
DeFreitas et al. BMC Bioinformatics (2016) 17:102
DOI 10.1186/s12859-016-0934-8

SOFTWARE Open Access

GEMINI: a computationally-efficient
search engine for large gene expression
datasets
Timothy DeFreitas1,2†, Hachem Saddiki4† and Patrick Flaherty2,3,4*

Abstract

Background: Low-cost DNA sequencing allows organizations to accumulate massive amounts of genomic data and
use that data to answer a diverse range of research questions. Presently, users must search for relevant genomic data
using a keyword, accession number of meta-data tag. However, in this search paradigm the form of the query – a
text-based string – is mismatched with the form of the target – a genomic profile.

Results: To improve access to massive genomic data resources, we have developed a fast search engine, GEMINI,
that uses a genomic profile as a query to search for similar genomic profiles. GEMINI implements a nearest-neighbor
search algorithm using a vantage-point tree to store a database of n profiles and in certain circumstances achieves an
O(log n) expected query time in the limit. We tested GEMINI on breast and ovarian cancer gene expression data from
The Cancer Genome Atlas project and show that it achieves a query time that scales as the logarithm of the number
of records in practice on genomic data. In a database with 105 samples, GEMINI identifies the nearest neighbor in 0.05
sec compared to a brute force search time of 0.6 sec.

Conclusions: GEMINI is a fast search engine that uses a query genomic profile to search for similar profiles in a very
large genomic database. It enables users to identify similar profiles independent of sample label, data origin or other
meta-data information.

Keywords: Genomic search, Vantage-point tree, Cancer Genome Atlas

Background
Research labs, sequencing core facilities, hospitals and
research consortiums are accumulating massive databases
of gene expression and other genomic data from pri-
mary patient samples. Currently, the GEO database for
microarray data contains more than 800,000 samples [1],
the International HapMap 3 Project contains 1.6 mil-
lion common SNPs for 1184 individuals [2], and the
Cancer Genome Atlas Project has 1.059 petabytes of
genomic data on more than 20 types of cancer [3]. While
these databases are already massive, the low-cost of next-
generation sequencing is making it easier to add more

*Correspondence: flaherty@math.umass.edu
†Equal contributors
2Program in Bioinformatics and Computational Biology, 100 Institute Rd,
01609 Worcester, USA
4Department of Mathematics and Statistics, University of Massachusetts,
Amherst, 710 N. Pleasant St, 01003 Amherst, USA
Full list of author information is available at the end of the article

data to these repositories and to build massive private
data repositories [4]. Samples in these databases are often
lightly annotated with clinical information or deidentified
entirely for patient privacy. The question we address here
is: “When a new patient sample arrives, what other sam-
ples, among those that we have seen, are most similar to
this new one?” The solution we describe here, GEMINI, is
a search engine that provides fast access to relevant sam-
ples in a database based only on similarity of gene expres-
sion profile, much like the PageRank algorithm provides
access to internet web pages based on similarity between
query terms and terms used in the web page content [5].
Previous work on search engines for gene expression

data largely falls into two categories: those that use a gene
set query and those that use an expression profile query.
ExpressionBlast takes as input a species type, a gene list,
an output species and a distance metric and uses text
analysis methods to return labeled relevant experiments
[6]. SEEK uses a novel cross-validaton-based algorithm

© 2016 DeFreitas et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0934-8-x&domain=pdf
http://orcid.org/0000-0001-6097-6572
mailto: flaherty@math.umass.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

DeFreitas et al. BMC Bioinformatics (2016) 17:102 Page 2 of 7

to prioritize ranking and network information to identify
relevant neighbors based on a query gene set for human
data [7]. GeneChaser is an earlier effort that identifies all
experiments where a single gene is differentially expressed
[8]. In contrast to gene-set-based query search tools, Pro-
fileChaser uses a GEO accession number query to identify
experiments that are similar to query [9]. The focus of that
work is on choosing good data representation, dimension-
ality reduction, and similarity/distance metrics. However,
they do not evaluate the computational performance or
scalability of their approach. We build on the work in
ProfileChaser by focusing on speed and scalability while
allowing for different dimensionality reduction methods
and distance metrics.
Our focus is on developing a method that is amenable to

different data representations, dimensionality reduction
methods, and distance metrics, and, importantly, is fast.
Tree data structures are common in search applications
where optimizing query time is important [10]. By struc-
turing the data records into a tree, a suitable algorithm is
able to exclude irrelevant records from consideration and
reduce search time to less than the brute force complexity
ofO(n), where n is the number of records in the database.
Some binary tree data structures used for search include
kd-trees [11], SR-trees [12], R*-trees [13]. Hash tables have
very good search time for finding an exact match, but
there is no good way to locate a record that is a nearest
neighbor to a query. So, while hash tables are often used
in applications where exact matches are needed, they are
rarely used in application where near matches are needed.
GEMINI uses a vantage-point tree (vp-tree) data struc-

ture to store genomic data records [14, 15]. The vantage-
point tree is a special case of a binary search tree where the
left subtree of a node contains records that are closer than
some distance, μ, and the right subtree contains records
that are further than μ. The tree gets its name because the
subtree nodes are partitioned from the vantage point of
the current node. The advantage of the vp-tree in genomic
search applications lies in the fact that is does not impose
a particular coordinate structure on the data and instead
employs a user-definable metric to measure distance. The
construction and search algorithms for the vp-tree are
described in the “Implementation” section.

Implementation
We describe the algorithms for the construction and
search for the vantage-point tree here. GEMINI is imple-
mented inpython as a stand-alone command-line program
and as a public web site; we describe those implementa-
tions in the “Availability and requirements” section.

Data organization
A record in GEMINI is a normalized gene-expression pro-
file. In the Cancer Genome Atlas project, this profile is a

level 3 processed gene expression tab-delimited file. These
records are converted to a HDF5 file format for compat-
ibility and then preprocessed into a vantage-point tree.
Internally, each tab-delimited file from the TCGA project
consists of a vector of gene identifiers (e.g. “BRCA1”),
and a vector of sample identifiers (e.g. “TCGA-59-2349...”),
along with a matrix of the log2 normalized expression
value for each gene-sample pair. A query is likewise an
HDF5 file with the same attributes but with only one sam-
ple. A search therefore returns themost similar expression
profiles in a dataset to the profile in the query.
The vantage point tree is implemented as a python class

and is entirely loaded into RAM. For datasets with thou-
sands or millions of samples of complete gene expression
profiles, the object requires several gigabytes of mem-
ory. Though memory performance is somewhat system-
dependent, in our tests a database of 100,000 records
required 4GB. By reducing the complexity of the profiles
using principal component analysis (PCA), the memory
footprint can be reduced.

Vantage-point tree construction
Construction of the vp-tree takes O(n log n) time for
records with constant dimension where n is the number
of records in the dataset. We briefly summarize the sim-
plest version of the recursive construction algorithm here
and refer to the original article for further details and
extensions [14].

Algorithm 1: Vantage-point tree construction
function MakeVPTree(S):

Data: a set of records, S
Result: a pointer to the root of the vp-tree
if S = ∅ then return ∅;
node ← a pointer to a new node;
node.p ← random element of S ;
node.μ ← median d(p, s) over all s ∈ S ;
L ← {s ∈ S − {p}|d(p, s) < μ};
R ← {s ∈ S − {p}|d(p, s) ≥ μ};
node.left ← MakeVPTree(L);
node.right ← MakeVPTree(R);
return node;

This binary search tree construction works by taking a
set S of records. If S is not empty, we create a new node
and store a random element, p, in the node. We store the
median distance between p and all the other elements in
S in μ in the node using any distance metric that satis-
fies the triangle inequality. We partition the set S into two
roughly equal size sets L and R, where L contains all of
the elements of S that are closer to p than the median dis-
tance, μ and R contains all of the elements of S that are

DeFreitas et al. BMC Bioinformatics (2016) 17:102 Page 3 of 7

further than μ. The function recurses by calling itself with
arguments L and R for the left (closer) and right (further)
subtrees. The recursion ends when the subtree sets are
empty and the algorithm returns the pointer to the root
node. Clearly, because the size of the set in each subtree is
half the original set, due to the use of the median distance,
the time to construct the tree isO(n log n).

Vantage-point tree search
Search in the vantage-point tree proceeds by recursive
depth-first search. The left subtree of a node contains
records that are closer than μ from the vantage point
of the current node’s records. Symmetrically, the right
subtree contains records further than μ.
If we have a query profile, q and a vantage-point node,

p, by symmetry and the triangle inequality of a distance
metric d(·, ·), we have

d(q, s) ≥ |d(q, p) − d(p, s)| = dp(q, s), (1)

where s is any other record in the database and dp(·, ·) is
defined as the vantage-point distance. Since the vantage-
point distance shrinks the true distance between q and s,
if dp(q, s) ≥ τ , then d(q, s) ≥ τ [14].
Suppose that we have found a record at distance τ from

the query and we are at vantage-point node p in the tree.
If d(p, q) ≥ τ + μ, then the nearest-neighbor is not
closer than μ and we can fathom (remove from further
consideration) the left subtree as shown in Fig. 1a. Con-
versely, if d(p, q) + τ ≤ μ, then the nearest-neighbor is
certainly closer than μ and we can fathom the right sub-
tree (Fig. 1b). Thus, the vantage-point tree data structure
allows us to exclude records from examination and we
achieve super-linear search time. As shown by Yianilos,
the average-case querying time scales as O(log n) when
the data is low-dimensional [14]. We have found that we

A B

Fig. 1 Vantage-point tree structure allows search algorithm to fathom
subtrees. Given we have already found a record at distance τ from
the query node q and we are at vantage point p with a right subtree
containing records further than μ from p and a left subtree with
records closer than μ. a If d(p, q) ≥ τ + μ, then the nearest-neighbor
is not closer than μ and we can fathom the left subtree containing
records closer than μ. b If d(p, q) + τ ≤ μ, then the nearest-neighbor
is certainly closer than μ and we can fathom the right subtree

achieve good performance if the dimension of the data
loaded into the vp-tree is less than 30 and the query time
is roughly two orders of magnitude faster than brute force
for a dimension of 10 (Additional file 1: Figures S1 and 2).
The search algorithm can be written as a recursive

depth-first search algorithm as described previously [14].
The algorithm holds the node of the nearest neighbor in
the global variable best and is initialized with τ ← 0. If
d(q, node) < μ + τ , only the left subtree is traversed and
if d(q, node) > μ − τ then only the right subtree is tra-
versed. If μ − τ ≤ d(q, node) ≥ μ + τ then both subtrees
are traversed.

Algorithm 2: Vantage-point tree search
function SearchVPTree(node):

Data: a vantage point tree root node, root
Result: a pointer to the root of the vp-tree
if node = ∅ then return;
if d(q, node) < τ then

τ ← d(q,node);
best ← node

end
if d(q, node) < μ + τ then
SearchVPTree(node.left);

if d(q, node) > μ − τ then
SearchVPTree(node.right);

return

Vantage point tree structures support any distance met-
ric that satisfies the triangle inequality, but the optimal
distance function is not yet known. For simplicity, GEM-
INI currently uses the euclidean distance between samples
after principal component transformation.
However, weighted distance functions utilizing genomic

knowledge could better facilitate a particular search. For
example, for a cancer dataset, one could limit the genes
compared to known oncogenes, thereby finding which
sample showed the most similar oncogenic profile to the
query. This search should be more sensitive to small
changes in particular genes, and and therefore result in
less statistical noise, though we do not attempt to prove
this in this paper.

Results
Comparison with brute-force and KD-tree methods
We compare the vp-tree-based nearest neighbor search to
a KD-Tree and brute-force approach in Fig. 2. We focus
exclusively on the speed of the methods since all three
algorithms implement the nearest neighbor search algo-
rithm and must return the same list of nearest-neighbor
results. The brute force algorithm simply compares the
query to every record in the database. As expected, the

DeFreitas et al. BMC Bioinformatics (2016) 17:102 Page 4 of 7

Number of samples

S
ea

rc
h

 T
im

e
(m

ill
is

ec
o

n
d

s)

Fig. 2 Timing comparison of GEMINI and other search methods. The search time in milliseconds is shown for a typical query in databases ranging in
size from 10 samples to 100,000 samples. The plot compares the vp-tree (VP), KD-tree (KD) and brute force (BF) methods. The brute force search
time scales linearly with the size of the database, while GEMINI search time scales as the log of the size of the database

brute force approach scales linearly in the size of the
database. The tree structure methods scale as the log of
the size of the database due to the ability of the search
algorithm to exclude distant samples from consideration
based on their position in the vp-tree.
Though both of the tree-based algorithms scale simi-

larly with the log of the database size in the average case
for low-dimensional data, they differ in their construction
algorithms. KD-Trees use non-leaf nodes to divide the
dataset using a hyperplanes whose normal vector is equiv-
alent to one of the dimensions of the data. Splits continue
recursively until the number of instances in each node is
smaller than some threshold. Yianilos showed that query
time for both the KD-tree and vp-tree scales exponen-
tially with the dimension of the data set (Figure 6 in [14]).
Therefore, for both methods, it is important to perform
some form of dimensionality reduction prior to storing
the data in the data structure.
Both KD-tree and vp-tree are constructed inO(n log n),

but KD-trees use a sliding midpoint median implementa-
tion, while the vp-tree uses a standard linear timemedian-
finding algorithm. Other trees achieve similar complexity
and differ in the use of split heuristics and amount of
reinsertion during construction.

Search in Cancer Genome Atlas database
We tested GEMINI on a database of gene expression data
from The Cancer Genome Atlas (TCGA) comprised of
559 ovarian (OV) and 599 breast cancer (BRCA) samples.
First, we projected the probe-level data onto the first 10
principal components to reduce the dimensionality of the

data from 17,813 features. The choice of 10 was selected
due to diminishing returns on the retained variance in the
data associated with each subsequent dimension. Using
the BRCA and OV dataset, the first 10 dimensions pre-
served 40% of the variance in the data, while 4 dimensions
preserved just 25% and 100more were required to achieve
70%. A plot of the first two principal components for
the BRCA and OV samples is shown in Fig. 3. Clearly,
the two cancer types differ in their gene expression pat-
terns and cluster. However, there are two ovarian samples
that do not cluster with the rest. One falls within a group
of BRCA samples and the other falls outside of either
cluster.
We tested GEMINI using four queries against the

database of combined OV and BRCA samples. The four
queries (shown circled in Fig. 3) are: (A) a prototypical
BRCA sample, (B) a prototypical OV sample, (C) a BRCA-
like OV sample, and (D) an outlier OV sample. The pro-
totypical OV and BRCA sample is the nearest Euclidean
neighbor to the average OV and BRCA expression respec-
tively. The top 10 hits by similarity to the prototypical
OV sample are all OV samples and the top 10 hits for
the prototypical BRCA are all BRCA samples as expected
(Fig. 4). The BRCA-like OV sample (59-2349) has 4 BRCA
samples and 5 OV samples in the top 9 hits. This result
indicates that the BRCA-like OV gene-expression pattern
has similarity to samples from both BRCA and OV. The
OV outlier, surprisingly, shows the most similarity to 9
BRCA samples.
There may be many reasons for the similarity of one

gene-expression profile to another. There could be batch

DeFreitas et al. BMC Bioinformatics (2016) 17:102 Page 5 of 7

A B
C

D

Fig. 3 Differential gene expression for ovarian (OV) and breast (BRCA) cancer samples from TCGA. (left) Principal component analysis is used to
project the 17,813 dimension gene expression data to two dimensions for visualization. The ovarian samples and breast samples clearly cluster. One
ovarian sample (C) has an expression pattern similar to breast cancer samples and one (D) shows an expression pattern outside of both the ovarian
and breast clusters. Representative breast (A) and ovarian (B) samples are circled. (right) A boxplot of all non-zero pairwise distances in the joint
breast and ovarian cancer data sets. The nearest neighbors for the four queries are shown as symbols in the legend. We find that the nearest
neighbors all fall closer than the lower quartile of all of the distances

effects or other forms of confounding that suggest biolog-
ical similarity when the true reason is technical artifact.
Furthermore, one cannot rule out random expression
noise as a cause for similarity based on the results of one
query. Validation through experimental means would be
required to support true biological similarity. The pur-
pose of GEMINI, instead, is simply to quickly return
the nearest-neighbors to a query profile from a large
database.

Discussion
GEMINI forms the basis of an open-source platform for
machine learning optimization of search result relevance
in genomic data repositories. By observing the click-
through behavior of an individual or group of users, the
platformmay learn and re-rank results based on individu-
alized probabilistic assessments of relevance.
This search engine fits in the context of a large database

of profiles that are centrally located as well as with
distributed databases. While it may be impossible to
store all of the public genomic data in one repository,
autonomous software that crawls the web identifying
genomic data resources can temporarily store the pro-
file long enough to identify the insertion location in the
tree. Only the url of the root source of the data would
then be needed in the vp-tree. Then, if the record is
identified as a near-neighbor, the profile can be retrieved
on-demand.
Our capability to generate genomic data is outpac-

ing our capability to analyze and re-use that data.
A fast, accurate search engine for genomic data may

enable researchers to make discoveries using community-
collected data more effectively. GEMINI uses a vp-tree to
enable us to make effective use of the massive genomic
data repositories.

Conclusions
Current genomic data search engines use text-based
queries to search for numerical (e.g. gene expression)
genomic data profiles. But this paradigm represents a
mismatch between the subject and object of the query.
Our genomic data search engine, GEMINI, matches the
query and database record forms and leverages a vp-
tree data structure to find the nearest-neighbor records
in a gene-expression database with a focus on search
speed.

Availability and requirements
We have implemented GEMINI as a python module, a
standalone command-line program and as a website. Our
code extends an implementation of the vp-tree originally
written by Huy Nguyen whose code is available [16]. Paul
Harrison’s code was also very helpful for our implemen-
tation [17]. The KD-tree was implemented using a scipy
library written by Anne Archibald [18]. Usage documen-
tation for the python module is provided with the source
code.
The standalone command-line program has two

sub-commands: build and search. The build sub-
command takes a HDF5 format file with three datasets:
“Sample”, “Feature”, “Data” and returns a pickled vp-tree
data structure. The source data contains sample names in

DeFreitas et al. BMC Bioinformatics (2016) 17:102 Page 6 of 7

Fig. 4 GEMINI heat map results showing 9 nearest neighbors to the query (top row) for four samples. Four query profiles were used to search for
nearest-neighbor profiles in a database containing both ovarian and breast cancer samples. The nearest neighbors of the prototypical breast cancer
profile are all breast cancer samples and the nearest neighbors of the prototypical ovarian cancer profile are all ovarian cancer samples as expected.
The ovarian cancer sample that falls in the breast cancer cluster is nearest neighbors with both ovarian and breast cancer samples. The ovarian
cancer outlier has all breast cancer samples as nearest neighbors indicating that the differential gene expression patterns for that sample most
closely resemble breast cancer

“Sample”, genomic features names (genes) in “Features”
and the data matrix (features x samples) in “Data”. The
search sub-command loads the vp-tree structure cre-
ated in the build step and a HDF5 file in the same
format as the source data except with a single column
for the “Data” vector as the query. GEMINI prints the
top K matches in the source data matrix where K is
10 by default but can be modified in command-line
options.

The web interface at genomics.wpi.edu/gemini
has only one entry box for the user to specify the query
HDF5 or CSV file. The vp-tree is built off-line and loaded
using a separate administrative tool and associated with a
specific query page for the data source. This design choice
provides a robust and simple interface and minimizes
the user-effort to search. After submitting the query, the
user is directed to a results page that shows a heatmap
representation of the top 10 matches to the query.

DeFreitas et al. BMC Bioinformatics (2016) 17:102 Page 7 of 7

Project name: GEMINI
Project home page: http://genomics.wpi.edu/gemini
Operating system: platform independent
Other requirements: python modules listed in require-
ments.txt on version control site (https://bitbucket.org/
flahertylab/gemini). None for website.
License: Creative Commons Attribution 4.0 International
(http://creativecommons.org/licenses/by/4.0/)

Additional file

Additional file 1: Supplementary information. (PDF 81 KB)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PF, TD, and HS implemented the algorithm and website. PF conceived of the
project and HS, and TD performed the experiments. PF, HS, and TD contributed
to writing the manuscript. All authors read and approved the final manuscript.

Author details
1Computer Science Department, Worcester Polytechnic Institute, 100 Institute
Rd, 01609 Worcester, USA. 2Program in Bioinformatics and Computational
Biology, 100 Institute Rd, 01609 Worcester, USA. 3Biomedical Engineering
Department, Worcester Polytechnic Institute, 100 Institute Rd, 01609
Worcester, USA. 4Department of Mathematics and Statistics, University of
Massachusetts, Amherst, 710 N. Pleasant St, 01003 Amherst, USA.

Received: 26 March 2015 Accepted: 19 January 2016

References
1. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al.

NCBI GEO: archive for functional genomics data sets—10 years on. Nucl
Acids Res. 2011;39(suppl 1):1005–10.

2. International HapMap 3 Consortium. Integrating common and rare
genetic variation in diverse human populations. Nature. 2010;467(7311):
52–8.

3. Network TCGA. Comprehensive molecular portraits of human breast
tumours. Nature. 2012;490(7418):61–70.

4. Rung J, Brazma A. Reuse of public genome-wide gene expression data.
Nat Rev Genet. 2013;14(2):89–99.

5. Page L, et al. PageRank: Bringing order to the web. Vol. 72. Stanford
Digital Libraries Working Paper. 1997.

6. Zinman GE, Naiman S, Kanfi Y, Cohen H, Bar-Joseph Z. ExpressionBlast:
mining large, unstructured expression databases. Nat Methods.
2013;10(10):925–6.

7. Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, et al.
Targeted exploration and analysis of large cross-platform human
transcriptomic compendia. Nat Methods. 2015;12(3):43211–4.

8. Chen R, Mallelwar R, Thosar A, Venkatasubrahmanyam S, Butte AJ.
GeneChaser: identifying all biological and clinical conditions in which
genes of interest are differentially expressed. BMC Bioinformatics.
2008;9(1):548.

9. Engreitz JM, Morgan AA, Dudley JT, Chen R, Thathoo R, Altman RB, et al.
Content-based microarray search using differential expression profiles.
BMC Bioinformatics. 2010;11(1):603.

10. Knuth DE. Optimum binary search trees. Acta Informatica. 1971;1(1):14–25.
11. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY.

An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans Pattern Anal Mach Intell. 2002;24(7):881–92.

12. Katayama N, Satoh S. The SR-tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries. ACM SIGMOD Record.
1997;26(2):369–80.

13. Beckmann N, Kriegel HP, Schneider R, Seeger B. The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. ACM. 1990;19(2):
322–31.

14. Yianilos PN. Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces. SODA. 1993;93(194):311–21.

15. Nielsen F, Piro P, Barlaud M. Bregman Vantage Point Trees for Efficient
Nearest Neighbor Queries. ICME. 2009:878–81.

16. Nguyen H. A python implementation of a vantage point tree. GitHub.
2014. https://github.com/huyng/algorithms/tree/master/vptree.

17. Harrison P. Python VP-tree implementation. 2006. http://www.
logarithmic.net/pfh/blog/01164790008.

18. Archibald A. A python implementation of a KD tree. GitHub. 2008. https://
github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://genomics.wpi.edu/gemini
https://bitbucket.org/flahertylab/gemini
https://bitbucket.org/flahertylab/gemini
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1186/s12859-016-0934-8
https://github.com/huyng/algorithms/tree/master/vptree
http://www.logarithmic.net/pfh/blog/01164790008
http://www.logarithmic.net/pfh/blog/01164790008
https://github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py
https://github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Data organization
	Vantage-point tree construction
	Vantage-point tree search

	Results
	Comparison with brute-force and KD-tree methods
	Search in Cancer Genome Atlas database

	Discussion
	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Author details
	References

