptors automatically from known examples of RNAs.
A step in this direction has already been taken and several
algorithms to locate common substructures of two RNAs
were developed [46, 47]. Such patterns are then basis
of several practical tools for pattern-based RNA com-
parison, including ExpaRNA [48], LocARNA [49], and
ExpaRNA-P [50].
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