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Abstract

Background: Peak calling is a fundamental step in the analysis of data generated by ChIP-seq or similar techniques
to acquire epigenetics information. Current peak callers are often hard to parameterise and may therefore be difficult
to use for non-bioinformaticians. In this paper, we present the ChIP-seq analysis tool available in CLC Genomics
Workbench and CLC Genomics Server (version 7.5 and up), a user-friendly peak-caller designed to be not specific to a
particular *-seq protocol.

Results: We illustrate the advantages of a shape-based approach and describe the algorithmic principles underlying
the implementation. Thanks to the generality of the idea and the fact the algorithm is able to learn the peak shape
from the data, the implementation requires only minimal user input, while still being applicable to a range of *-seq
protocols. Using independently validated benchmark datasets, we compare our implementation to other
state-of-the-art algorithms explicitly designed to analyse ChIP-seq data and provide an evaluation in terms of
receiver-operator characteristic (ROC) plots. In order to show the applicability of the method to similar *-seq protocols,
we also investigate algorithmic performances on DNase-seq data.

Conclusions: The results show that CLC shape-based peak caller ranks well among popular state-of-the-art peak
callers while providing flexibility and ease-of-use.
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Background
In order to identify functional elements in a genome,
a number of experimental high-throughput techniques
have been developed for investigating specific interac-
tions between proteins and DNA. These protocols pro-
vide us with a deeper understanding of gene-regulatory
and epigenetic mechanisms by identifying, for example,
Transcription-Factor Binding Sites (TFBS), open chro-
matin regions or the location of epigenetic marks.
In broad terms, these techniques chemically cross-link

proteins to those stretches of DNA they are bound to
in vivo. After shearing the DNA, a protein of interest
is extracted along with the cross-linked DNA fragments
from the cell-lysate using specific antibodies. Following
this Chromatin Immuno-Precipitation (ChIP) step, the
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short stretches of DNA attached to the protein of interest
are identified by high-throughput sequencing.
For any targeted protein and a given cell-line or condi-

tion, this results in several million reads of raw sequencing
data. Usually a control experiment is performed where the
immuno-precipitation step is left out or an antibody that
is not specifically binding to the target genome is used.
For example, the ENCODE Project (ENCyclopedia Of
DNA Elements) has produced data on hundreds of regula-
tory factors (see http://encodeproject.org/) in mouse and
human. For more in-depth information we recommend
the “ChIP-seq guidelines and practices of the ENCODE
and modENCODE consortia” [1, 2].
Furthermore, there are already numerous experimental

protocols related to ChIP-seq available and new proto-
cols are published all the time. To name a few prominent
examples, ChIP-exo [3] is a derivative of ChIP-seq where
exonucleases are used to identify the genomic location
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of DNA-protein binding-sites with higher resolution.
DNase-seq (DNase I hypersensitive site sequencing [4, 5]),
ATAC-seq Assay for Transposase-Accessible Chromatin
with highthroughput sequencing [6]) and FAIRE-seq
(Formaldehyde-Assisted Isolation of Regulatory Elements
sequencing [7]) are used to identify accessible regions
in the genome, and MNase-seq (Micrococcal Nuclease
sequencing [8]) is used to identify nucleosome position-
ing. Although each experimental technique uses differ-
ent procedures for fragmentation and enrichment [9],
the computational processing in terms of mapping the
sequencing data and analysing the resulting signal in
genomic context is similar to processing ChIP-seq data.
Hence it is unsurprsing to see pipelines developed for
ChIP-seq analysis routinely being applied to data pro-
duced with other protocols. Therefore, we initially discuss
the analysis of ChIP-seq data and later investigate how
algorithms developed for ChIP-seq perform on DNase-
seq data.
ChIP-seq experiments are also increasingly used to

investigate histonemodifications. In contrast to transcrip-
tion factors, most histone marks are of variable length and
can span across entire gene bodies. Although the exper-
imental procedures are similar, the resulting data needs
to be treated accordingly. Some existing approaches such
as HOMER stitch together narrow peaks to avoid the
computational cost of finding regions of variable length.
Since histone marks tend to be associated with genes, we
opted for the use of existing annotations to classify genes
according to peak shape as a practical trade-off between
computational complexity and biological sensitivity.

State of the art
The initial step for all downstream computational analyses
of ChIP-seq data starts by mapping the reads to a refer-
ence genome. Obviously, the quality of the read mapping
has an impact on the downstream analysis results. How-
ever, details of the mapping process are beyond the scope
of this paper and we will assume that an accurate read
mapping is provided. For the performance comparison, all
peak callers used the same read mappings as input.
By plotting the number of reads mapped to genomic

coordinates as a so-called coverage graph, consistent and
specific binding sites of the protein of interest become
visually apparent as peaks (see Fig. 1). Rather than iden-
tifying such regions by eye, subsequent bioinformatics
analysis aims at the reliable automated identification of
protein-DNA binding events from the read mapping - a
process referred to as peak calling.
Many different approaches to peak calling have been

developed. The density of the ChIP signal can be analysed
directly (Findpeaks [10]) or compared to a control signal
(CCAT [11], CisGenome [12], Erange [13], PeakSeq [14]).
Signal processing approaches including Gaussian Kernel

Density Estimation (FSeq [15], QuEST [16]), Hotelling fil-
ters (DFilter [17]) and wavelets [18] have also been applied
to this kind of signal. Many statistical approaches such as
Poisson distributions (SISSRS [19], HOMER [20], MACS
[21]), negative binomial distributions (ZINBA [22]), rank-
statistics (W-ChIPeaks [23]), and Cramér-von Mises test
(Qeseq [24]) have been used. Other approaches include
clustering approach (SICER [25]), HiddenMarkovModels
(ChIPDiff [26], RSEG [27]), tree shape statistics (TPIC
[28]), shape recognition (Triform [29]) and probabilistic
models (SignalSpider [30]).
From a computational viewpoint, the main lessons

learned from the current generation of peak calling algo-
rithms can be summarised as follows: The success of peak
calling depends on how well the statistical model of the
input signal can be fitted to the data under consideration.
In this context, parameterising a peak caller can be seen as
tweaking its intrinsic model to improve the fit to the data.
However, this requires in-depth knowledge of the under-
lying algorithm and statistical model and a good grasp of
how the behaviour is affected by the parameters. There-
fore the fine-tuning of parameters remains a “black art”
to most biologists who want to analyse the results of their
ChIP-seq experiments. Since parameter optimisation is a
hard and time-consuming task, it is recommended [1] to
focus on improvements in experimental design in order
to obtain better input data rather than attempting to
optimise the downstream bioinformatics pipeline.
In recent literature, it has been observed that current

peak callers may miss peaks that are clearly visible to
the human eye. More precisely the peaks exhibit distinct
shapes which act as visual cues. However, as stated by Rye
et al. [31], “peak shape information is not fully exploited in
the evaluated programs”. The gap between peaks apparent
to expert users and what is recognised algorithmically has
been observed time and again in recent literature [32].
One approach to improve peak calling is to take more

of the observed specific characteristics of existing ChIP-
seq datasets into account and encode them directly into
the algorithm (see e.g. [29]). However, hard-coding more
specific models into the heuristic is not a sustainable path
for future developments in the long run, as this proce-
dure may be overfitting certain kinds of datasets. Specially
given the increasing variety of ChIP-seq related experi-
mental protocols, this approach would ultimately lead to
a similar variety of specialised heuristics. This variety and
specialisation will make it increasingly difficult to update,
test, and release algorithms while leaving users confused
as to which tool and version is optimally suited to their
data at hand.
Nevertheless, novel peak-shape recognition algorithms

have been shown to outperform existing heuristics, iden-
tifying peaks that were missed previously [17, 33]. Gen-
erally speaking, in contrast to a hard-coded internal
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Fig. 1 Coverage graphs and mapped reads from the NRSF dataset, showing a region of human Chromosome 1. The uppermost track marks two
regions classified as positive peaks in the reference dataset with blue arrows. The two tracks below visualise the read mapping of the two replicate
ChIP-samples. The two lowermost tracks display the reads from the two control samples. In all tracks, forward reads are shown in green and reverse
reads are shown in red. Below the reads of the ChIP-seq sample data at the peak regions, the coverage graph of forward and reverse reads is shown

model these approaches “learn” the peak-shape from
the underlying data. In the “learning-phase” an initial
set of positive examples is identified, i.e. regions that
unambiguously contain peaks. This phase is shared with
other methodologies such as MACS and DFilter. From
this initial set, a computational representation of the
specific peak-shape is constructed. This representation
is then applied to the entire dataset to perform the
automated peak calling, based on a suitable statistical
framework.

Aims for a next-generation peak caller
Reflecting on the recent developments in the field com-
bined with the practical lessons learned from a number of
different current peak calling algorithms and the poten-
tial advances offered by the aforementioned shape-based
approaches, we formulate the main requirements for a
new peak calling toolset as follows:

Generality In order to keep up with the steadily ris-
ing number of experimental protocols that require peak
calling for data-analysis, the algorithmic engine has to
be general enough to be applicable across datasets from
many different *-seq technologies (i.e. ChIP-seq, DNase-
seq, etc.). The toolset should be swiftly adaptable to
new datasets as they become available without expensive
recoding efforts.
Specificity For achieving optimal results, the specific
characteristics of the peaks need to be recognised by the
algorithm. The optimisation and parameterisation for the

task at hand should not sacrifice the generality of the
underlying algorithmic implementation.
Robustness Rather than inventing ad-hoc scoring
schemes, the algorithms need to be built on a mathe-
matically and statistically well-founded framework. In
particular, we employ methodologies from digital sig-
nal processing and machine learning, which have been
extensively studied and are deeply understood.

Simplicity Despite the algorithmic and statistical com-
plexity of the data-analysis task, the implementation
needs to be suitable for a general audience. This translates
into minimising or even eliminating the need for parame-
terisation and automating the most common tasks. At the
same time, the algorithm needs to be transparent about its
results and intuitive to use, such that advanced users can
adopt the tools easily to their needs.

New approach
Some of the aims formulated above may seem to be con-
tradictory or even mutually exclusive to each other at
first sight. However, peak calling constitutes a special
case of signal detection algorithms that “can be solved
by adapting ‘uniform’ and ‘formally optimal’ techniques
from the signal processing literature” [17]. In addition
to being general such that signals of arbitrary shape can
be processed, it is based upon a well studied framework
from signal processing theory. The specific shape of the
signal is learned from a number of “positive” and “neg-
ative” regions (or noise) where the signal is absent or is
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the result of a sequencing artefact. The resulting shape
of the signal minus the noise is encoded in a vector
(the so-called Hotelling-observer, named after the math-
ematical statistician Harold Hotelling [34]), which is then
evaluated against the data-stream. This resulting filter
contains the information needed for peak detection and
can easily be transferred and applied to other datasets
as well. This approach lends itself to visual parameteri-
sation by example such that advanced users could define
the set of regions from which the filter is constructed,
making it transparent as to what pattern the algorithm
is detecting. Examples of approaches along this ratio-
nale are described in [17, 29, 35]. At the same time, the
underlying implementation remains independent of the
peak-shape it is detecting - analogous to text-search algo-
rithms being independent of the text pattern or regular
expressions.
In order to build specific peak-shape filters without

extensive manual annotation of positive and negative
regions, we take into account that the vast majority of
peak callers hardly disagree about top-scoring peaks [36].
The differences in performance become apparent only for
less obvious peaks; it is in this “grey zone” where the fit
between the data and the intrinsic statistical model of
the algorithms decides about their relative performance.
This observation suggests a strategy for boot-strapping
the shape-based approach: There are sufficient positive
regions that can be safely and unambiguously identified
by any of the currently available methods in a first pass.
A more specific model of the peak-shape is then inferred
from these clear-cut examples, allowing the algorithm to
tune itself automatically to the data at hand. A second
peak-detection step is performed, resulting in a much
more sensitive peak-detection overall.

Results and discussion
Signal detection using a Hotelling-filter
Since the shape of the signal from ChIP-seq data
depends on which protein was targeted in the immuno-
preciptation reaction [17, 35], the CLC shape-based peak
caller is designed to take the characteristic peak-shape
into account. For example, the typical signal shape of
a transcription factor binding site like NRSF shows a
high concentration of forward reads followed by a high
concentration of reverse reads (Fig. 2).

The average shape of the positive regions of the NRSF
transcription factor for the forward and reverse strands is
shown in Fig. 3.
The CLC shape-based peak caller makes use of both the

characteristic peak shape and enriched read coverage to
identify peaks in *-seq data. Next, we will outline the indi-
vidual steps of the entire ChIP-seq peak calling pipeline,
starting from quality control and normalisation of the
data, describing the fundamentals of using a filter, learning
a characteristic peak shape from highly enriched regions
and calling peak regions including boundary refinement.
Finally, we describe how these steps are working together
to result in a highly automated peak detection pipeline
that provides near optimal results without the need for
extensive parameterisation by the user.

Quality control of ChIP-seq data
During the first step of the analysis, the CLC shape-based
peak caller computes several quality measures to check
whether the input data satisfy the assumptions made by
the algorithm. These measures can be derived from the
cross-correlation profile between reads mapping to the
forward and to the reverse strand. This plot is often
used to investigate the quality of ChIP-seq experiments
[1, 2]. A correlation profile is shown in Fig. 4. Those
quality measures have been investigated by the modEN-
CODE consortium and are described in more detail in
[1]. The cross-correlation profile shown in Fig. 4 is typical
of a successful ChIP-seq experiment. On the other hand,
cross-correlation plots without a pronounced fragment-
length peak are typically reflective of poor quality and
ragged cross-correlation profiles are typically caused by
low yield (Fig. 5).
The cross-correlation function typically has a maxi-

mum when the value of the strand-shift is close to the
length of the DNA fragment being sequenced. This is
indicated in green in Fig. 4. This peak is a characteris-
tic feature of a ChIP-seq experiment. One can expect a
pronounced peak around the fragment length because the
frame shift between reads mapping to the forward and
to the reverse strand near a typical transcription factor
binding site (Fig. 2) is on average equal to the fragment
length [1, 35, 37]. Therefore, the (relative) height of this
peak can be considered a proxy for the quality of the ChIP-
seq experiment. Finally, the location of this peak can be

Fig. 2 Distribution of forward (green) and reverse (red) reads around a binding site of the transcription factor NRSF. The centre of the putative
binding site is indicated by a red vertical line
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Fig. 3 Average peak shape of the transcription factor NRSF

used to estimate the average length of the DNA fragments
after the fragmentation step (e.g. sonication or MNase
digestion).

Normalisation
The CLC shape-based peak caller analyses the genomic
coverage of the reads. For each read mapping, the 5’ posi-
tion of the reads mapping to the forward strand and the
3’ position of the reads mapping to the reverse strand are
extracted. For each genomic position x, we define f (x) as
the number of reads mapping to the forward strand where
x is the 5’ position and r(x) as the number of reads map-
ping to the reverse strand where x is the 3’ position. A
quantile standardisation is then applied to f (x) and r(x)
such that the normalised coverage functions f ′ and r′
follow a standard normal distribution, i.e. f ′(x), r′(x) ∼
N (0, 1).

Discovering obvious peaks
The next step of the CLC shape-based peak caller is
to build a filter, which can be used to identify genomic
regions whose read coverage profile matches the charac-
teristic peak shape and to determine the statistical sig-
nificance of this match. In order to build such a filter,
examples of positive (e.g. ChIP-seq peaks) and negative
(e.g. background noise, PCR artefacts) profiles are needed
as input. The rationale is that regions with very high cov-
erage in the ChIP-seq experiment are positive examples
and regions with high coverage in the control and low
in the experimental ChIP-seq data are negative examples,
as they most likely originate from regions with strong
sequencing biases or from PCR artefacts. Positive regions
are generally easy to find and are typically found by
every peak caller [36]. The CLC shape-based peak caller
finds these peaks by building a Gaussian filter based on

Fig. 4 Inspection of the cross-correlation plot of a ChIP-seq experiment. On the left, full correlation profile. On the right, blow-up of the interesting
region between 0 and 400 bp. Note that in the right plot, the cross-correlation values have been normalised so that the area under the curve is 1
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Fig. 5 Cross-correlation plots of two low-quality ChIP-seq datasets. On the left, the read-length peak is significantly higher than the fragment-length
peak (relative strand correlation of around 0.5), indicating potential problems in the immune-precipitation step. On the right, a very noisy
cross-correlation profile indicates a ChIP-seq experiment where a very small number of reads was sequenced

the mean and variance of the fragment length distribu-
tion, which are inferred from the cross-correlation profile
(Fig. 5). An example of a filter is shown in Fig. 6.
The filter is then applied to the input data as shown in

Fig. 7 and the result is a score that indicates how likely a
genomic position is to be a centre of a peak. In detail, the
score is calculated as

score = genomic coverage � filter, (1)

where � denotes the cross-correlation operator. The
cross-correlation between a function and a filter can be
described as follows: For each genomic position x, we
extract the genomic coverage profile of a window centred
at x. We multiply this profile by the peak shape filter and

we sum the result. The resulting number indicates how
well the shape of the filter is matched. The score will
reach a maximum at the centre of a peak. Peaks are then
identified as the regions whose centres are the genomic
positions with highest score and whose size is the size of
the filter.
Similarly, the set of negative examples is identified

by running a Gaussian filter. If control data is avail-
able, the negative examples are identified as regions
where the genomic coverage in the control dataset is
higher than the one in the ChIP dataset. However, if
there is no information to build a negative profile from,
the negative profile is estimated from the sequencing
noise.

Fig. 6 A Gaussian filter for the transcription factor NRSF
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Fig. 7 Application of a Gaussian filter (Fig. 6) to ChIP-seq data. In the first step, the normalised coverage for reads mapping to the forward (green)
and reverse (red) strand are computed. Later, for a genomic position, the cross-correlation between the forward coverage and the filter shape
centred at that position is computed. An analogous procedure is performed for reads mapping to the reverse strand. Their sum constitutes the Peak
Shape Score (blue)

Learning the peak shape
After identification of positives and negatives, outliers are
removed. The Mahalanobis distance [38] between each
example and the group of positives and negatives is com-
puted and candidate regions with highest Mahalanobis
distance are removed (see Fig. 8). The Mahalanobis dis-
tance was chosen as metric because it gives more impor-
tance to the most conserved part of the filter (typically,
the maxima) than to the less conserved (typically, the
noisy edges) and corrects for correlation between genomic
positions.
The threshold is chosen using a robust estimator and a

confidence level of α = 0.95 as

threshold = median(di) + �−1(α)
m.a.d.(di)
�−1(0.75)

, (2)

where di is the Mahalanobis distance between the region i
and its reference group, �−1 indicates the quantile of the
standard normal distribution, m.a.d. indicates the median
absolute deviation, and the term m.a.d.(di)

�−1(0.75) is a robust esti-
mate of the standard deviation under the assumption of
normal distribution [39].
Once the positive and negative regions have been iden-

tified, the CLC shape-based peak caller learns a filter that
matches the average peak shape, which we term Peak
Shape Filter. The filter implemented is called Hotelling
Observer [34] and was chosen because it is the matched
filter that maximises the Area Under the Curve of the
Receiver Operator Characteristic (AUC-ROC), one of the
most widely used measures for algorithmic performance.

The Hotelling observer h is defined as:

h =
(Rp + Rn

2

)−1 (
E

[
Xp

] − E [Xn]
)
, (3)

where E[Xp] is the average profile of the positive regions,
E[Xn] is the average profile of the negative regions, while
Rp and Rn denote the covariance matrices between the
positive and negative profiles, respectively. The Hotelling
Observer has already previously been successfully used
for calling ChIP-seq peaks [17]. An example of Hotelling
observer is shown in Fig. 9.
Even though the shape of the Hotelling Observer is

typically similar to the average profiles (Fig. 3), it is in
fact modelling the shape that is maximally discriminative
between positive and negative example and is therefore
more similar to the difference between positive and nega-
tive examples.

Peak shape score
The Peak Shape Filter is applied to the experimental
data and a score is calculated at each genomic position
(Fig. 7). The score is obtained by extracting the genomic
coverage profile of a window centred at the genomic
position and then comparing this profile to the Peak
Shape Filter. The result of this comparison defines the
Peak Shape Score. The Peak Shape Score is standard-
ised and follows a standard normal distribution, so a
p-value for each genomic position can be calculated
as p-value = �(−Peak Shape Score of the peak centre),
where � is the standard normal cumulative distribution
function.
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Fig. 8 Outlier detection. The plot shows the Mahalanobis distance of each candidate region to the set of positive and negative profiles. The
threshold values for positive and negative samples are indicated by a vertical and a horizontal line, respectively. Inner figures a, b, c, and d show
examples of profiles, displaying reads matching to ChIP-seq data (top part, light blue background) and reads matching to the genomic control (bottom
part, white background): a A noisy outlier is excluded from the set of positive profiles; b A very clear peak is classified as positive profile; c A peak with
a high coverage in the control is classified as negative profile; d A region with abnormally high coverage is excluded from the set of negative profiles

Fig. 9 Peak Shape Filter for the transcription factor NRSF
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Peak-detection
Finally, peaks are called by first identifying the genomic
positions whose p-value is higher than the specified
threshold andwhich do not have any higher value in a win-
dow around them. The size of this window is determined
by the filter as the longest distance between two positive
values in the filter. These maxima define the centre of the
peak, while the peak boundaries are identified by expand-
ing from the centre both left and right until either the
score becomes 0 or the peak touches a window boundary
(Fig. 10).

The CLC shape-based peak caller
The CLC shape-based peak caller implements all the steps
previously described in a single and easy-to-use algo-
rithm. It is available as part of the CLC Genomics Work-
bench from version 7.5 and up. The input to the algorithm
is mapped reads for ChIP-seq and genomic controls. The
only parameter is a p-value threshold. We recommend a
value of 0.05 for a more conservative peak-calling result,
while a a more permissive value of 0.1 identifies also less
pronounced peaks. The results of the algorithm are:

QC Report The QC report contains metrics about the
quality of the ChIP-seq experiment. It lists the number
of mapped reads, the normalised strand coefficient, and
the relative strand correlation for each mapping. Further-
more, the QC report shows the mean read length, the
inferred fragment length, and the window size used to
model the signal shape. In case the input contains paired-
end reads, the report will also contain the empirical
fragment length distribution.
Peak Shape Filter the Hotelling Observer filter that was
learned by the CLC shape-based peak caller.
Peak Shape Score The peak shape score value for every
genomic position.
Peaks the list of all called peaks.

Performance evaluation
There is a number of ChIP-seq peak calling packages
available, each with slightly different implementation-
dependent strengths and weaknesses. See for example
the extensive comparison conducted by Wilbanks and
Facciotti [36]. For clarity, in this paper we limit the com-
parative analysis of the CLC shape-based peak caller to
three of the most popular state-of-the-art peak callers:
the seqpeak tool included in the CisGenome software col-
lection [12], the findPeaks tool included in the HOMER
software collection [20] (http://homer.salk.edu/homer/
ngs/index.html), and the MACS software [21, 40, 41].
These algorithms consistently rank among the top per-
forming implementations [31] and will serve as reference
points.

Gold-standard datasets
In this section, we present benchmark results from calling
peaks in experiments targeted at identifying transcription
factor binding sites (TFBS) from ChIP-seq data and at
identifying accessible genomic regions from DNase-seq
data.
ChIP-seq benchmark datasets often provide control

data together with data from specific experiments (see
[1] for guidelines on how to construct control samples).
We will refer to the experiment samples as ChIP sam-
ple and to the control as control sample. In this paper,
we use the data published by [31] as our gold-standard of
truth. This dataset is based on expert curation of several
hundred regions, each manually classified as either pos-
itive, negative, or ambiguous. The classification is done
for three different ChIP-seq experiments, namely for the
transcription factors MAX, NRSF, and SRF. In contrast
to synthetic “spike-in” data generated by some authors,
the use of manually annotated real-world data has the
advantage of a blind experiment in the sense that the
gold-standard classification is not produced by the very

Fig. 10 Peak calling. After the centre of the peak is identified (red line), the values in a window around the centre are analysed (yellow). The minima on
the left and right side are identified (dashed horizontal lines) and the higher value is used as threshold. Next, the peak is expanded (green arrows) by
adding all genomic position whose value is higher than the threshold to the left and to the right side of the centre. The final peak is shown in purple

http://homer.salk.edu/homer/ngs/index.html
http://homer.salk.edu/homer/ngs/index.html
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same persons developing the peak calling algorithm. The
ChIP-seq datasets are:

MAX Published by Michael Snyder’s lab at Yale Univer-
sity and generated from cell-line K562 targeting Myc-
Associated factor X.
NRSF Published by the Myers Lab at the HudsonAlpha
Institute for Biotechnology and generated from cell-line
Gm12878 targeting the Neural Restrictive Silencer Factor
(NRSF or REST) transcription factor.
SRF Published by the Myers Lab at the HudsonAlpha
Institute for Biotechnology and generated from cell-line
Gm12878 targeting the Serum Response Factor (SRF)
transcription factor.

To show the generality of our method to similar
sequencing data, we also investigate the performances of
the peak callers on DNase-seq data. The signal produced
by DNase-seq data is similar to the one produced by
ChIP-seq data, so algorithms developed for ChIP-seq are
commonly used to analyse DNase-seq data [42]. However,
there are twomain experimental protocols for DNase-seq,
namely the “end-capture” [5] and the “double-hit” [4] pro-
tocols. Since the signal produced by the double-hit proto-
col [4] is very similar to the signal produced by a ChIP-seq
experiment and peak callers are typically run with the
same parameters used for the ChIP-seq data. On the other
hand, the analysis of DNase-seq data obtained using the
end-capture protocol requires specialised parameters in
HOMER and MACS, as suggested in their user manuals
(see Methods). Those parameter choices reflect the fact
that the frame shift between reads mapping to the forward
and reverse strand is not equal to the average fragment
length as in ChIP-seq data, but is typically close to zero.
We note that CisGenome was developed exclusively for
analysing ChIP-seq data, so we used the default parame-
ters for DNase-seq data. In this paper, we investigate two
“end-capture” DNase-seq datasets:

K562 Published by the Duke University and generated
from cell-line K562 using the “end-capture” protocol.
Gm12878 Published by the Duke University and gen-
erated from cell-line Gm12878 using the “end-capture”
protocol.

The performances of the peak callers in these two
datasets were computed using benchmark datasets of
genomic regions independently validated using microar-
ray data (see Methods).
Table 1 lists the amounts of reads in each dataset. We

note that for MAX only one control replicate is avail-
able and that DNase-seq experiments do not have control
data. The number of positive and negative regions in
the ChIP-seq and DNase-seq gold-standard datasets are
summarised in Table 2.

Calculating performancemetrics
The output frommost peak callers is typically represented
in the form of a ranked list of genomic sites, which are
considered as peaks by the algorithm. This list of candi-
date peaks are ranked according to a statistical measure or
score calculated by the algorithm, i.e. p-value, maximum
coverage, fold enrichment, or a (e.g. log-transformed)
combination thereof. Based on such ranked lists, the
general framework for comparing prediction results of
different predictors - with respect to a given gold-standard
- is using Receiver-Operator Characteristic (ROC) curves,
which plot the true positive over the false positive rate. For
the CLC shape-based peak caller, we investigated both the
performance of the peak caller and the performance of the
Peak Shape Score. The main advantage of using the Peak
Shape Score is that the result provides single nucleotide
precision. Regions from the gold standard are scored as
depicted in Fig. 11.

Running CLC shape-based peak caller with different input
datasets
First, we investigated how the presence of a control exper-
iment and the treatment of replicate experiments would
affect the performance of the CLC shape-based peak
caller. The analysis was performed using single replicates,
using both replicates, and using a single file containing
the reads of both replicates of each ChIP-seq datasets.
The algorithm was then run without using control reads.
In each analysis, the gold-standard regions were scored
using the maximum of the Peak Shape Score in the region
(see Fig. 11) and AUC-ROC (AreaUnder the Curve of the
Receiver Operator Characteristic) values were estimated
(Table 3).
The results in Table 3 show small differences between

the performances obtained by using different choices of
input, suggesting that the performances of the CLC shape-
based peak caller do not degrade significantly when fewer
data are available and even when no control data are
available. As expected, running the algorithm using all
available data consistently gave top performances, indi-
cating that there is no need to perform pre- or post-
processing steps when analysing datasets where replicates
are available.

Results
We ran all peak callers (CLC shape-based peak caller,
CisGenome, HOMER, and MACS) on the five datasets
(Table 1). All tools were run initially with their respec-
tive default parameters, as this is how the software is used
mostly. However, since all the peak callers by default do
not output ambiguous peaks, many ROC curves would
plateau and result in an unfairly low AUC-ROC value.
Therefore, we relaxed parameters related to filtering of
non-significant peaks, while leaving the other parameters
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Table 1 Reads in benchmark datasets used

MAX NRSF SRF K562 Gm12878

Experiment Rep. 1 7,916,698 16,145,592 12,750,756 80,766,194 51,548,859

Experiment Rep. 2 5,947,320 26,619,271 12,291,355 138,607,720 12,252,754

Experiment Rep. 3 146,446,733 49,217,175

Experiment Rep. 4 64,324,983

Experiment Rep. 5 67,746,959

Control Rep. 1 13,510,465 16,377,339 14,164,649

Control Rep. 2 14,363,052 16,222,442

unchanged. For CisGenome, we relaxed the cutoff for
defining peak boundaries from 3 to 2.5; for HOMER, we
relaxed the fold enrichment over input tag threshold from
4.0 to 2.0, the fold enrichment over local tag count thresh-
old from 4.0 to 2.0, and removed the filtering step based on
expected unique tag positions; for MACS we relaxed the
q-value threshold from the default value of 0.05 to 0.25;
and for the CLC shape-based peak caller, we relaxed the
p-value threshold from 0.05 to 0.25 (see Methods). In all
cases, the resulting AUC-ROC values obtained with these
relaxed parameters were greater or equal to the AUC-
ROC obtained using default parameters. We note that it
was not feasible to remove the filtering steps altogether
or to further relax the thresholds, because the resulting
AUC-ROC values for CisGenome, MACS, and HOMER
degraded in at least one dataset.
For CisGenome, we considered both the standard peaks

(which we refer to as CisGenome) and the refined peak
regions (which we refer to as CisGenome Refined), since
the peak regions are typically very large. For MACS and
HOMER, peaks were called after merging the reads from
both replicates. For the CLC shape-based peak caller, both
the Peak Shape Score and the results of the peak calling
were collected as shown in Fig. 11. Then, for each dataset,
an ordered list of peaks of decreasing confidence was
obtained using the reported p-values of the peak regions.
In this way, for each algorithm, the classified peaks are
ordered according to the best scoring (lowest p-value)
intersecting called peak or the worst p-value (1.0) if no
called peak intersects. If ties exist in this ordering, peaks
classified as negative are considered before peaks clas-
sified as positive. From this ordered list of positive and
negative classified peaks, ROC curves and AUC-ROC val-
ues (Table 4) are produced. We discuss the results in the
following section.

Table 2 Number of positive and negative peaks in each of the
gold-standard datasets

MAX NRSF SRF K562 Gm12878

#Positive peaks 225 138 134 927 712

#Negative peaks 62 66 46 927 712

The ROC curves for the experiments using the MAX
dataset are shown in Fig. 12.
The first consideration is that HOMER makes its first

mistake after reaching a true positive rate of 0.67, sig-
nificantly later than the other algorithms. However, the
performances of HOMER decline for more ambiguous
peaks, resulting in a smaller AUC-ROC than MACS and
the CLC shape-based peak caller. On the other hand,
MACS makes more mistakes in the beginning, but it is
able to identify nearly all peaks, resulting in a higher AUC-
ROC value. The CLC shape-based peak caller behaves
similarly to HOMER at low false positive rate but is able
to call more peaks. We note that in this dataset there is
a difference in the ROC curves of the CLC Peak Shape
Score and the CLC shape-based peak caller. This is due to
the fact that many regions of the gold standard are situ-
ated near the centre of a peak. Therefore, in this context,
the performance value depends significantly on the abil-
ity to identify the correct peak boundaries. For example, a
negative region close to a peak region is shown in Fig. 11.
In this example, the peak caller correctly identifies that
there is no peak in the negative region, while the CLC Peak
Shape Score approach assigns a moderate score to the
negative region because it is in proximity of a peak. Con-
versely, a situation where a positive region is situated near
a strong peakmay bemissed by the peak caller, which calls
only the main peak and may not extend the boundaries
enough. Thismakes the two ROC curves different, making
the peak caller more appropriate for small false positive
rates, whereas the Peak Shape Score approach assigns a
score to every genomic position. The difference between
CisGenome and CisGenome Refined is even more pro-
nounced, as the peaks called by the default CisGenome
are too large and often include nearby regions annotated
as negatives sites. On the other hand, using refined peak
boundaries drastically improves the performances of the
algorithm for this dataset, although it misses some peaks
of lower quality.
Figure 13 shows the ROC curves for called peaks in the

NRSF dataset.
The performances of all the algorithms are very good

in this dataset and all algorithms make their first mistake
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Fig. 11 Assigning scores to validated regions. Two nearby regions, which are part of the gold standard, were annotated as positive (cyan) and
negative (orange), respectively. Two methods for assigning scores are shown. 1) CLC Peak Caller: The result of the peak calling is a single peak (purple
bar) overlapping the region validated positive and the score associated with it is the maximum score within the peak, i.e. 10.85. No peaks
overlapping with the negative were found so no score will be assigned to the negative region. 2) CLC Peak Shape Score: The Peak Shape Score
values within the positive and negative regions are extracted and the maximum values are used as score for the region. Note that this procedure
always assigns a score to every region in the gold standard

after a true positive rate of 0.7. The main difference
between the CLC shape-based peak caller and the other
two algorithms is that, although it makes a few mistakes
earlier, the peak caller is able to call nearly all peaks, result-
ing in a higher overall AUC-ROC value. In this dataset,
the performances of the CLC shape-based peak caller
and the Peak Shape Score are equal, because there is no
ambiguity regarding peak boundaries. Therefore, the two
ROC curves completely coincide and only the curve from
CLC Peak Caller (blue) is visible. The performances of the
two CisGenome variants are quite similar, but CisGenome
Refined misses some peaks that the default CisGenome
correctly identifies.

Table 3 Area under the ROC curve values for different input
settings

Experiment ChIP Control ChIP MAX NRSF SRF

Rep. 1 and Rep. 2 Rep. 1 and Rep. 2a 0.94 0.98 0.97

Merged Mergeda 0.93 0.98 0.97

Rep. 1 Rep. 1 0.93 0.99 0.96

Rep. 2 Rep. 2a 0.95 0.97 0.97

Rep. 1 and Rep. 2 none 0.92 0.95 0.95

Merged none 0.93 0.94 0.94

Rep. 1 none 0.90 0.95 0.94

Rep. 2 none 0.94 0.94 0.95

aFor MAX the only available control replicate Rep. 1 was used as input (see Table 1)

Figure 14 shows the ROC curves for called peaks in the
SRF dataset.
Similarly to the NRSF dataset, most positive peaks are

called by all algorithms and only a few mistakes are made,
resulting in good performances for all the algorithms.
MACS performs better than the other algorithms for
small false positive rates, resulting in the highest AUC-
ROC value. In this dataset, the difference between the
peak caller and the Peak Shape Score is very small and the
curves are very close to each other. The main difference is
that the peak caller does not identify all peaks and plateaus
slightly before reaching the top of the plot. On the other
hand, the Peak Shape Score gives a score to every region
in the gold standard, so it is always able to reach a true
positive rate of 1.
Figures 15 and 16 shows the ROC curves for called

peaks in the DNase-seq datasets.

Table 4 Area under the ROC curve values

MAX NRSF SRF K562 Gm12878

CLC Peak Shape Score 0.94 0.98 0.97 0.98 0.97

CLC Peak Caller 0.91 0.98 0.95 0.98 0.96

CisGenome 0.82 0.94 0.96 0.87 0.87

CisGenome Refined 0.84 0.90 0.91 0.81 0.80

HOMER 0.85 0.96 0.93 0.92 0.92

MACS 0.92 0.96 0.97 0.96 0.95
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Fig. 12 ROC curves for peaks found in the MAX dataset

Fig. 13 ROC curves for peaks found in the NRSF dataset
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Fig. 14 ROC curves for peaks found in the SRF dataset

Fig. 15 ROC curves for peaks found in the K562 dataset
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Fig. 16 ROC curves for peaks found in the GM12878 dataset

The ROC curves look similar to the ones obtained for
the ChIP-seq data, in particular we note that the AUC-
ROC values are high and that all algorithms are able to
identify at least 80 % of the positive peaks making only a
few mistakes.
Table 4 summarises the results by the area under the

ROC-curve values. MACS and the CLC shape-based peak
caller have the highest values, while HOMER is often
penalised because it misses several peaks and CisGenome
does not often identify the correct peak boundaries. Simi-
larly to the MAX dataset, in the GM12878 dataset, MACS
performs better than the other algorithms for false pos-
itive rates between 0.1 and 0.3, while the CLC shape-
based peak caller performs marginally better with low
false positive rates and is able to identify more positives
and thus results in a higher overall AUC-ROC. On the
other hand, the ROC curve of CLC shape-based peak
caller in the K562 dataset shows better performances
than the other algorithms consistently for all false positive
rates.
Even though it is hard to directly compare the results of

the Peak Shape Score with more traditional peak calling
algorithms, we observe that there are clear advantages in
having a score with single nucleotide resolution, especially
for calling low-quality peaks. The results for the DNase-
seq show similar trends to the results of the ChIP-seq
analysis.

Broad peak ChIP-seq data
To further show the generality of the approach, we next
applied the methodology to histone mark ChIP-seq data,
which present broad peaks with variable length. For
classifying these broad-peak patterns, we adapted the
peak-shape approach to use annotated gene regions as
additional input. Rather than considering coverage shapes
in a fixed-sized window around each genomic position,
shapes in predefined input regions of variable length are
computed by scaling to a unit-window.
The analysis was performed using the same learning

procedure, with only few differences. First, genomic cov-
erage was normalised in the same way as the normal
algorithm. Instead of considering positive and negative
reads as separate inputs, the normalised read coverages
were aligned and summed as g′(x) = f ′(x + μ/2) +
r′(x − μ/2), where f ′(x) is the normalised coverage of
reads mapping to the forward strand, r′(x) is the nor-
malised coverage of reads mapping in the reverse strand
and μ is the fragment length mean. This step was neces-
sary since the displacement between forward and reverse
reads is a global property of the experiment and does
not depend on the variable gene length. The shapes of all
genes transcribed in the reverse strand were reversed.
The initial discovery of obvious peaks was done simi-

larly to normal algorithm, the only difference being that
instead of computing the Peak Shape Score for each
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genomic position by deconvolution (Eq. 1), we calculated
a single score for each gene region by computing the dot
product of the reshaped profile and the filter. The shape
learning phase and p-value computation were done iden-
tically to the standard algorithm, returning a score and a
p-value for each gene.
We then assessed the quality of the prediction by

checking whether we could predict gene expression from
ChIP-seq data of histone modification marks known to
be associated with expression [17, 43, 44]. ChIP-seq
data for the histone modifications H3K36me3, H3K4me3,
H3K9ac, H3K27ac for the four human cell lines GM12878,
HepG2, Huvec and Nhek [43]. We then derived a gold
standard of expressed and non-expressed genes from
RNA-seq data [45], which we used to compute AUC-ROC
values (Table 5) as described in the Methods section.
The performances of the method are consistent among

the four cell lines, indicating that the method is robust.
We note that the difference in predictive performance
between the different datasets is most likely due to the
fact that some histone marks (e.g. H3K36me3 [46]) corre-
late more strongly with active transcription than the other
marks.

Conclusions
In this paper, we discussed the state-of-the-art and cur-
rent trends in the field of peak-detection algorithms that
lead to the development of the new CLC shape-based
peak caller.We described our implementation of a general
and statistically well founded algorithmic engine, applica-
ble to a wide range of different datasets. This flexibility
is combined with specificity by automatically learning the
characteristics of the signal present in the data.

Discussion
The systematic performance evaluation of the CLC shape-
based peak caller on a published manually curated refer-
ence dataset shows that it compares favourably to popular
current algorithms. It is important to note that the exist-
ing peak callers are readily tuned to detect narrow peaks at
transcription factor binding-sites and hence are very well
suited to the benchmark data. Hence, it is reassuring to
see the new CLC shape-based peak caller performs on the
same level and sometimes even better than CisGenome,
HOMER, and MACS.

Table 5 Area under the ROC curve values for histone mark
ChIP-seq data

GM12878 HepG2 Huvec Nhek

H3K36me3 0.96 0.95 0.95 0.95

H3K4me3 0.89 0.89 0.89 0.89

H3K9ac 0.92 0.91 0.91 0.92

H3K27ac 0.90 0.93 0.91 0.91

Besides the theoretical advantages of the peak-shape
approach and the positive results obtained on the bench-
mark data, in practice it is equally important that the
CLC shape-based peak caller wraps the underlying algo-
rithm and statistics into an automated pipeline, which
is simple to use for non-specialists. At the same time,
we provide the option of further optimisation by manu-
ally delineating positive and negative examples - a pro-
cess that is much easier understood and visualised than
abstract parameters. Moreover, it is of great importance
to make sure that the input data has sufficient quality and
consequently that the results can be trusted. Therefore,
potential problems are highlighted by detailed quality
reports.
To our knowledge, the CLC shape-based peak caller

is unique in its combination of flexibility and accu-
racy through the ability of building optimised filters for
different analysis tasks and datasets. This enables sus-
tained development and maintenance of the tool set in
exploratory research, since the adaptation to different fil-
ters does not require changes to the underlying code base.
At the same time, existing filters are transferable and can
be applied to new datasets as they become available in
production settings, so there is no need to re-learn and
optimise the filters from scratch if the same peak-shape is
to be detected.

Future developments
The CLC shape-based peak caller represents an impor-
tant building block within a larger ecosystem of NGS
data analysis software. Hence considerations for further
developments have to take into account the interplay with
other related components. From a user centric view, major
improvements will be gained by seamless interoperability
with both upstream and downstream analysis steps. Since
peak detection is now handled by a flexible and generally
applicable algorithmic engine, the focus shifts from algo-
rithmic issues to data integration, downstream analyses,
and visualisation capabilities.
The typical analysis downstream of peak finding or

classification are motif finding for Transcription-factor
ChIP-seq data, the annotation of peaks with nearby genes
for functional analysis such as gene set enrichment and
the correlation with other omics datasets such as gene
expression data.
A great deal of interoperability is already taken care of

by the integration of the CLC shape-based peak caller
into the track-based framework of CLC Genomics Work-
bench. By taking its inputs from tracks and producing
outputs in the same format, it can be freely combined with
other track-based tools. Therefore it is easily integrated
into larger analysis pipelines and workflows while benefit-
ing from the ongoing improvements to the visualisations
and operations available for track-based data.
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A major advantage of the CLC shape-based peak caller
is that it is not exclusively designed to detect signals in
transcription factor ChIP-seq datasets. Herein, we have
shown that it could be directly applied to the DNase-seq
data without having to change parameters and still yield-
ing comparable performances. In principle, the method-
ology is applicable to detect signals in data from a wide
range of different sequencing protocols, including FAIRE-
seq, broad-peaks from ChIP-seq of histone-modifications
or other epigenetic marks such as DNA methylation.

Methods
ChIP-seq data
The manually curated peak annotation by [31] are
obtained via http://tare.medisin.ntnu.no/chipseqbench
mark/downloads/ChIPSeq_files_in_bed_format/.
The corresponding original data from ENCODE

(release 1) are available via the following links:
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode
DCC/wgEncodeSydhTfbs/ and http://hgdownload-test.
cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeHu
dsonalphaChipSeq/release1/.

DNase-seq data
End-capture [5] DNase-seq data for the cell lines K562
and GM12878 used in this study were produced by the
ENCODE consortium [45]. The mapped .bam files “end-
capture” [5] DNase-seq and validations were obtained
from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeOpenChromDnase/.
Validation was performed by simultaneously generating

microarray-based data from the same material used for
DNase-seq. The microarray used was a Nimblegen tiling
array that covers the 1 % of the genome that was the focus
of the pilot encode project.

Peak callers
CisGenome version 2.0 was downloaded from http://
www.biostat.jhsph.edu/~hji/cisgenome/index_files/
download.htm. The seqpeak tool was run with
parameters “-c 2.5”. The columns “start”
and “end” were chosen to define the peak regions
and the columns “left_peakboundary” and
“right_peakboundary” were chosen to define the
refined boundaries. In both cases, the “rank” column
was used to build the ROC curve.
HOMER version 4.7 was downloaded from http://

homer.salk.edu/homer/download.html. The findPeaks
tool was run with parameters “-style factor -F
2 -L 2 -C 0” for ChIP-seq and with the parameters
“-style dnase -F 2 -L 2 -C 0” for the “end-
capture” DNase-seq data. The column “findPeaks
Score” was used to build the ROC curve. We note
that removing the filtering options -F -L -C resulted in

dramatically reduced performances, so the threshold for
-F and -L was relaxed, instead.
MACS version 2.1.0 was obtained from https://github.

com/taoliu/MACS/. The software was run with the
parameter “-qvalue 0.25” for ChIP-seq and with
the parameters “-qvalue 0.25 -nomodel -shift
-100 -extsize 200” for the “end-capture” DNase-
seq data The column “q-value” was used to build the
ROC curve.
The CLC shape-based peak caller version 1.0 was

run with the parameter “-p-value 0.25”. The Score
Regions tools from Advanced Peak Shape Tools Plugin
version 1.0 beta 3 was used to assign Peak Shape Scores to
gold standard regions.

Broad peak ChIP-seq data
Histone modification ChIP-seq data for four cell lines
GM12878, HepG2, Huvec and Nhek were collected from
the Sequence Read Archive. The human genome hg19-
GRCH37 was used as reference. Paired-end RNA-seq
data from Encode/Caltech [45] were downloaded from
SRA (GM12878: SRX159821, HepG2: SRX159823, Huvec:
SRX159825 and Nhek: SRX159827) and analysed using
the RNA-seq Analysis tool of the CLC Genomics Work-
bench 8.0 the using the parameters “Count paired
reads as two = Yes”, “Expression value =
RPKM” and “Calculate RPKM for genes with-
out transcripts = Yes”. Overlapping genes were
merged and the resulting region was counted once. A
gene was considered to be expressed if its RPKM was > 2
in all RNA-seq replicates and a gene to not be expressed
if its RPKM was < 2 in all replicates. This procedure
resulted in 6478, 6311, 7025 and 6136 positive regions
and 17346, 17894, 17786 and 17583 negative regions for
GM12878, HepG2, Huvec and Nhek, respectively.
ChIP-seq data for the four cell lines [43] was down-

loaded from SRA (study ID: SRP005344) and was mapped
to the human genome using the Map Reads to Refer-
ence tool of the CLC Genomics Workbench 8.0 using
the option “Non-specific match handling =
Ignore”. For each histone modification mark, all ChIP-
seq replicates from the same cell line were used as input
to the peak-shape analysis. The resulting Peak Shape
Score was used to compute AUC-ROC values.
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