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Abstract

Background: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR)
signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer
progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators
in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis
process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the
phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired
through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important
image information into distinct features or measurements. Therefore, the manner in which prominent measurements
are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the
phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all
prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy
will support to raise the performance level in our image and data analysis system.

Results: In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of
microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the
characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the
recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature
selection and classification are evaluated.

Conclusions: The results of performance assessment clearly demonstrate that our hierarchical classification scheme
combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis.
Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our
workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.

Keywords: Phenotype measurement, Image analysis, Wavelet-based texture measurement, Hierarchical classification,
EGFR endocytosis, High throughput
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Background

The epidermal growth factor receptor (EGFR) is impor-
tant for normal growth and function of breast tissue.
Its signaling is regulated via endocytosis, a process that
results in receptor degradation and thereby attenuation of
the EGFR signaling. In cancer cells, however, the endo-
cytosis pathway is often defected, resulting in an uncon-
trolled EGER signaling. This uncontrolled EGER signaling
triggers breast cancer cells to escape from a primary
tumor and spread to the lung, resulting in a poor progno-
sis for the disease progression. Moreover, it may result in
complications like resistance to anti-cancer therapy.

From the literature [1] a generic model of epider-
mal growth factor induced (EGF-induced) EGFR endo-
cytosis can be divided into four characteristic episodes.
(1) Under normal conditions, EGFR is localized at the
plasma-membrane site for internalization; in our study
this is defined as the “membrane” episode (membrane-
episode). (2) Upon binding of EGF to the receptor, EGFR
is taken up into small vesicular structures and starts
sorting in early endosomes; in our study this is defined
as the “vesicle” episode (vesicle-episode). (3) Over time,
EGEFR containing vesicles are transported to late endo-
somes localized near the nuclear region and these form
into a larger complex multi-vesicular body; in our study
this defined as the “cluster” episode (cluster-episode). (4)
In final episode, EGFR is degraded in the lysosomes. In
addition to this route, EGFR can also be partly trans-
ported back to the plasma-membrane sites. This dynamic
model is used as the major guideline for the analysis
of the EGFR-regulation-related genetic pathway using
microscopy images as a readout. In this manner the anal-
ysis is linked to the analysis of the characteristic episodes
in EGFR endocytosis. In this paper, we will focus our anal-
ysis on the aforementioned dynamic model, however, for
the analysis we will only use the first three characteris-
tic episodes, as shown in Fig. 1; the final episode of the
EGER signaling can not be visualized through markers in
microscopy.

Over the past years, RNA interference in combination
with fluorescence microscopy-based imaging has become
a powerful tool for the visualization and high-throughput
analysis of the complex EGFR endocytosis processes
[2-4]. With these techniques, it becomes feasible to dis-
tinguish characteristic episodes and identify potential
EGER endocytosis regulators. It is, however, impossible to
perform analysis through manual processing of the large
volume of data that result from such high-throughput
experiments. An automated method for the analysis of
EGEFR endocytosis is required [5]. To that end, through
microscopy images are acquired and from these images
features are extracted; combinations of these features
should be characteristic for the episodes from the dynamic
model that we use.
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In the solution presented here, a single-step multi-class
classification solution is demonstrated to properly capture
the EGFR dynamics which transform along the three char-
acteristic episodes and classify different EGFR episodes.
From earlier applications we have identified some weak-
nesses for which we propose better solutions. First, the
same subset of features is used to classify the three
episodes. Second, a flat classification ignores the exis-
tence of potential hierarchical relationships that may exist
in the data set. Fluorescence is used as a readout from
the the images. Thus, the average intensity is used as a
measurement for the phenotype. Variation of the fluo-
rescent intensity in the images in the datasets is always
present, and this variation complicates the classification.
Consequently, a more advanced classification strategy is
required.

Moreover, from observations in our previous results,
we could determine that the vesicle-episode and cluster-
episode have more morphological similarity with each
other than with membrane-episode. In order to support
this finding, we designed a new hierarchical classification
strategy [6]. Hierarchical classification strategies are an
efficient way to deal with complex classification problems.
The problem is divided in an hierarchical manner so that
classes that are more similar to each other are grouped
together into a super class, thereby providing a simplifica-
tion of original problem [7]. Now, in the hierarchical tree,
each parent node has an individual classification scheme
choosing related features and the best classifier to distin-
guish the child nodes. A hierarchical classification strat-
egy specifically separates classifier training into two levels.
In our case, for the first level we train a local classifier
to distinguish the membrane-episode from the endosome,
i.e. the super class containing vesicle-episode and cluster-
episode. Subsequently, we train a second level local classi-
fier to separate vesicle-episode from cluster-episode. With
this strategy, we can make better use of the prominent fea-
tures in the subsets and thereby, noticeably, improve the
performance of the classifier. In addition, instead of only
using the average intensity, we introduce a set of texture
measurements. These texture features including texture
features obtained from the wavelet transform in order to
be able to describe the intensity characteristics in a more
sophisticated way.

Methods

Cell material and preparation

The study of cell systems at the cellular level at large
scale is referred to as cytomics. In high-throughput
screening images are used as a readout for phenotyp-
ing. A common workflow for image data preparation in
cytomics includes three essential steps: (1) cell cultur-
ing, (2) labeling, preparation for imaging and (3) image
acquisition.
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Fig. 1 Sample images of the 3 phenotypic groups. Red channel is a P-ERK expression staining (Cy3); green channel is an EGFR expression staining

Cluster

In this paper we use an EGFR-regulation related siRNA
screening to illustrate this workflow. For the experiment,
breast cells from a human breast carcinoma cell line
(HBL100) were cultured in 96 well culture plates and
transfected using Dharmafect smartpool Small interfering
RNAs (siRNAs). Subsequently, the transfected cell popu-
lation was exposed to epidermal growth factor (EGF) for a
specific duration of time. Cells were fixed at different time
points and visualized as a confocal slice with a confocal
laser microscope (Nikon TE2000).

Image acquisition and processing

Automated image acquisition was realized with a motion
controlled microscope stage equipped with an auto-
(re)focusing module. For each well, images were captured
from ten randomly selected locations. For each image
three channels were captured: (1) the red channel con-
taining staining of Phospho-ERK(P-ERK) expression, i.e.
Cy3 label, (2) the green channel containing EGFR expres-
sion staining, i.e. Alexa-488 label, and (3) the blue channel
containing a nuclear staining, i.e. Hoechst #33258.

The subsequent image processing consists of two major
steps: pre-processing and feature extraction including
image segmentation. In the pre-processing step, the goal
is optimizing the image for segmentation and subsequent
analysis. For the type of images in our study two issues
complicate the further processing, i.e. uneven background
and noise as a result of the photo-multiplier in the con-
focal imaging. The rolling ball background subtraction
method is used to remove large spatial variations of the
background intensities [8]. Subsequently, a small Gaus-
sian kernel is used to remove the noise from the image.
The process of image segmentation refers to the pro-
cess of partitioning an image into (multiple) regions of
related content with the goal to simplify and/or change the
representation of an image into components that can be
measured. For fluorescence cell imaging, we utilized a cus-
tomized segmentation algorithm known as the watershed
masked clustering (WMC [9]). The WMC algorithm is

an innovative segmentation algorithm that is particularly
suitable for images in which the individual objects exhibit
a variation in fluorescence. The WMC algorithm has been
successfully applied in different types of cytomics studies
like dynamic cell migration analysis [10, 11] and pro-
tein signaling modeling [12]. The WMC produces binary
masks of the objects, in our case vesicles, as output.
These binary masks are used to derive a number of phe-
notypic measurements for further data analysis. These
measurements are applied for each of the channels in the
image.

Phenotype measurement

A phenotype is considered as the composite of the observ-
able characteristics of an organism or traits: such as its
morphology or developmental state. It is important for the
detection of genetic variants in complex traits. Therefore,
researchers should be aware of the theoretical importance
of unbiased, reliable and replicable measurements [13]. In
our previous work, we have already introduced an amount
of basic measurements and localization phenotype mea-
sures [14]. In order to attempt finding more prominent
phenotype measurements to characterize the three EGFR
phenotypes, two aspects were considered. On the one
hand, the phenotype measurements should be representa-
tive and relevant. On the other hand, these measurements
must be robust to small variations in fluorescent inten-
sity, meaning that the measurements are scale-free and
self-normalized.

Based on the empirical observations in a ground truth
data set, several potential texture patterns in object inten-
sities were identified to characterize EGFR episodes. For
instance, the vesicle-episode (2nd episode) has a higher
intensity in the central region and relatively lower inten-
sity around the vesicle-boundary. This is in contrast with
the cluster-episode (3rd episode)which express a more
evenly distributed intensity throughout the region of
interest. In addition, these three EGFR episodes could
also present distinctively in different texture features.
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Therefore, we introduced several texture measurements
to describe the different phenotypical characteristics.

Texture measurement

For texture measurements the First Order Statistics are
the most frequently used approach. These are derived
from statistical properties of the intensity histogram of the
image [15]. We used the standard First Order Statistics for
each individual object as obtained from the segmentation;
i.e. standard deviation of intensity, smoothness, skewness,
uniformity and entropy. Definitions and formulations of
these texture measurements are presented in Table 1.

Wavelet texture measurement

In addition to the standard texture features, recently, tex-
ture analysis based on the discrete wavelet transform
(DWT) has been described [4, 16]. The wavelet texture
features have shown to be an efficient descriptor for phe-
notyping [17], therefore we want to assess their feasibility
in our framework. The DWT provides a set of texture
representations consisting of coefficients in different direc-
tions. We calculated our wavelet-based texture measure-
ments by multiplying each direction detail with the binary
mask as obtained from the segmentation and henceforth
calculating the mean, standard deviation and entropy of
intensity for each labeled object in each direction details

Table 1 Description of phenotype texture measurements

Feature name Expression Description
std f1 = \/Z(/’ — mean)2H (i) The standard deviation of
i intensity from all the pixels
in aregion.
Smoothness H=1-— Wl—ﬂ) The relative smoothness of the
1

intensity in a region. It is O for a
region of constant intensity and

1 for a region with large excursion
in the values of its intensity levels.

Skewness f=>(- mean)3H (i) The order moment about the

i mean. The departure from
symmetry about the mean
intensity. It is O for symmetric
histograms, positive for
histograms skewed to the right

and negative for histograms
skewed to the left.

Uniformity The sum of squared elements in
Histogram. It reaches maximum
when all intensity levels are equal

and decreases from there.

a:2Wm

Entropy fs = — > H(i)log, H (i) The statistical measure of
1

randomness.

i represents the intensity value
H(i) is the histogram of intensity
mean symbolizes the average intensity
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(see in Table 2). In this study, we included a biorthog-
onal wavelet [18] because it has the property of exact
reconstruction and it is an outstanding wavelet represen-
tation for image decomposition. After decomposition, it
generates the coefficient matrices of the level-one approx-
imation and horizontal, vertical and diagonal details.
Subsequently, we reconstructed the level-one details
respectively from the corresponding coefficients. In this
way, the texture details from three different directions are
derived on the same scale as the original image.

Production of ground truth data

For a supervised classification the collection of objective
and sufficient ground truth data is important . We use the
ground truth data as our training set during the classifier
training.

The ground truth data were obtained by outlining
the three characteristic episode groups, i.e. membrane-
episode, vesicle-episode and cluster-episode. These were
separately outlined by domain specialist researchers
using our annotation software (TDR); the outlining pro-
cess is done with a digitizer tablet (WACOM, Cintiq
LCD-tablet) [19] which is integrated in the software.
From each outline a binary mask was created for
each phenotypic stage. Figure 2b illustrates the vesicle-
episode mask derived from a manually selected vesicle-
episode outline. This mask was multiplied with the
mask obtained from the WMC algorithm so as to
extract the intersection (cf. Fig. 2d). Finally, the pheno-
type measurements were computed from these masks.
The ground truth datasets for the membrane and clus-
ter episodes were prepared in a similar manner. The

Table 2 Description of Wavelet texture measurements

Feature name  Description

H_mean The average intensity of Horizontal detail from discrete
wavelet transformation.

H_std The intensity variation of Horizontal detail from discrete
wavelet transformation.

H_Entropy The statistical randomness of Horizontal detail from
discrete wavelet transformation.

V_mean The average intensity of Vertical detail from discrete
wavelet transformation.

V_std The intensity variation of Vertical detail from discrete
wavelet transformation.

V_Entropy The statistical randomness of Vertical detail from discrete
wavelet transformation.

D_mean The average intensity of Diagonal detail from discrete
wavelet transformation.

D_std The intensity variation of Diagonal detail from discrete
wavelet transformation.

D_entropy The statistical randomness of Diagonal detail from

discrete wavelet transformation.
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training dataset included the three characteristic episode
groups with a total of 2162 segmented objects from the
images, i.e. 103 objects from cluster-episode, 374 objects
from membrane-episode and 1685 objects from vesicle-
episode; per object 25 features were used. The ground
truth set is composed such that for each of the episodes
sufficient objects, i.e. vesicles, are outlined to guaran-
tee capturing the variation of the features in each of the
episodes.

Hierarchical classification strategy workflow

In the three characteristic episodes of the generic model of
epidermal growth factor induced EGFR endocytosis that
we use for our analysis we state that the vesicle-episode
comprises single/early endosomes and the cluster-episode
comprises clustered/late endosomes. Compared to the
membrane-episode, these two episodes have more mor-
phological similarity with each other. The vesicle-episode
and cluster-episode episodes are located in the cytoplasm
which have evenly distributed high intensity value and rel-
atively circular shape. The membrane-episode is located
around cell membrane which has an elongated shape with
a low and unevenly distributed intensity value. Therefore,
we have constructed the three characteristic episodes into
a hierarchical tree as shown in Fig. 3. Subsequently, we
use a local classifier per parent node approach to train

Major EGFR Endocytosis episodes

Fig. 3 Hierarchical tree of EGFR endocytosis process

a two-class classifier for each parent node in the class
hierarchy. In doing so, the problem of making inconsis-
tent predictions is avoided while, at the same time the
natural constrains of class membership are taken into
account [6, 20, 21]. In this manner, both the best clas-
sifier and the most prominent features are selected for
each parent node classifier so as to classify the dynamic
model with three episodes in a better fashion. The work-
flow of the hierarchical classification strategy is shown in
Fig. 4. In our workflow, we normalized the dataset per
feature, performed feature selection, applied the classifier
and calculated the weighted classification error in order to
evaluate the performance of the classification. We look for
the best combination of classification process according
to the error estimation and use this for EGFR episode
classification.

Feature normalization

The features can have rather substantial differences in
their dynamic range. Such is the case with the features
that we use in this setup. Therefore, it is necessary to nor-
malize our dataset. A feature normalization is required to
approximately equalize ranges of the features and make
them have roughly the same effect in the computation of
similarity [22]. The main advantage of the normalization
is to avoid dominance of attributes with larger numerical
ranges over those with smaller numerical ranges. An addi-
tional advantage is that numerical complications during
the computations are avoided; as kernel values depend on
the inner products of feature vectors, large attribute values
might introduce numerical complications [23].

We applied two types of normalization schemes to nor-
malize the dataset. One standard normalization scheme
was accomplished by shifting the mean of the dataset
to the origin and scaling the total of variance for
all features to 1, thereby, neglecting class priors. The
other scheme was achieved by shifting the mean of
the dataset to the origin and normalizing the average
class variances (within-class). Class priors were taken
into account. Moreover, the recently introduced concept
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Fig. 4 Hierarchical classification workflow

of within-class covariance normalization for the sup-
port vector machine (SVM) classifier was employed
[24]. For the evaluation of the methods considered in
this paper, we are evaluating these two normalization
schemes and we are interested to see whether, in our
case, within-class covariance normalization outperforms
the standard normalization. We will benefit from the fact
that the normalization prevents differences in numerical
scales.

Feature selection

After normalization, we applied a feature selection pro-
cedure. For feature selection a metric is required that
considers a strong correlation among the variables. To that
end the Mahalanobis distance [25, 26] was chosen. Subse-
quently, we selected two representative search algorithms:
the branch and bound procedure [27] and best individual-
N features. Branch and bound is a top-down procedure,
beginning with the set of variables and constructing a tree
by successively deleting variables. This feature selection
method already showed a robust and good performance
in our previous study [14]. The best individual-N fea-
tures procedure is a computationally efficient method for

choosing the best N features by assigning a discrimination
power estimate to each of the features in the original set.
This method could have a well-defined feature set when
the features are uncorrelated. We will further use these
two search algorithms in the feature selection part.

Prior probability setting

In probability theory and applications, the Bayes’ theorem
shows the relation between posterior P(A|B), likelihood
P(B|A) and prior P(A), expressed as:

P(BIA)P(A)

P(A|B) = o8]

(1)

A prior probability P(A) is the probability distribution
of A before the specific condition is taken into account
[28, 29]. It denotes attributing uncertainty rather than
randomness to the quantity under investigation. A prior
is often given by an expert and can be a purely subjec-
tive assessment or an estimation from objective obser-
vations. In order to obtain a prior knowledge for our
application, we have chosen a group of images with 6 dif-
ferent time stages and manually counted the number of
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the three characteristic episodes. Subsequently, we calcu-
lated the ratio between membrane-episode and the super
class (cluster-episode and vesicle-episode) as 0.0526 and
the ratio between cluster-episode and vesicle-episode as
0.0556. These ratios are confirmed through observations
by domain specialists . In our evaluations, we verified the
performance of this prior probability with no prior prob-
ability and with equal prior probability. For the setting no
prior, meaning an empty prior, it is assumed that the class
prior probabilities correspond to the class frequencies in
the dataset [30].

For our optimization scheme, the within-class co-
variance normalization was selected. For the evaluations
of the classifiers, the weighted error of different classifiers
was calculated after a branch and bound feature selection.
The weighted error estimation is defined as:
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machine classifier (SVC) and the neural network classi-
fier (NEURC). Compared to linear classifiers, nonlinear
classifiers are preferred for data that exhibit strong non-
Gaussian distributions [31]. The linear classifier makes
a classification decision based on the value of a linear
combination of the characteristics [32]. The quadratic
classifier is generalized form of the linear classifier in that
it separates classes on the basis of a quadratic hyperplane.
The K-nearest neighbor classifier distinguishes an object
by majority voting of its neighbors, with the object being
assigned to the class that is most common among its
neighbors. The Support Vector Machine (SVM) is primar-
ily a classifier method that performs classification tasks
by constructing hyperplanes in a multidimensional space
that separates cases of different class labels [33]. Key to
the SVM is the use of kernels, the absence of local min-
ima and the capacity control obtained by optimizing the

n margins [34].
E= Zwk x (ex/ny) (2) In a neural network, units (neurons) are arranged in
k=1 layers and these layers convert an input vector into some

where ey represents the number of mis-classified objects
of class k; ny is the total size of class k; the weight wy
here is the prior probability of class k; # is the total
number of classes in the dataset. From the results, as
shown in Table 3, it can be perceived that including a
prior probability results in an increase of the classifier
performance.

Classifier

The classifiers in our evaluation have been selected to be
able to cover both linear and non-linear categories; i.e. the
linear classifier (LDC), the quadratic classifier (QDC), the
K-nearest neighbor classifier (KNNC), the support vector

Table 3 Prior probability comparison

output. Each unit takes an input, applies a (often non-
linear) function to it and then passes the output on to
the next layer [35]. There are many artificial neural net-
work (ANN) models; i.e., Feed-Forward Networks, Radial
Basis Function Networks, Recurrent Networks, etc. The
advantage of neural networks is two-fold. First, neural
networks are data driven self-adaptive methods. The flex-
ibility is created by the combination of different nodes
with related kernels. Second, they are universal functional
approximators in which neural networks can approxi-
mate any function with arbitrary accuracy. The disad-
vantage of neural networks is that they are notoriously
slow and it is rather difficult to determine the optimal
number of kernel types, layers and nodes [36]. In this

C-variance (branch & bound)

Equal prior knnc ldc qdc neurc svC
mean std mean std mean std mean std mean std
Ist step 0.0333 0 0.095 0.0224 0.0317 0.0075 0.0633 0.0149 0.0333 0
2nd step 0.0575 0.0335 0.0575 0.0335 0.15 0 0.055 0.0224 0.1025 0.0112
No prior knnc Idc qdc neurc svC
mean std mean std mean std mean std mean std
1st step 0.0181 0.0014 0.0365 0.0057 0.0221 0.0037 0.01 0.0031 0.0142 0.001
2nd step 0.0292 0 0.0357 0.0088 0.043 0.0121 0.0348 0.0065 0.0402 0.0069
With prior knnc ldc qdc neurc svC
mean std mean std mean std mean std mean std
Tst step 0.0053 0.0011 0.0061 0.0038 0.0059 0.0028 0.0061 0.0029 0.0061 0.0038
2nd step 0.0214 0.0031 0.0321 0.0011 0.056 0.0019 0.0231 0.0048 0.0214 0.002
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study we used the biologically inspired feed-forward neu-
ral network with a single hidden layer. The feed-forward
neural network is defined as a unit feeding its output to
all the units in the next layer, but there is no feedback to
the previous layer. It is the simplest form of artificial neu-
ral network and it can yet limit the complexity of network
calculations.

Results and discussion

The results from our study are threefold. We first present
the analysis of the different computational approaches
that we have evaluated to come to the best possible
classifiers for the Phenotype classification in our study.
Moreover, we demonstrate that the hierarchical strategy
results in the best overall classification. Subsequently, we
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Fig. 6 Second classifier training (cluster-episode VS vesicle-episode). a Branch & bound feature selection method with standard variance
normalization, (b) branch & bound feature selection method with within-class variance normalization, (c) Individual feature selection method with
standard variance variance normalization, (d) Individual feature selection method with within-class variance normalization




Cao et al. BMC Bioinformatics (2016) 17:196

T T T T T T T

=
10f i + cluster |
© + = + vesicle
[+

& e Idc

4 * qdc |
= +

© & + 4
QO + + *+

e = +

6 8 10 12
Feature 2: closest FA Distance

Fig. 7 Scatter plot of training data with LDC and QDC. This plot shows
the better performance of LDC over QDC for our dataset with two

selected features

explain the results of the application of the hierarchical
classification scheme for an EGFR regulator knock-down
study. Next to this study, the analysis was used in a study
on the effect of EGF in a limited time-window. The results
demonstrate the potential of the approach taken.

Analysis and evaluation of the classification strategy

In order to find a panel of classifiers to address the catego-
rization of our three episode dynamic model, we included
two normalization schemes, two feature selection meth-
ods and five classifiers. We have presented the results as
a weighted error estimation. The classification results are

Table 4 Weighted error comparison
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obtained from a weighted error estimation procedure as
implemented in PRTools [30]. The results are depicted in
Figs. 5 and 6.

The first classification in our scheme should sepa-
rate the membrane-episode from the super class of the
vesicle-episode and the cluster-episode. For this classi-
fier training, i.e. membrane-episode vs. super class of
cluster-episode and vesicle-episode, we observe that the
weighted error of the linear classifier increases abruptly
when the number of features exceeds a certain thresh-
old, i.e. three for branch and bound and eight for indi-
vidual feature selection method. The weighted error of
the K-nearest neighbor classifier is, however, more stable
and exhibits the lowest point in the branch and bound
feature selection group. The results are summarized in
Fig. 5.

As for the second classifier training, i.e. cluster-episode
vs. vesicle-episode, we noticed, in Fig. 6, the weighted
error of quadratic classifier performs worst. We created
scatter plots of mapped data with a linear classifier and
a quadratic classifier so as to indicate the reasons of the
worst performance with the quadratic classifier; depicted
in Fig. 7. The error line of the support vector machine
classifier is quite stable; it obtains the lowest values in
the group using the branch and bound feature selection
method. Nevertheless, in the individual feature selec-
tion group, the error of neural network classifier always

Tst step knnc Idc
c-v mean std mean std
B&B 0.0053 0.0011 0.0061 0.0038
IND 0.0058 0.0023 0.0061 0.0038
2nd step knnc Idc
C-v mean std mean std
B&B 0.0214 0.0031 0.0321 0.0011
IND 0.0261 0 0.0267 0
Tst step knnc Idc
VAR mean std mean std
B&B 0.0053 0.0011 0.0061 0.0038
IND 0.0058 0.0023 0.0061 0.0038
2nd step knnc Idc
VAR mean std mean std
B&B 0.0237 0.0044 0.0319 0.0015
IND 0.0263 0 0.0272 0.0029

0.0059
0.0059

0.056

0.0059
0.0059

0.0563
0.0598

qdc neurc SvC
mean std mean std mean std
0.0028 0.0061 0.0029 0.0061 0.0038
0.0028 0.0055 0 0.0057 0.0014
qdc neurc svC
mean std mean std mean std
0.0019 0.0231 0.0048 0.0214 0.002
0.0607 0 0.0214 0.0021 0.0261 0
qdc neurc SvC
mean std mean std mean std
0.0028 0.0055 0.0018 0.0061 0.0038
0.0028 0.0056 0 0.0058 0.0019
qdc neurc SvC
mean std mean std mean std
0.0027 0.0236 0.0069 0.0218 0.0028
0.004 0.0218 0.004 0.0265 0.001

C-V represents c-variance

B&B represents branch & bound
IND represents individual

VAR represents variance
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Table 5 Feature selection performance

Features Step 1 Features Step 2
Long axis 100 Closest FA dist 100
Int Std 100 Int Entropy 100
D_entropy 87 Area 96
H_entropy 7 Int Std 73
V_entropy 5 Compact factor 44
Smoothness 1 Int uniformity 34
Area 0 Smoothness 14
Perimeter 0 H_entropy 8
Extension 0 Border dist/nucleus dist 7
Dispersion 0 Perimeter 6
Elongation 0 Long Axis 6
Orientation 0 Short Axis 5
Compact factor 0 D_std 5
Border dist/nucleus dist 0 Skewness 2
Closest FA dist 0 Extension 0
Short axis 0 Dispersion 0
Skewness 0 Elongation 0
Int uniformity 0 Orientation 0
Int entropy 0 H_mean 0
H_mean 0 H_std 0
H_std 0 V_mean 0
V_mean 0 V_std 0
V_std 0 V_entropy 0
D_mean 0 D_mean 0
D_std 0 D_entropy 0

evaluates with the best performance in terms of magni-
tude of the error.

In order to obtain an overall perspective on the
performance, we selected the minimal mean error from
all weighted errors with different feature dimensions. This
value represents the best performance of the combina-
tion between feature selection and classifier. In Table 4,
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the mean and standard deviation of each minimal value
is shown. For the training of the first-step classifier we
see that the combination of branch and bound feature
selection with the K-nearest neighbor classifier has the
lowest minimal value and a relatively small standard devi-
ation with both normalization schemes. For the training
of the second-step classifier, the combination of branch
and bound feature selection with the support vector
machine classifier as well as the combination of individ-
ual feature selection with the neural network classifier
both have the same lowest minimal value and a com-
parable small standard deviation in two normalization
schemes. Considerations for the combination of the clas-
sifiers for the two-step hierarchy that is employed for
our application should include generality of the classifier
and lower feature dimensions. Therefore we have chosen
the combination of branch and bound feature selection
with K-nearest neighbor classifier for first step classi-
fication using the variance normalization scheme. And,
along the same lines, for the second step classification, we
have chosen the combination of branch and bound fea-
ture selection with the support vector machine classifier
using the variance normalization scheme. The motiva-
tion for choosing the branch and bound feature selection
method is the existence of correlated features on our fea-
ture set which causes a much lower performance for the
best individual-N feature selection method. The branch
and bound feature selection method, on the other hand,
guarantees the optimal feature subset without explicitly
evaluating all possible feature subsets because the cri-
terion function fulfills the monotonicity condition [37].
The first step of in our two-class classification problem
requires a simple but efficient classifier for a basic recog-
nition problem, to that end the choice K-nearest neighbor
classifier is efficient. Moreover, a higher value of K pro-
vides a smoothness which reduces the vulnerability to
noise in the training data. The choice for the support vec-
tor machine in the second step is also motivated by its
flexibility in the selection of a threshold by introducing

a b c
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Fig. 8 Step 1 scatter plot. For step 1, the KNNC classifier was chosen. In (a), (b) and (c), the performance of the KNNC classifier for the three major
features is plotted
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Fig. 9 Step 2 Scatter Plot. For step 2, the SVC classifier was chosen. In (a), (b) and (c), the performance of the SVC classifier for the three selected
features is plotted

the kernel. The support vector machine has, in addition,
the ability of maximizing the generalization because it is
trained to maximize the margin.

For the first step we have chosen the following promi-
nent features: long axis, D-entropy and standard deviation
of intensity (cf. Tables 1 and 2). For the second step, we
have chosen the top five features; i.e. skewness, entropy,
H-entropy, closest object distance and area (cf. Tables 1
and 2). In Table 5 the evaluation of the feature selec-
tion performance is shown. The evaluation is done by
calculating the probability of each feature being selected
by the feature selection method. These selected features
best reflect the phenotype changes between three char-
acteristic episodes. For example, in step 1, Long Axis is
chosen most of the time because the (plasma) membrane
is around the membrane which, in that part of the process,
tends to have an elongated shape compared with other
two episodes. In step 2, the intensity entropy is selected
because clusters have a flatter region compared with the
vesicles and this gives rise to a lower entropy value. For
both steps of the hierarchical classification scatter plots
are depicted in Figs. 8 (step 1) and 9 (step 2). The results
of the evaluation articulate that it is not necessary to use
large amounts of features. Just a few will contribute to the
successful classification results. Moreover, the importance
of the wavelet texture features, as stated in the intro-
duction, can be appreciated by their clear contribution
to a better performance compared to previous classifier
schemes.

In order to illustrate and verify the better performance
of the hierarchical classification strategy, we conducted an
experiment using a single-step multi-class classification
strategy on the same dataset. Furthermore, at the same
time the necessity of the feature selection procedure was
assessed by comparing the performance of a full set of fea-
tures to a set of selected features obtained by a feature
selection procedure. The effect of the feature selection is
evaluated for both the single-step multi-class classifica-
tion strategy and hierarchical classification strategy. We

compared the different classifiers that we have used for the
hierarchical strategy; i.e. LDC, QDC, KNNC and SVC. For
each of these classifiers the results after 50 repetitions for
the best performing classifier for each experimental group
are listed in Table 6. For the asssessment of the accuracy
of an hierarchical classification another measure metric is
used. To that end, we have adopted the metric suggested
in [6], i.e. the hierarchical f-measure (hF) which is the hier-
archical adaptation of the F1 metric in flat classification.
The hF is derived from the hierarchical precision (hP) and
the hierarchical recall (hR) which are respectively defined
as follows:

=Zi|ﬁiﬁfi| Rzzilﬁiﬂfil
Zi|Pi| Zi|Ti|

B; is the set of predicted class(es) with all of its ancestors
and T is the set of real class(es) with all of its ancestors.
Subsequently, the f-measure for hierarchical classification
is defined as:

2% hP % hR

"= R @
The performance evaluation listed in Table 6 represents
the mean of the summations of 215 randomly selected
test data set with 100 times repetition for each classifica-
tion strategy. The F-measure (hF) is given for hierarchical
classification as well as flat classification in order to appre-
ciate the improvement of the accuracy. In addition, in

hP (3)

Table 6 Feature selection performance

F-25 F-sel H-25 H-sel
hF 0.9603 0.9745 0.9839 0.9889
o 0.0094 0.0103 0.0066 0.0065

hF: F-measure for hierarchical classification

F-25: flat classification with total 25 features

F-sel: flat classification with selected features from branch & bound feature selection
method

H-25: hierarchical classification with total 25 features

H-sel: hierarchical classification with selected features
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Table 7 Kolmogorov-Smirnov test result
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F-25 vs F-sel F-25vs H-25 F-25 vs H-sel F-sel vs H-25 F-sel vs H-sel H-25 vs H-sel
H_value 1 1 1 1 1 1
P_value 3.3e-17 1.3e-38 3.9e-41 44e-15 6.7e-22 5.2e-08

On the basis of hF, all test results render to be significantly different i.e. H value is 1

Table 6, for all classifications the f-scores (F1) are given
and these show the same trend as hF. Furthermore, a test
for statistical significance is performed using the two-
sample Kolmogorov-Smirnov test [38]. This shows that
all f-measures from different classification strategies are
significantly different from each other at the 5 % level of
significance as shown in Table 7. In addition, in Table 8,
the confusion matrices for each approach are presented.
For each classification strategy, the confusion matrix is
listed in the context of the three class outcome.

EGFR endocytosis regulator identification

Our hierarchical classification strategy was used to
validate siRNA-mediated knock-down of several known

Table 8 Confusion matrices for all strategies

EGER endocytosis regulators; i.e. siGrb2, siEEA1, siCFL.
In order to study the effect of the gene knock down, 10
sample points per well were selected for: WT cells (not
treated with siRNA), control siRNA treated cells (siC-
trl#2 and siGFP), siEGFR treated cells and three target
siRNAs. After image processing and data analysis, we cal-
culated the number of objects belonging to each episode
group per nucleus and compared the result. These num-
bers are depicted in Fig. 10. As expected, cells treated with
siEGFR show a decreased level in all three episodes since
treatment of cells with siEGFR results in > 90 % knock-
down of EGFR. Cells incubated with siGrb2 show a drastic
reduction in number of endosomes (vesicle-episode and
cluster-episode) because siGrb2, as a known regulator of

(1] (2]

F-25 Prediction
Membrane Vesicle

Truth Membrane 34.96 2.04
Vesicle 1.81 166.01

Cluster 0.12 4.39
F-sel Prediction
Membrane Vesicle

Truth Membrane 3567 1.33
Vesicle 0.58 166.79

Cluster 0.17 277
H-25 Prediction
Membrane Vesicle

Truth Membrane 34 3

Vesicle 0.11 166.83

Cluster 0.07 451
H-sel Prediction
Membrane Vesicle

Truth Membrane 35.53 147
Vesicle 0.75 166.86

Cluster 0 2.58

[3] (4]
Number of test objects Sensitivity

Cluster

0 37 0.945

0.18 168 0.988

549 10 0.549
Number of test objects Sensitivity

Cluster

0 37 0.964

0.63 168 0.993

7.06 10 0.706
Number of test objects Sensitivity

Cluster

0 37 0919

1.06 168 0.993

542 10 0.542
Number of test objects Sensitivity

Cluster

0 37 0.960

0.39 168 0.993

742 10 0.742

Column 1 represents the strategy and class labels

Column 2 represents the prediction

In column 3, the number of test objects represents the ground truth
In column 4, the sensitivity is given per class
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EGFR endocytosis, can significantly inhibit EGFR inter-
nalization [39]. In general the increase in number of
endosomes (vesicle-episode and cluster-episode) can be
caused either by an enhanced uptake of EGFR resulting in
an enhanced EGFR endocytosis and EGFR degradation, or
by delayed endocytosis and EGFR breakdown. For EEAL,
a member of the early endosomes, an increase in num-
ber of endosomes (vesicle-episode and cluster-episode)
is due to delayed endocytosis [40]. Cofilin (CFL) regu-
lates the cytoskeleton and because of these subsequent
changes in the actin cytoskeleton the endocytosis route
of EGFR changes [41]. At present, only little knowledge
about BIN1 in EGFR endocytosis is available. However,
regarding the result, it is observed that BIN1 depletion
decreases EGFR at plasma-membrane, increases the num-
ber of vesicles and clusters, suggesting that it potentiates

Page 13 0f 16

EGEFR endocytosis and possibly signaling. These results
demonstrate the robustness of our hierarchical classifi-
cation scheme and the capability to predict new EGFR
endocytosis regulators.

Dynamic EGFR endocytosis stage

In this case study, HBL100 cells were exposed to EGF
(50 ng/ml) for indicated timepoints (cf. Fig. 11c). The
number of EGFR localizations at the plasma-membrane
and the vesicles was quantified. The amount of EGFR
localized at the plasma-membrane, expressed as pixels of
plasma-membrane per nucleus, decreases over time as
shown in Fig. 11a. This fits with the EGFR endocytosis
process during which EGF exposure is causing a grad-
ual EGFR re-distribution from the plasma-membrane into
vesicles. Meanwhile, the number of vesicles per nucleus

no siRNA

a plasma-membranes

Fig. 10 EGFR endocytosis regulator identification results. a Pixels of plasma-membrane, (b) Number of clusters, () Number of vesicles
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increases at the early endosome stage caused by the EGFR
internalization, then decreases at the late endosome stage
when the vesicles form into a larger complex clusters and
degrades at the end as illustrated in Fig. 11b. These graphs
indicate the trend of EGFR endocytosis process and are
representative in illustrating the dynamics of EGFR endo-
cytosis stages.

Conclusions

This paper discusses an integrated image and data analysis
system for high-throughput screening including wavelet-
based texture measurements and a hierarchical classifi-
cation strategy. From previous studies we have learned
[14] how the phenotype description could be improved
with new texture features as well as an improved classi-
fication of the characteristic episodes with an alternative
classification scheme.

For the image analysis we use an innovative image
segmentation algorithm combined with representative
phenotype measurements which include relative texture
features from the wavelet transform to replace the abso-
lute intensity feature so as to decrease the impact of
variations in fluorescent intensity between the samples.
For the data analysis, we change from a single-step multi-
class classification solution into a two step Hierarchical
classification strategy to categorize three dynamic phe-
notypes of the EGFR endocytosis process. We include
two feature normalization methods, two feature selection

methods and five classifiers to find the best classification
strategy. After evaluation of different combinations, we
have chosen the combination of branch and bound feature
selection with K-nearest neighbor classifier for first step
classification after a normalization of variance. As shown
in Table 4, the combination of branch and bound feature
selection with support vector machine classifier is chosen
for the second step classification after having applied the
same normalization method.

With the selected combination, the classifier shows a
notable improvement in distinguishing the membrane-
episode in the data set. This improvement is due to three
factors. First, it benefits from the hierarchical classifi-
cation scheme which introduce multilevel classifiers to
deal with two subset classes at a time. Second, we intro-
duced the exact prior probability for the classifier train-
ing which improves the performance of the classification
strategy significantly. Third, the relative texture measure-
ments show their potential to describe the phenotype
characteristics.

This explicit hierarchical classification solution can
identify the characteristic episodes in the EGFR endo-
cytosis process and it has shown to be able to support
the identification of new regulators in this crucial process
relating to breast cancer progression. With all kinds of
phenotype measurement and flexible classifier training
strategy that we introduced in this study, it has become
easier to detect morphological changes of the phenotype
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and therefore to extend our solution to cope with stud-
ies utilizing fluorescence microscopy in a siRNA based
high-throughput screening (HTS).
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