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Abstract

Background: Proteins generally perform their function in a folded state. Residues forming an active site, whether it is a
catalytic center or interaction interface, are frequently distant in a protein sequence. Hence, traditional sequence-based
prediction methods focusing on a single residue (or a short window of residues) at a time may have difficulties in
identifying and clustering the residues constituting a functional site, especially when a protein has multiple functions.
Evolutionary information encoded in multiple sequence alignments is known to greatly improve sequence-based
predictions. Identification of coevolving residues further advances the protein structure and function annotation by
revealing cooperative pairs and higher order groupings of residues.

Results: We present a new web-based tool (CoeViz) that provides a versatile analysis and visualization of pairwise
coevolution of amino acid residues. The tool computes three covariance metrics: mutual information, chi-square
statistic, Pearson correlation, and one conservation metric: joint Shannon entropy. Implemented adjustments of
covariance scores include phylogeny correction, corrections for sequence dissimilarity and alignment gaps, and
the average product correction. Visualization of residue relationships is enhanced by hierarchical cluster trees,
heat maps, circular diagrams, and the residue highlighting in protein sequence and 3D structure. Unlike other
existing tools, CoeViz is not limited to analyzing conserved domains or protein families and can process long,
unstructured and multi-domain proteins thousands of residues long. Two examples are provided to illustrate the
use of the tool for identification of residues (1) involved in enzymatic function, (2) forming short linear functional
motifs, and (3) constituting a structural domain.

Conclusions: CoeViz represents a practical resource for a quick sequence-based protein annotation for molecular
biologists, e.g., for identifying putative functional clusters of residues and structural domains. CoeViz also can serve
computational biologists as a resource of coevolution matrices, e.g., for developing machine learning-based prediction
models. The presented tool is integrated in the POLYVIEW-2D server (http://polyview.cchmc.org/) and available from
resulting pages of POLYVIEW-2D.

Keywords: Coevolution, Coevolution analysis, Coevolving residues, Co-occurring residues, Covariation of residues,
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Background
Protein folding and function are determined by groups of
amino acid residues, which are usually located distantly in
the sequence but tend to appear in spatial proximity.
Sequence-based identification of residues critical in
protein structure or function is a long standing problem

in structural bioinformatics. On the other hand, demand
for sequence-based annotations has been increasing in the
age of modern high-throughput genome and transcrip-
tome sequencing.
Both protein structure and functional site prediction

methods utilize evolutionary information derived from a
multiple sequence alignment (MSA) usually with the focus
on individual residues. At the same time, cooperative
nature of protein folding and function determined by
groups of residues distant in sequence prompted many
studies for identification of coevolving residues from the
MSA. Earlier methods identified correlated mutations
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using mutual information [1, 2], Pearson correlation
coefficient (also known as McBASC) [3–6], χ2 statistic
(also known as OMES) [7], and two-state maximum likeli-
hood [8]. An alternative approach was to express amino
acid covariance using a statistical coupling energy (ΔΔG)
defined as the difference in “free energy” between the full
sequence alignment and subalignment (also known as
statistical coupling analysis, SCA) [9], which was later
updated to simplify the definition of ΔΔG [10, 11]. The
more recent advanced methods utilize approaches from
statistical physics to discriminate direct and indirect
correlations (direct-coupling analysis, DCA) [12, 13], with
further improvements by introducing the inverse Potts
model algorithm and a pseudolikelihood maximization
procedure (plmDCA) [14]. Another recent method,
PSICOV, employs sparse inverse covariance estimation to
identify true covariation signal in the MSA [15].
Sequence databases that are used to generate MSA may

present considerable overrepresentation of some species
compared to others, a human-introduced bias driven by
research interests. Therefore, many sequences may be
derived from closely related species that did not have time
to diverge to represent truly independent sequences from
the same protein family. This effect is called phylogenetic
noise or bias. One of the major challenges in coevolution
analysis is to reduce this noise from the MSA. Earlier
approaches were to weigh contribution of each
aligned sequence by its sequence identity to a query
protein or by the number of gaps in the alignment.
Modern methods introduce a separate procedure to
account for phylogenetic bias in the MSA mitigating
the influence of the multiple closely related sequences
(see, e.g., MirrorTree [16], CAPS [17], DCA [13], PSI-
COV [15]). These procedures are estimated to take
most of the computational time in the overall coevo-
lution analysis [18]. An alternative fast approach for
improving mutual information without considering
explicitly the phylogeny in the MSA was suggested by
adjusting the covariance metric with the average
product correction (APC) [19].
Recent successful examples of utilizing the coevolving

residues include predictions of inter- and intra-protein
residue-residue contacts [20–22], and prediction of
mutation effects [23]. Further reading on the methods
for identification of coevolving residues in proteins
and their various applications can be found in recent
reviews [18, 24]. Collectively, with all apparent
advantages of methods in coevolution analysis that
greatly facilitate protein modeling and functional
annotations, there are certain limitations impeding
biologists to widely utilize these methods, including
requirements for considerable computational re-
sources and restrains to relatively short proteins or
conserved domains.

CoeViz was developed to provide molecular biologists
with a web-based tool that can deal with proteins thou-
sands of residues long enabling a fast, automated, and
interactive analysis of coevolution data derived using a
variety of covariance metrics and different corrections.
The tool provides versatile means to identify and visualize
inter-residue contacts and groups of residues involved in
the same function. Two examples are presented to
illustrate identification of the residues constituting (1) a
catalytic site in Cys-Gly metallodipeptidase (SwissProt:
DUG1_YEAST), and (2) functional linear motifs and
repeats in the APC/C activator protein Cdc20 (SwissProt:
CDC20_YEAST).

Implementation
Coevolution and conservation metrics
Unless the MSA for a given protein is provided by the
user, alignments are generated on the server side using
three iterations of PSI-BLAST [25] with the profile-
inclusion threshold of expect (e)-value = 0.001 and the
number of aligned sequences 2000. The sequence hom-
ology search can be done against the Pfam [26] or NCBI
NR databases. The latter database is represented by
three options: full and reduced to 90 % or 70 % sequence
identity by CD-HIT [27]. While PSI-BLAST generates
local alignments, coevolution metrics are still computed
from them because (1) refinement by global alignments
can be very computationally intensive for thousands of
sequences; (2) global alignment algorithms may fail for
multi-domain proteins (especially those homologs with
an alternative order of the domains); and (3) local
alignments are sufficient for coevolution analysis as
illustrated in [13].
Coevolution scores are computed from the MSA

using three different covariance metrics: mutual infor-
mation (MI, Eq. 1) [2], chi-square statistic (χ2, Eq. 2)
[7], and Pearson correlation (r, Eq. 3). Conservation is
defined by the joint Shannon entropy (S, Eq. 4). Each
metric, in turn, is computed using four weighting
schemes: weighted by sequence dissimilarity or se-
quence gapping in the alignment (Eqs. 5 and 6), by
phylogeny background as defined in [13] (Eq. 7), and
non-weighted. MI scores have an additional adjust-
ment using the average product correction (APC,
Eq. 8) to produce MIp scores (Eq. 9) [19]. All metrics
based on frequencies are computed using four states
as possible combinations of amino acids at two
positions (i and j), where each amino acid is either
equal (X) or not equal (!X) to the one in the query
sequence.

MIði; jÞ ¼
X

x

X
y
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where x = {X; !X} and y = {Y; !Y}; p (s) is the observed
frequency of state s = {x; y; x,y}; Neff is the effective sum
of weights of alignments where both positions are not
gaps. wsl is a weighted count of state s, which is equal to
1 for non-weighted scores, 1–(percent of sequence
identity) or 1–(percent of gaps) of the alignment l for
weighting by sequence dissimilarity or alignment gap-
ping, respectively, and wa

ph for weighting by phylogeny.
wa
ph is a weight for sequence Aa in the MSA of N total

sequences that equals to one over the number of se-
quences Ab in the MSA that have at least 80 % sequence
identity to Aa. 80 % was chosen as a midpoint of the
range 70–90 %, where there is no strong dependence
observed on the precise threshold value [13]. sil is a
similarity score that quantifies the change of an amino
acid at position i to the one in the aligned sequence l. �sl
and σi are mean and standard deviation, respectively, of
all similarity scores of changes for a given position rep-
resented across the all sequences aligned to the query.
Similarity scores are taken from the position specific
similarity matrix (PSSM) generated by PSI-BLAST. λ is
a pseudo count, which is equal to 1 for all metrics here.

APC a; bð Þ ¼ MI a; �xð ÞMI b�xð Þ�MI
ð8Þ

MIp a; bð Þ ¼ MI a; bð Þ−APC a; bð Þ ð9Þ
where MI a; �xð Þ is the mean MI of column a, and �MI is
the overall mean MI.
Negative values of MIp scores are assigned to 0, and

then all MI scores are min-max normalized to range
[0, 1]. S is normalized to the same range by factor 1/log
(4). χ2 values are converted to the corresponding cumula-
tive probabilities at degree of freedom (df) = 1.
Scores for each metric are organized in symmetrical

matrices with the main diagonal presenting plain or
weighted frequencies, as defined above, of each individual
residue for MI-and χ2-based metrics, and the individual
Shannon entropies using 20 states (20 amino acids) for S-

based metric. Individual entropies are computed using
probability part of the PSSM files from the PSI-BLAST
output and normalized to range [0, 1] by factor 1/log (20).
Residues of the query protein are clustered using hier-
archical clustering with the complete linkage method.
Prior to clustering, negative r scores are assigned to 0; MI,
r, and χ2 scores are converted to distances by 1–score
transformation. Both the clustering and conversion of χ2

to cumulative probabilities are performed using the
R statistical package (functions hclust and pchisq,
respectively).

Web Interface
The web interface for coevolution analysis (CoeViz) is
implemented as part of the protein visualization server
POLYVIEW-2D [28] that shows CoeViz as an option for
the further sequence-based analysis from its resulting
pages (Fig. 1). CoeViz accounts for a custom residue
numeration (e.g., non-consecutive or with insertion
codes), which is common for proteins deposited in
Protein Databank (PDB, [29]). A request for analysis ini-
tiates MSA and coevolution calculations on the server
side that may take from minutes to hours depending on
the query sequence length, size of the generated MSA,
and load of the computing cluster. Once all scores for a
requested metric with different weighting schemes are
computed, the subsequent analysis, visualization, and
switching between the adjustments for the given metric
are conducted in real time.
The computed data can be interactively explored using

heat maps at different zoom levels. The color gradient is
from blue (0 = no covariation) through white (0.5 =mod-
erate covariance) to red (1 = complete covariance) for
MI-, r-, and χ2-based metrics, whereas for joint entropy
it is blue (1 = no joint conservation) through white to
red (0 = complete joint conservation). Cluster trees are
static; however, the cluster tree image is automatically
updated when a different adjusted metric is chosen. In
addition to residue labeling, the cluster tree leaves are
colored according to hydropathic properties of amino
acids, which may facilitate identification of clusters of
hydrophobic or charged residues. The color convention
follows the previous definition in POLYVIEW-2D and
can be found on its documentation web-page. Residue
groupings can also be reviewed through interactive
circular diagrams. These diagrams allow for navigation
based on residue relationships, rather than on position
within the sequence. Once a set of related residues is
defined on the diagram, they can be automatically
mapped to the protein 3D structure using the Jmol
applet [30] or POLYVIEW-3D server [31] if the input to
POLYVIEW-2D was a protein coordinate file (e.g., from
PDB). Otherwise, they can only be mapped to a protein
sequence using POLYVIEW-2D [28].
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The interactive web interface utilizes D3 [32] and Aight
(https://github.com/shawnbot/aight) JavaScript libraries.
Data export options include images of cluster trees (in the
PNG format), a current view of the heat map (PNG), and
relational circular diagrams (SVG). All generated matrices
with coevolution scores, as well as the underlying MSA,
can be exported in tab-separated text format.

Results and discussion
Figure 2 illustrates how CoeViz can help identify function-
ally important residues using a peptidase from baker’s
yeast (SwissProt: DUG1_YEAST) as an example. Dug1p is
a Cys-Gly dipeptidase and belongs to the M20A family of
metallopeptidases [33]. The enzyme requires two Zinc
ions in the active site to cleave the substrate. Based on χ2

scores weighted by sequence dissimilarity, residues bind-
ing Zn (H102, D137, E172, H450) and a catalytic residue
(E171) are clustered together (Fig. 2b). Interestingly, R348
is in the same cluster (Fig. 2c). When the residues are
mapped to 3D structure available in Protein Databank
(PDB:4G1P), where the enzyme is co-crystallized with the
substrate and Zn ions in the active site, R348 appears to
be on the opposite side of the active site cavity and in
contact with the substrate (Fig. 2e) suggesting its role in
substrate recognition and positioning the dipeptide into
the catalytic center. On the other hand, when the closest
relationships are reviewed for residue E171, all the

functional residues, Zn binding and catalytic, appear on
the diagram (Fig. 2d).
The same protein structure was submitted to the Con-

Surf server [34] to see if it can identify the catalytic site.
Out of 480 residues, 150 were found to be highly
conserved (score 9), majority of which are in a protein
core and most likely involved in protein folding, not
function. These results illustrate the limits of the single
residue conservation based methods in identification of
functional sites, when they cannot distinguish function-
ally important residues from the structural determinants.
Figure 3 demonstrates how CoeViz can facilitate

identification of functional linear motifs and structural
domains on the example of the anaphase promoting
complex/cyclosome (APC/C) activator protein Cdc20
from baker’s yeast (SwissProt: CDC20_YEAST). It
regulates the ubiquitin ligase activity and substrate spe-
cificity of APC/C (see UniProt:P26309 for references).
According to UniProt annotation, Cdc20 comprises 7
WD structural repeats, and the following linear motifs:
D-box (17-RSVLSIASP-25), bipartite nuclear localization
signal (NLS, 85-RRDSSFFKDEFDAKKDK-101), C-box
(144-DRYIPIL-150), and KEN-box (586-KENRSKN-592).
As can be seen from the secondary structure (SS)
prediction by SABLE [35], Cdc20 contains only one
structural domain formed by WD repeats (Fig. 3a).
Functional motifs are located in disordered (coil)

Fig. 1 A flowchart of CoeViz. Protein data are submitted as defined in the POLYVIEW-2D server ([28], http://polyview.cchmc.org/polyview_doc.html),
which includes PDB-formatted coordinate files, output from the sequence-based prediction servers, or custom sequence profiles. At the protein
visualization page, there is an option provided to request analysis of covariance of amino acids (CoeViz). The user can choose a covariance metric and
a database to generate the MSA or provide a file with the constructed MSA. CoeViz computes a requested covariance or conservation metric
with all implemented adjustments separately and performs hierarchical clustering. Once calculations are completed, CoeViz provides an interactive
web-interface to review covariance data using heatmaps, circular diagrams, and clustering trees. From the circular diagrams, the user has options to
map identified correlated amino acids to a protein 3D structure or sequence depending on the input data. All generated results can be exported in
text or graphics formats
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regions of the protein, and therefore they would be
obscure to the other, domain/family profile-oriented
coevolution approaches, since the MSA would not
cover those regions.
ProSite [36], one of the prominent resources for pro-

tein sequence annotations, finds only 4 WD repeats in
the sequence and no motifs mentioned above. On the
other hand, CoeViz with MI metric adjusted for phyl-
ogeny noise reveals boundaries of the WD-repeats do-
main and locations of D- and C-boxes (Fig. 3b-e).
There have been observations published that short
linear functional motifs are more conserved than their
flanking (or adjacent) residues or the same motifs in
non-functional instances (see review [37]). We suggest
that coevolutionary information may amplify this

signal because of the cooperative nature of these
motifs, where more than one residue needs to be con-
served to perform the function. However, this analysis
is beyond the scope of this work.

Conclusions
Coevolution analysis may facilitate the finding of groups
of residues involved in the same function or domain fold-
ing. CoeViz both computes a number of coevolution and
conservation metrics and provides interactive interface to
analyze the data and identify relevant clusters of residues.
The problem of potential phylogenetic bias in the MSA is
addressed by a number of ways, including the use of the
sequence databases with reduced redundancy, explicit
phylogeny correction for similar sequences, and average

Fig. 2 Amino acid coevolution profile reveals residues constituting the active site of the Cys-Gly metallodipeptidase (SwissProt: DUG1_YEAST).
a A fragment of the heat map displaying amino acid coevolution computed using χ2 weighted by sequence dissimilarity derived from sequence
alignments to the protein sequence defined in PDB ID 4G1P against NR database with 90 % identity reduction. b A fragment of the cluster tree
derived from the chi-square data converted to a distance matrix. c The zoomed in cluster of amino acids that contains known Zn binding residues
(H102, D137, E172, H450) and a catalytic site (E171). d From the heat map, one can retrieve a circular diagram representing the closest relationships
to a given residue; here is to the one of catalytic residues (E171) after applying a ≥0.3 cutoff to χ2-based cumulative probabilities. e From the circular
diagram, one can map the clustered residues to the submitted protein 3D structure; here is to DUG1 (PDB:4G1P). Residues highlighted red (H102,
D137, E172, D200, H450) are amino acids binding Zn (grey spheres); magenta – catalytic residues (D104, E171); blue is a residue involved in substrate
recognition (R348). The substrate (Cys-Gly) is rendered as sticks colored by an atom type
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product correction for mutual information. The tool rep-
resents a practical resource for a quick sequence-based
protein annotation for molecular biologists, e.g., for
identifying putative functional regions and structural
domains. CoeViz also can serve computational biologists
as a resource of coevolution matrices, e.g., for developing
machine learning-based prediction models.

Availability and requirements

� Project name: CoeViz
� Project home page: http://polyview.cchmc.org/

� Operating system: Platform independent
� Programming languages: Perl, JavaScript, R
� Other requirements: A web-browser supporting the

HTML5 standard
� License: Free for all users
� Any restrictions to use by non-academics: None

Abbreviations
APC: average product correction; DCA: direct coupling analysis;
MSA: multiple sequence alignment; NCBI: national center for biotechnology
information; NLS: nuclear localization signal; PDB: protein data bank;
PSSM: position specific scoring matrix; SCA: statistical coupling analysis;
SS: secondary structure.

Fig. 3 Amino acid coevolution profile reveals residues constituting a structural domain and locations of the functional linear motifs in Cdc20 (SwissProt:
CDC20_YEAST). a SS prediction by SABLE visualized by POLYVIEW-2D with residues highlighted in functional motifs and a structural domain: red – residues
constituting D- and KEN-boxes; green–residues in the bipartite NLS; blue–C-box; residues with bold face are in the WD-repeats domain. Keys for graphical
SS elements can be found in the POLYVIEW-2D documentation. b A full heat map displaying amino acid coevolution computed using MI weighted by
phylogeny and derived from sequence alignments to the protein sequence defined in UniProt:P26309 against the whole NR database. Boundaries of the
WD domain and functional motifs, as defined in UniProt, are highlighted with green lines. c A zoom-in view of the heat map fragment
centered on D-box. d A zoom-in view of the heat map fragment centered on C-box. e A zoom-in view of the heat map fragment
showing the upper-left corner of the WD-repeats domain
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