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Abstract

Background: Pathway expression is multivariate in nature. Thus, from a statistical perspective, to detect differentially
expressed pathways between two conditions, methods for inferring differences between mean vectors need to be
applied. Maximummean discrepancy (MMD) is a statistical test to determine whether two samples are from the same
distribution, its implementation being greatly simplified using the kernel method.

Results: An MMD-based test successfully detected the differential expression between two conditions, specifically
the expression of a set of genes involved in certain fatty acid metabolic pathways. Furthermore, we exploited the
ability of the kernel method to integrate data and successfully added hepatic fatty acid levels to the test procedure.

Conclusion: MMD is a non-parametric test that acquires several advantages when combined with the kernelization
of data: 1) the number of variables can be greater than the sample size; 2) omics data can be integrated; 3) it can be
applied not only to vectors, but to strings, sequences and other common structured data types arising in molecular
biology.
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Background
A challenging topic for the bioinformatics community is
how to combine data from multiple sources to increase
biological knowledge. Integrating data from various differ-
ent sources is not simply a matter of summing the results
of each separate source; rather, it requires the analysis at
the same time of all variables from various sources [1–3].
Nowadays, there are many methods to integrating het-

erogeneous data but kernel-based methods are usually
the most powerful [4, 5]. Kernel-based methods have an
extensive variety of kernels in which they can be used for
each source of data. Thus, a first step to data integra-
tion is to choose an appropriate kernel for each type of
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data and then we combine the kernels for a given statis-
tical task such as classification. The simplest combination
of kernels is the positive linear combination of them, but
othermathematical operations, such asmultiplication and
exponentiation, produce valid kernels.
Let us start by recalling the main ideas of kernel-based

approaches.
Given a sample space X , we say that k on X is a real-

valued positive definite kernel on X if k : X × X → R is
a map such that:

• k(x, y) = k(y, x),
• ∑m

i,j=1 αiαjk(xi, xj) ≥ 0 for allm ∈ N, αi ∈ R, xi ∈ X
where i = 1, . . . ,m.

Thus, a kernel can be interpreted as a similarity measure
of the samples and allow us to identify each x ∈ X with a
real function given by
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φ : X → RX = {f : X → R}
x �→ φ(x)(·) = k(·, x)

which is an element of a dot product vector space, from
now on referred to as a feature space. It consists of all
functions

f (·) =
m∑
i=1

αik(·, xi)

for any m ∈ N and x1, . . . , xm ∈ X , α1, . . . ,αm ∈ R. It has
the reproducing property

〈k(·, x), f 〉 = f (x)

implying 〈φ(x),φ(y)〉 = 〈k(·, x), k(·, y)〉 = k(x, y). We
can turn our feature space into a Hilbert space Hk
by completion. The space Hk is the reproducing kernel
Hilbert space (RKHS), induced by the kernel function k.
This remarkable property has important consequences.
Indeed, “geometric” intuition can be used to build kernel-
based methods, by drawing inspiration from classical sta-
tistical methods working in finite dimensional Euclidean
spaces. Popular examples of kernel-based methods are
kernel principal component analysis (KPCA), kernel ridge
regression (KRR), and support vector machines (SVMs)
[6, 7].

Mean element
A natural question to raise is how a probability distri-
bution P is represented in an RKHS Hk . We show that
infinite-dimensional counterparts of a fundamental multi-
variate statistical concept, the mean vector, is particularly
appropriate for this purpose. This RKHS-counterpart of
the mean vector is known as the mean element.
Consider a random variable X taking values in X and a

probability distribution P. The mean element μP associ-
ated with X is the unique element of the RKHS Hk , such
that, for all f ∈ Hk

〈μP, f 〉Hk = EP[ f (X)] .

In statistics, a central concern of the data integration
outlined above is often referred to as the two-sample or
the homogeneity problem. In this study, we explore a
test statistic, known as the maximum mean discrepancy
(MMD) [8–11], to test whether two samples are from the
same distribution. The MMD test can easily be computed
using the “kernel trick”. We apply the MMD test to eval-
uate the differential expression of a set of genes involved
in certain metabolic pathways in different conditions. The
kernel method allows us integratemetabolomics data with
transcriptomic data and so test the homogeneity between
conditions, while handling all the available data.

Methods
Maximum mean discrepancy statistic was designed with
the aim to determine a function such that its expecta-
tion differs when observations come from two different
probability distributions. The underlying premise is that
if we compute this statistic on samples drawn from differ-
ent distributions it will measure how these distributions
are likely to differ. This consideration leads to the fol-
lowing statistic. Let X denote our input domain which is
assumed to be a nonempty compact set. Let F be a class
of functions f : X → F . Let P and Q be probability dis-
tributions, and let X = (x1, . . . , xm) and Y = (y1, . . . , yn)
be samples composed of independent and identically dis-
tributed observations drawn from P and Q, respectively.
The MMD is defined as

MMD[F ,P,Q]= sup
f∈F

(
EP[ f (x)]−EQ[ f (y)]

)
,

and its empirical estimate is defined as

MMD[F ,X,Y ]= sup
f∈F

(
1
m

m∑
i=1

f (xi) − 1
n

n∑
i=1

f (yi)
)
.

By choosing F to be the unit ball in a universal RKHS
[12] we achieve a desirable tradeoff between a class of
functions where MMD[F ,P,Q] will vanish only if P =
Q and a class of functions such that the statistic differs
significantly from zero for most finite samples X and Y.
When F is the unit ball in a universal RKHS, Theorem

2.2 in [8] ensures that MMD[F ,P,Q] will recognize any
discrepancy between P and Q. Moreover, the finite sam-
ple computation of MMD is greatly simplified. Under the
assumptions of the aforementioned theorem, the follow-
ing is an unbiased estimator of MMD2[F ,P,Q]:

MMD2[F ,X,Y ] = 1
m(m − 1)

m∑
i�=j

k(xi, xj) + 1
n(n − 1)

n∑
i�=j

k(yi, yj)

− 2
mn

m,n∑
i�=j

k(xi, yj).

A two-sample test based on the asymptotic distribu-
tion of an unbiased estimate of MMD2 was introduced
in [8]. The estimation of the p-value of the test can be
addressed by sampling. From the aggregated data Z =
{X,Y }, we draw randomly without replacement to obtain
two newm-samples {X∗,Y ∗}, and compute the test statis-
tic MMD2[F ,X∗,Y ∗] on these new samples. If we repeat
this procedure t times, a set of test statistics under the null
hypothesis is obtained:

MMD2[F ,X1∗,Y 1∗], MMD2[F ,X2∗,Y 2∗], . . . , MMD2[F ,Xt∗,Y t∗]

Then, we add the original statistic MMD2[F ,X,Y ] to
this set, and sort the set in ascending order. Finally, if
r denotes the position of MMD2[F ,X,Y ] withing this
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Table 1 Nutrimouse studies

coc fish lin ref sun

wt 4 4 4 4 4

ppar 4 4 4 4 4

The experimental design is balanced. There are 20 wild type (wt) mice and 20
PPAR-deficient (ppar) mice. Eight mice, four wt and four ppar mice, were fed each
diet

ordering, the estimation of the p-value is given by p =
t+1−r
t+1 .
We compare the performance of the MMD test with

those of other methods, such as the Hotelling test [13].
This is a multivariate generalization of the t-test with a
multivariate normal distribution and an identical covari-
ance structure. Alternatively, we also run a multivariate
generalization of two well-established model-free univari-
ate tests, the Wald-Wolfowitz runs test and Kolmogorov-
Smirnov statistic [14], which is based on the idea of min-
imum spanning tree (MST). A spanning tree of a graph
is a spanning subgraph that is a graph so it provides a
path between every two nodes of the graph. Moreover,
the MST of an edge-weighted graph is a spanning tree
whose edges sum to minimum weight. In the multivari-
ate two-sample problem, it can regard an edge-weighted
graph that it is based on the N pooled multivariate data in
Rp nodes, where p is the number of variables of the mul-
tivariate data, and edges linking all pairs. The edge weight
can be estimate by the Euclidean (or any other) distances
between the nodes (pairs of multivariate data). Thus, sim-
ilar nodes have similar distances. The test is based on the
construction of the MST of the pooled multivariate data,
then it deletes all edges for which the defining nodes orig-
inate from different multivariate samples and, finally, it
counts the number of disjoint subtrees (R). For large sam-
ple sizes, the permutation distribution of the standardized
number of subtrees

W = R − E(R)√
var(R)

approaches the standard normal distribution and the
null hypothesis, P = Q, is rejected for a small number
of subtrees [14]. The multivariate Kolmogorov-Smirnov
test used the MST to ranking multivariate data. Then, the
MST tends to connect nodes (points) that are close. The

ranking procedure begins by selecting the root the MST,
that is, a node with the largest eccentricity, and then, the
nodes are ranked in accordance with the height directed
preorder traversal of the tree.

Results and discussion
To illustrate this procedure, we analyze data from a study
in the fields of metabolomics and genomics. Specifically,
the datasets are drawn from a nutrigenomic study in the
mouse [15]. Forty mice were studied and two sets of vari-
ables were acquired from liver cells: 1) expressions of 120
genes derived from a nylon macroarray with radioactive
labeling; and 2) concentrations of 21 hepatic fatty acids
measured by gas chromatography. Biological units (mice)
were cross-classified according to two factors: genotype,
in either wild-type (wt) or in PPAR-deficient (ppar) mice;
and diet, for which five classes (coc, fish, lin, ref, sun)
were identified based on fatty acid composition (Table 1).
Specifically, the oils used for experimental diet prepara-
tion were corn and colza oils (50/50) for a reference diet
(ref ), hydrogenated coconut oil for a saturated fatty acid
diet (coc), sunflower oil for an Omega6 fatty acid-rich
diet (sun), linseed oil for an Omega3-rich diet (lin) and
corn/colza/enriched fish oils for the fish diet (43/43/14).
For the complete analysis we used a Gaussian kernel

and the hyper-parameter was determined by the sigest
function of the kernlab R package [16]. The estimation
is based upon the 0.1 and 0.9 quantiles of ||x − x′||2. Basi-
cally, any value in between these two bounds will produce
a good hyper-parameter estimation.
We use the GSAR R package [17] to implement the

multivariate Kolmogorov-Smirnov test and multivariate
Wald-Wolfowitz runs test.
With kernel MMD, we test whether a fatty acid

catabolism pathway is differentially expressed in wt vs
ppar mice. We consider a set of 16 genes involved in
this catabolic pathway: PECI, MDCI, HPNCL, AOX,
BIEN, THIOL, CACP, CPT2, TPα, TPβ , mHMGCoAS,
Cyp4a10, Cyp4a14, ACBP,L-FABP, ACOTH and PLTP.
Using a permutation procedure based on 2499 repeti-
tions, we obtain a significant p-value (Table 2, Fig. 1). Also
the three baseline tests are significant (Table 2). The ker-
nel MMD test shows that fatty acid catabolism genes are
differentially distributed in wt vs ppar mice. This result,

Table 2 P-values in testing fatty acid catabolism pathway

Genes Genes and Fatty acids

MMD Hotelling mKS mWW MMD Hotelling mKS mWW

wt vs ppar 4e-04 1e-13 0.001 0.002 0.0096 3e-12 0.002 0.001

sun vs fish 0.1844 - 0.077 0.211 4e-4 - 0.001 0.001

Columns record the MMD, Hotelling, multivariate Kolmogorov-Smirnov (mKS) and multivariate Wald-Wolfowitz runs test (mWW) p-values. The first four columns (left)
correspond to the pathway representation based on genes, and the second four (right) correspond to the representation based on the integration of genes and fatty acid
levels
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Fig. 1 Empirical distribution of kernel MMD under the null hypothesis.
The observed value of the test statistic is indicated by an arrow. The
number of repetitions is 2499

moreover, agrees with the data representation obtained by
kernel PCA, which is used to explore simultaneously sam-
ples and genes. On the one hand, this projection shows a
broad separation between wt and ppar mice (Fig. 2, sam-
ples only); on the other, each gene involved in the fatty
acid catabolism pathway is displayed as an arrow in each
sample (Fig. 3, both samples and pathway genes). Locally,
arrows indicate the direction of maximum growth of the
gene expression [18]. In Fig. 3, all genes present approx-
imately the same direction to the left, with the exception
of the ACOTH gene. Notice that wt mice lie to the left
of the first axis and ppar lie to the right (Fig. 2), and by
taking into account the direction of the vectors (Fig. 3),

we can deduce which genes are overexpressed in wt or, in
contrast, in ppar mice. Thus, we can see that the ACOTH
gene is the only gene to show a higher expression in ppar
mice (Fig. 3). Figure 4 (left) shows a heatmap of this set of
genes in which we can observe a pattern of expression that
agrees with the interpretation based on the representation
of genes using kernel PCA.
We exploit the ability of the kernel method to integrate

data and so add hepatic fatty acid levels in the pathway
to evaluate the test procedure. We consider a set of three
fatty acids: C20.5ω.3, C22.5ω.3 and C22.6ω.3 involved in
fatty acid catabolism [15]. Thus, we compute the kernel
matrix associated with the new feature space (including
gene expression and fatty acid levels) by adding the ker-
nel matrix of the gene expression and the kernel matrix
of the fatty acid levels. Using a permutation test based
on 2499 repetitions, we obtain a significant p-value when
testing (Table 2). The heatmap (Fig. 4, right) presents
gene expressions in addition to the fatty acid levels, show-
ing that the differences in fatty acids are not so evident
between the wt and ppar genotypes. This can be explained
by the confounding effect of the diets.
We also studied the effect of the diet on the catabolism

pathway. In particular, we compare sun vs fish diets. In
this case, the number of samples is less than the number
of variables (genes+fatty acids). Kernel methods allow us
to avoid this issue in contrast to the classical Hotelling test
that does not.
In addition, the heatmap of the genes (Fig. 5, left)

shows an effect of the type of mouse (wt/ppar) but
not of the diet. However, when the fatty acid levels are
included in the analysis (Fig. 5, right), we observe a dif-
ferent pattern of expression between the diets; that is,
the fish diet promotes the levels of this set of fatty acids.
Using a permutation test based on 2499 repetitions, we

Fig. 2 Kernel PCA of gene expression. The wt samples are represented in black and the ppar samples in red. Diets represented as follows: (ref) diet by
letter x; (coc) diet by circles; (sun) diet by diamonds; (lin) diet by plus signs; and (fish) diet by triangles
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Fig. 3 Kernel PCA of gene expression. Kernel PCA of gene expression which shows 16 genes correspond to the fatty acid catabolism pathway. All
genes have approximately the same direction (black vector) to left except ACOTH gene

obtain a non-significant p-value when the pathway is
represented only by the gene expressions. In contrast,
when the fatty acid levels are added, the p-value is sig-
nificant. The multivariate Kolmogorov-Smirnov statis-
tic and Wald-Wolfowitz runs test have similar p-values
(Table 2).

The R source code and example can be consulted at [19]
so the experiment can be reproduced.

Conclusion
MMD is a non-parametric test that acquires several
advantages when apply the kernelization of the test: 1)

Fig. 4 Heatmaps. Figure shows the expression of the fatty acid catabolism pathway between wt and ppar genotype from gene expression (left) and
gene expression and fatty acids (right). Mice from 1 to 20 are wt and from 20 to 40 are ppar
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Fig. 5 Heatmaps. Figure shows the expression of fatty acid catabolism pathway between sun and fish diet from gene expression (left) and gene
expression and fatty acids (right). Mice 2, 3, 13, 15, 23, 25, 34, 40 were fed the sun diet and the others the fish diet

the number of variables can be greater than the sample
size; 2) omics data can usefully be integrated; 3) it can
be applied not only to vectors, but to strings, sequences
and other common structured data types arising inmolec-
ular biology. Our results indicate that the kernel MMD
can be used to identify differentially expressed pathways;
however, further studies with several sets of pathways are
needed in order to assess its overall performance. This
study suggests that kernel MMD is a useful approach to
the analysis of pathway differential expression, since it
takes into account all the genes involved in the pathway
and, moreover, offers the possibility of integrating several
data types.
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