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Abstract

Background: Bisulfite treatment of DNA followed by sequencing (BS-seq) has become a standard technique in
epigenetic studies, providing researchers with tools for generating single-base resolution maps of whole methylomes.
Aligning bisulfite-treated reads, however, is a computationally difficult task: bisulfite treatment decreases the (lexical)
complexity of low-methylated genomic regions, and C-to-T mismatches may reflect cytosine unmethylation rather
than SNPs or sequencing errors. Further challenges arise both during and after the alignment phase: data structures
used by the aligner should be fast and should fit into main memory, and the methylation-caller output should be
somehow compressed, due to its significant size.

Methods: As far as data structures employed to align bisulfite-treated reads are concerned, solutions proposed in the
literature can be roughly grouped into two main categories: those storing pointers at each text position (e.g. hash
tables, suffix trees/arrays), and those using the information-theoretic minimum number of bits (e.g. FM indexes and
compressed suffix arrays). The former are fast and memory consuming. The latter are much slower and light. In this
paper, we try to close this gap proposing a data structure for aligning bisulfite-treated reads which is at the same time
fast, light, and very accurate. We reach this objective by combining a recent theoretical result on succinct hashing
with a bisulfite-aware hash function. Furthermore, the new versions of the tools implementing our ideas|the aligner
ERNE-BS5 2 and the caller ERNE-METH 2|have been extended with increased downstream compatibility (EPP/Bismark
cov output formats), output compression, and support for target enrichment protocols.

Results: Experimental results on public and simulated WGBS libraries show that our algorithmic solution is a
competitive tradeoff between hash-based and BWT-based indexes, being as fast and accurate as the former, and as
memory-efficient as the latter.

Conclusions: The new functionalities of our bisulfite aligner and caller make it a fast and memory efficient tool, useful
to analyze big datasets with little computational resources, to easily process target enrichment data, and produce
statistics such as protocol efficiency and coverage as a function of the distance from target regions.
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Background
DNA methylation is one of the most important epi-
genetic mechanisms, deeply affecting chromatin struc-
ture and gene expression. This modification consists of
the addition of a methyl group to the fifth carbon in
cytosine nucleotides, and can be detected to various
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degrees of resolution by using techniques such as bisul-
fite sequencing [1] (BS-seq), microarrays [2], or methy-
lated DNA immunoprecipitation (MeDIP) [3] (to name a
few). BS-seq is, up to date, the gold-standard technique
to detect cytosine methylation at single-base resolu-
tion. By treating DNA with sodium bisulfite, unmethy-
lated cytosines are converted to uracils, while methylated
cytosines remain unaffected. After PCR amplification
and sequencing, the overall effect is that reads contain
thymines in places where the original genome contains
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unmethylated cytosines. Aligning BS-treated reads poses
several computational challenges. First of all, reads com-
ing from highly unmethylated genomic regions are char-
acterized by low cytosine contents (since most of the Cs
are converted into Ts). This loss of genomic complexity
results in a higher number, with respect to more methy-
lated regions, of ambiguous alignments in such regions,
thus leading to potential biases. A second problem is the
high number of C-to-T (genome-to-read) mismatches,
which must be efficiently managed during the alignment
phase and, most importantly, must not be source of
penalization since they can potentially represent bisulfilte
conversion rather than sequencing errors or SNPs. More-
over, space is often a concern during both alignment and
methylation calling phases: the tools should use light data
structures (fitting in main memory), and the methylation
annotations—several data fields for each cytosine on both
strands—should be somehow compressed on-the-fly by
the caller itself.
These problems have been handled by existing tools to

various degrees of efficiency. Software such as Bismark
[4], BRAT-BW [5], BS-Seeker 2 [6], and MethylCoder [7]
adopt the approach of converting both genome and reads
files to a reduced alphabet, turning all Cs into Ts (and
Gs into As while aligning the reversed reads), and calling
a standard DNA aligner (typically either Bowtie/Bowtie
2 [8] or built-in) on the converted files. This technique
removes the bias towards poorly methylated regions by
leveling mapping efficiency across all regions, and solves
the problem of efficiently dealing with the high number of
C-to-T mismatches. A different approach—to allow C-to-
T mismatches by using wild-card techniques—is adopted
by tools such as BSMAP [9] and RMAP [10]. A mixture of
the two strategies is also possible: the BS-aligner ERNE-
BS5 (version 1) [11] uses a bisulfite-aware hash function
invariant under bisulfite-induced mismaches, thus avoid-
ing the conversion of genome and reads to a reduced
alphabet.
As far as primary memory is concerned, the most

memory-efficient aligners are those based on the Full-
text in Minute space index (FM-index) [12] data structure
(Bowtie 2, BWA-MEM [13], and SOAP 2 [14] to cite a
few). Bismark, BS-seeker, and MethylCoder run instances
of Bowtie on the converted files, and use the output align-
ments to infer methylation status of covered cytosines.
ERNE-BS5 (version 1) and BSMAP, on the other hand,
are based on less memory-efficient data strucures (hash
tables) and require up to 20 GB to index the Human
Genome. In this paper we will firstly show how we turned
the hash index of ERNE-BS5 into a much more space-
efficient data structure, the dB-hash [15]. This is done by
using a hash function with three properties: Hamming-
aware (faster search), bisulfite-aware (allow C-to-T mis-
matches), and de Bruijn (small space). The new versions

of our tools heavily optimize also RAM usage during
methylation calling (by using compressed structures), and
I/O disk space usage: fastq files can be provided to ERNE-
BS5 2 directly in compressed format, and the methylation
caller ERNE-METH 2 can automatically compress methy-
lation annotations (which results, in practice, to a 10-fold
reduction in disk space usage for the output files).
Finally, we will discuss how experimental techniques

different than whole-genome bisulfite sequencing
(WGBS) require specialized tools able to exploit addi-
tional information provided by the protocol. Examples
of such techniques are Reduced Representation Bisulfite
Sequencing (RRBS) and capture followed by BS-seq,
which permit focusing the sequencing effort on a small
amount of well-defined targets. As a result, only regions
of interest are sequenced (deeper than inWGBS) and con-
sequently reliably analysed. A well known example of the
latter strategy is Agilent’s SureSelect Human Methyl-Seq
kit, which enriches (via probes hybridization) for 84 mil-
lion bases (3.7M CpGs) distributed among CpG islands,
promoters, and Cancer and tissue-specific differentially
methylated regions (DMRs). From the computational
point of view, the problem of aligning BS-treated reads
coming from a target-enrichment experiment is not much
different from the one of aligning WGBS reads: even
in the former case the alignment should be performed
against the whole genome in order to discard false posi-
tive alignments that fall outside target regions (mainly due
to out-of-target fragments that partially hybridize with
the designed probes). Target information can, however,
be exploited in the next pipeline stages—quality filtering
of bases, methylation calling, DMRs identification—in
order to speed-up and enhance the quality of the analysis
process (which can be limited to target regions only).
In this paper we will show how we extended the func-
tionalities of ERNE-METH to include the possibility of
exploiting target information (provided as a bed file)
during methylation reconstruction.

Methods
This section is divided in three main parts. First of all, we
describe howwe solved the problem of combining hashing
and (succinct) indexing by using hash functions with the
property of being homomorphisms on de Bruijn graphs.
This result has been presented in [15], and here we just
report the main ideas in order to be as self-contained
as possible. In the same sub-section we also review the
definition of Hamming-awareness [16, 17], a property
guaranteeing fast search of strings under Hamming dis-
tance. Then, we show a hash function satisfying both
Hamming-aware and de Bruijn properties, while at the
same time being invariant under C-to-Tmismatches. This
hash function stands at the core of our new BS-aligner.
Finally, the last sub-section is devoted to the description
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of the new version of our methylation caller, which has
been extended with target-oriented functionalities and
optimized for better space usage.

Definitions
Throughout this paper we will work with the alphabet
�DNA = {A,C,G,T ,N , $} (with N and $ being the
undefined base and the contig end-marker, respectively).
With n, m, and w we will denote the reference’s length,
the pattern’s length, and the (fixed) bit-size of a computer
memory-word (i.e. the number 2w − 1 is assumed to be
the largest integer to fit in a memory word), respectively.
As hash functions we will use functions of the form h :
�m → {0, 1}w mapping length-m �-strings to length-w
bit-strings. If necessary, we will use the symbol m

wh instead
of hwhenwe need to be clear on h’s domain and codomain
sizes. Given a string P ∈ �m, the value h(P) ∈ {0, 1}w
will be also dubbed the fingerprint of P (in {0, 1}w). With
T ∈ �n wewill denote the text that we want to index using
our data structure. Tj

i will denote T[ i, . . . , i+ j−1], i.e. the
length-j prefix of the i-th suffix of T.
The symbol ⊕ represents the exclusive OR (XOR) bit-

wise operator.
dH(x, y) will denote the Hamming distance between

x, y ∈ �m.

The dB-hash data structure
Hash tables are data structures supporting very fast
queries, but they require a significant amount of space
to be stored and maintained in main memory during
alignment. This is due to the fact that such structures
must store one pointer for each text position, thus incur-
ring in a �(n log n)-bits overhead in the space usage
(in addition to the plain text). An example of a hash-
based BS-aligner is the first version of ERNE-BS5 [11],
which required 19 GB of memory to index the Human
genome (3.2 Gbp). Tools based on the FM index [12],
instead, result in extremely lightweight alignment data-
structures, being able to index the Human genome in
as little as 1.1 GB [18]. This space efficiency, however,
comes at the price of a slowdown, when inexact align-
ment queries are performed. This inefficiency comes from
the fact that Burrows-Wheeler transform (BWT) based
indexes implicitly encode the lexicographic ordering of all
text suffixes; this results in different text substrings—even
at low Hamming distances—potentially very far away in
lexicographic ordering. Hence, aligners based on BWT
must check input reads in their full length against each
potential reference match—a step that can be avoided
with exact matching, providing a BWT-interval in out-
put. Backtracking (Bowtie[8, 18], for example, uses this
strategy) and split-read strategies (SOAP 2 [14] splits the
read into k + 1 fragments while allowing for k errors)

are two commonly employed techniques used to solve
the inexact pattern matching problem while using BWT-
indexes. When combined with quality-based heuristics,
such techniques are much faster than classic hash-based
methods [8, 14, 18].
A careful modification in the ordering of the text

suffixes could result in similar text substrings being clus-
tered together, with the important byproduct of a faster
approximate-search query processing. This strategy is
at the core of the dB-hash data structure [15], which,
basically, permits collapsing similar patterns into similar
(much shorter) fingerprints while at the same time main-
taining prefix equivalences between them. More formally:

Definition 1. Let � = {0, . . . , |�| − 1}. We say that a
function h : �m → {0, 1}w is a de Bruijn hash function if
and only if, for every pair of strings P,Q ∈ �m

Pm−1
1 = Qm−1

0 ⇒ h(P)w−1
1 = h(Q)w−1

0

In [15] is proved that a de Bruijn hash function, as
defined above, is simply a homomorphism on de Bruijn
graphs (having as sets of nodes �m and �w, respectively).
A global version of Definition 1 can be given, referring
to an entire text by concatenating fingerprints of all its
length-m substrings:

Definition 2. Given m
wh : �m → {0, 1}w de Bruijn hash

function and n ≥ m, the hash value of n
n−m+wh on T ∈ �n,

is the unique string n
n−m+wh(T) ∈ {0, 1}n−m+w such that:

n
n−m+wh(T)wi = m

wh
(
Tm
i

)
,

for every 0 ≤ i ≤ n − m.
Since m

wh univocally determines n
n−m+wh and the two

functions coincide on the common part �m of their
domain. In what follows we will simply use the symbol h
to indicate both. Figure 1 should give an intuitive idea of
the properties—formally introduced in Definitions 1 and
2—that characterize de Bruijn hash functions.
As a consequence of the above definitions we have that

the hash value h(T) of the text retains enough information
to support (probabilistic) pattern matching:

Fig. 1 Example of a de Bruijn function h applied to a short DNA
fragment. The main property characterizing such functions is that
they preserve suffix-prefix overlaps
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Lemma 1. If h is a de Bruijn hash function, n ≥ m, and
P ∈ �m occurs in T ∈ �n at position i, then h(P) occurs
in h(T) at position i. The opposite implication does not
(always) hold; we will refer to cases of the latter kind as
false positives.
Lemma 1 proves that the text T augmented with a (suc-

cinct) index over h(T) can be used to perform pattern
matching on T.
The second property we want in order to perform

fast approximate pattern matching isHamming awareness
[16]:

Definition 3. A hash function h is Hamming-aware if
there exist

• a set Z(k) ⊆ {0, 1}w such that |Z(k)| ∈ O
(
ckwk), for

some constant c, and
• a binary operation φ : {0, 1}w × {0, 1}w → {0, 1}w

computable inO(w) time,

such that if P ∈ �m then the following inclusion holds:
{
h(P′) : P′ ∈ �m, dH(P,P′) ≤ k

} ⊆ h(P) φ Z(k) (1)

Intuitively, a Hamming-aware hash function h preserves
Hamming distance information. This can be done while
introducing a (provably small) number of false positives,
as depicted in Fig. 2. The hash function we will use
(described in detail in the next section) will satisfy this
property. As a result, we can considerably reduce search
space by only searching a Hamming ball centered around
the hash value of the pattern. As shown in [15], given a
hash function h satisfying both above introduced proper-
ties, we can build an index—called dB-hash—supporting
approximate search queries in O((2σ)k(log n)k logm +
(occ + 1) · m) time—σ being the alphabet size—while
requiring only (2 + o(1))n log σ bits of space. In [19] this
technique is used to obtain a fast and sensitive short reads

aligner. In the next section, we show how we can combine
this strategy with the solution described in [11] in order
to obtain a fast, sensitive, and lightweight bisulfite-treated
reads aligner.

A Hamming/bisulfite-aware de Bruijn hash function
A bisulfite-aware hash function satisfies the following
property: the hash value h(P) of a pattern P is invariant
under C-to-T substitutions. In order to use the same index
for the forward and reverse genome, we furthermore
require that the same property holds also for G-to-A sub-
stitutions. A straightforward way to accomplish this goal is
to assign the same numeric encoding to Cs/Ts and Gs/As
in the computation of h. This method is used in [11]; here
we combine it with the two properties described in the
previous section in order to obtain the hash function that
will be used in our index.
First of all, we need to define an encoding α : �DNA →

N for all letters in �DNA. For simplicity, we assume that
reads and reference have been pre-processed so that all N
and $ characters have been randomly converted to char-
acters in {A,C,G,T} (this pre-processing is adopted also
in practice). We assign the values α(C) = α(T) = 0
and α(G) = α(A) = 1. Let us denote with α(P), P ∈
{A,C,G,T}∗ the extension of α on strings, i.e. α(P) =∑|P|−1

i=0 α(P[i] ) · 2|P|−i−1. The hash function that we use in
our work is the following:

Definition 4. With hBS⊕ : {A,C,G,T}m → {0, 1}w, w ≤
m we denote the hash function defined as

hBS⊕(P) =
⎛
⎝

�m/w�−2⊕
i=0

α(Pwiw)

⎞
⎠ ⊕ α

(
Pwm−w

)

Figure 3 gives a visual representation of the function
described in Definition 4.

Fig. 2 A Hamming-aware hash function collapses the k-radius Hamming ball centered on the pattern P to aO(k)-radius Hamming ball centered on
the hash h(P) of P. The latter sphere contains much less elements since |h(P)| 
 |P|. In this picture, true positives (i.e. sequences that occur in the
reference and whose hash values occur in the hash of the reference) are represented as green dots, true negatives (i.e. sequences that do not occur
in the reference and whose hash values do not occur in the hash of the reference) are represented as gray dots, and false positives (i.e. sequences
that do not occur in the reference and whose hash values occur in the hash of the reference) are represented as red dots. False negatives are not
depicted here since they cannot be introduced by our hashing scheme
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Fig. 3 In the computation of hBS⊕(P), the bit-string α(P) is split in length-w blocks. All blocks except the last are non-overlapping and are taken from
the beginning of α(P). The last block is taken from the end of α(P) and may overlap with the one preceding it. After this subdivision, all blocks are
XOR-ed together, obtaining the fingerprint of P

Using arguments from [15], it can be easily shown that
hBS⊕ is a de Bruijn and Hamming-aware hash function.
In particular, if P1,P2 ∈ {A,C,G,T}m and dH (P1,P2) ≤
k, then dH (hBS⊕(P1), hBS⊕(P2)) ≤ 2k, where the value
dH (hBS⊕(P1), hBS⊕(P2)) is the Hamming weight of the
bit-string hBS⊕(P1) ⊕ hBS⊕(P2). As a result, only finger-
prints in the 2k-radius Hamming ball of center hBS⊕(P)

(P being the searched pattern) must be considered dur-
ing search. Experiments confirm (see Results section)
that this strategy considerably improves query times of
state-of-the-art bisulfite aligners based on backtracking.

Methylation call
During the methylation calling phase, the alignments
given as output by the bisulfite-aligner are used in order
to derive a methylation value for every (covered) cytosine.
This can be done by counting the number of Cs and Ts
aligned under every genomic C (Gs and As aligned under
every genomic G, respectively, for the reverse strand)
and computing the methylation score defined as β(i) =
#C(i)/(#C(i) + #T(i)), i being the (covered) genomic
position containing the C and #C(i), #T(i) being the num-
ber of Cs/Ts aligned in position i, respectively (for the
reverse strand this value is β(i) = #G(i)/(#G(i) + #A(i))).
Despite the apparent simplicity of this task, there are
several challenges that a methylation caller must face.
First of all, notice that the tool must store two coun-
ters for every C and G in the genome. Using two simple
arrays of, say, 16-bits integers (since we cannot estab-
lish a priori an upper bound to the maximum coverage)
results in 4n bytes of space usage, which are added to
the n bytes of the text itself. This space usage is 16
GB for the Human genome. The former version of our
caller ERNE-METH (version 1) [11] used this simple
strategy, which resulted in fast methylation calls at the
price of high RAM consumption. In contrast, Bismark’s
caller bismark_methylation_extractor performs
this step in external memory, using low amounts of RAM

at the price of speed and disk space usage. Here we
describe how we improved the data structuring in ERNE-
METH, obtaining a lightweight and fast methylation
caller.
First of all we reduce the space used by the structure, by

not storing integer counters for As and Ts positions. To
this end we maintain a succinct bit-vector of n + o(n) bits
tomark with a ’1’ Cs andGs on the genome. The bit-vector
is implemented in such a way to support constant-time
rank operations [20] . Hence, mapping genomic positions
to rank-space (i.e. every position i containing a C/G is
mapped to rank(i)), we—implicitly—store counters for Cs
and Gs only. This limits the “waste” of space for As and
Ts to the ’0’ marked bits in the bit-vector, almost halv-
ing space usage with respect to the trivial solution (i.e.
two length-n arrays). In order to save further space, we
compress the counters to a bit size close to the minimum
number of bits required to store each integer value. We
divide each of the 2 counter arrays in blocks of length
bl (bl = 256 in our implementation). We denote as
capacity of a block the bit-length of each of its counters.
The structure is initialized building all blocks with initial
capacity 1. Each time a counter exceeds the capacity of
its block, we re-build the block with capacity increased
by one. Notice that, if bl is chosen to be greater than
or equal to the read length, this strategy requires time
linear in the size of the input (i.e. number of aligned
nucleotides) since a counter can be incremented at most
once per read (and thus a block is re-built at most once
per read). This strategy considerably reduces space usage
of the methylation calling phase: in our experiments on
Human data, the compressed counters required approx-
imately 2.9 GB of RAM (as opposed to 12.8 GB of the
trivial solution). This space is added to that of the text
stored in a 3-bits per base format: 1.2 GB on the Human
genome. The price to pay for this memory efficiency is
a slight slowdown of the analysis—in practice, 4 times
slower than the trivial solution—, which however is still
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much faster than Bismark’s external memory solution
(see Results section).
A second issue concerns output disk space usage: a bed

file with one line for every C and G in the genome can
require a multiple of the space of the genome itself. Other
tools (e.g. Bismark) do not compress these files, and thus
require huge amounts of disk space to be run. We solve
this problem simply by compressing on-the-fly methyla-
tion annotations, reducing their size to, approximately,
that of the fasta input genome (up to 10-fold compres-
sion). ERNE-METH 2 implements both gzip and bzip2
compression algorithms.
All the techniques described up to now make the new

version of our methylation caller an extremely fast and
lightweight tool, being able to exploit modern compres-
sion techniques in order to optimize memory require-
ments (both RAM and disk space) without significantly
sacrificing query times. Quality of the methylation calling
process can, however, be further improved by exploiting
additional information provided by the experimental pro-
tocol. Target-enrichment techniques provide an example
of such an application: in these cases, reads are known
to come from specific regions of the genome of interest.
Some protocols, such as SureSelect Human Methyl-Seq
(Agilent), provide these regions as a bed file which can be
used during methylation calling. In view of such experi-
mental advances, we extended our caller to accept as input
also a bed file containing target regions. This information
is used to compute various additional statistics including
percentage of bases on target, mean coverage on target,
and distribution of coverage as a function of the distance
from targets (useful to assess the number of bases to which
extend targets on flanking sides). Moreover, reads falling
outside target regions can be automatically discarded,
methylation annotations can be outputted only on target
Cs (producing much smaller files), and targets can be side
extended to account for tails of coverage. Our caller has
been tested on data produced with the SureSelect Human
Methyl-Seq kit at the Swedish National Center for Molec-
ular Biosciences, Science for Life Laboratory (SciLifeLab),
Stockholm, Sweden. The study involved deep bisulfite
sequencing of four samples of Human tissue, with one
sample being sequenced atmuch higher depth (110M read
pairs, corresponding to an average ≈ 30x coverage of tar-
geted cytosines) than the others. The new functionalities
of ERNE-METH 2 were useful in the process of assessing
the protocol precision (fraction of reads aligned on tar-
get) and estimating (by using the most deeply sequenced
sample) the optimal depth of coverage at which additional
samples had to be sequenced. To conclude, we added two
new annotation formats—EPP and Bismark’s cov—to
our caller. This feature improves the compatibility of our
ERNE-BS5 2/ERNE-METH 2 pipeline with widely-used
downstream analysis tools such as RnBeads [21].

Results
We compared the performances of our tool with two of
the most widely used bisulfite aligners: Bismark version
0.14.3 [4] combined with both Bowtie 1 [18] and Bowtie
2 [8], and BSMAP version 2.90 [9]. The memory usage of
the old version of our aligner and caller is also reported
in order to highlight the improvements achieved with the
new version. Tests on a public BS-seq Human library were
performed to assess memory usage, speed, and alignment
efficiency (i.e. mapped reads) of the tools in a real-case
scenario. Additional tests on a simulated Human dataset
were performed to compare the precision—in terms of
mapping accuracy—of the bisulfite aligners. Finally, we
ran a test on a simulated high-coverage dataset (Ara-
bidopsis thaliana genome, 24.6x coverage) in order to
demonstrate the correctness of our methylation caller
ERNE-METH 2.
All experiments were performed on a intel core i7

machine with 12 GB of RAM running Ubuntu 14.04 oper-
ating system. Since Bismark executes 2 parallel Bowtie
threads (one per strand), we executed ERNE-BS5 2 and
BSMAP enabling multithreading with options -threads
2 and -p 2, respectively. In this way, all the tested align-
ers were allowed 2 parallel threads during execution. The
choice of running 2 threads for each aligner is also moti-
vated by the fact that Bismark’s memory usage increases
linearly with the number t of parallel processes specified
by the user (i.e. 2t FM-indexes are kept in memory, where
t ≥ 1). The memory usage of the other tested tools, on the
other hand, is independent of t (a single data structure is
shared by all parallel threads).
See Additional files 1 and 2 for further details on imple-

mentation usage and commands and parameters used for
the experiments, respectively.

Memory footprint and I/O utilization
The new index of ERNE-BS5 2 significantly improves its
former (hash) data structure, reducing the memory foot-
print from 19 to 3.85 GB on the Human genome (3.2
Gbp). This value is close to that of Bowtie 1’s and Bowtie
2’s FM indexes, which require only 2.95 and 3.2 GB to
hold their FM indexes in memory, respectively. However,
since Bismark executes (on different threads) 2 parallel
instances of Bowtie and one instance running the Bismark
process itself, its overall RAMutilization is of 9.1 GBwhen
using Bowtie 1 and 9.6 GB when using Bowtie 2 (two FM
indexes and the reference genome), much higher than that
of ERNE-BS5 2.
As far as themethylation calling phase is concerned, Bis-

mark’s caller bismark_methylation_extractor
requires 2 GB of RAM on the Human genome, as opposed
to the 4.1 GB used by ERNE-METH 2. This difference
is due to the fact that Bismark’s caller is an external
algorithm, and its RAM efficiency is paid in terms of
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disk space—170 GB in our experiments on Human—and
time—bismark_methylation_extractor was one
order of magnitude slower than ERNE-METH 2, as shown
in the next subsections. Moreover, Bismark’s caller does
not compress methylation annotations and, depending on
the number of covered cytosines, its output file can eas-
ily reach tens of GB in size. In contrast, ERNE-METH
2 does not create intermediate files on disk (the whole
analysis is carried out in RAM) and can directly com-
press methylation annotations, thus being an extremely
lightweight tool able to optimize at best RAM and disk
space usage (the latter being limited to the small—
4.2 GB on the Human genome—compressed methy-
lation annotation file). BSMAP’s methylation caller—
methratio.py—has a declared RAM consumption of
approximately 26 GB on the Human genome (too high to
be executed on our testing machine).
We report in Fig. 4 the RAM space required by ERNE

(versions 1 and 2), Bismark (with Bowtie 1 and 2), and
BSMAP aligners and callers.

RealWGBS dataset
In order to compare the performances of ERNE-BS5
2, Bismark + Bowtie 1, Bismark + Bowtie 2, and
BSMAP on a real dataset, we performed an experi-
ment (alignment and methylation call) on the Human
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Fig. 4 RAM requirements of ERNE 1, ERNE 2 (aligner: ERNE-BS5, caller:
ERNE-METH), Bismark with Bowtie 1 (bt1), Bismark with Bowtie 2 (bt2)
(aligner: bismark, caller: bismark_methylation_extractor),
and BSMAP (aligner: bsmap, caller: methratio.py). This data has
been collected from the real WGBS Human dataset experiment
discussed in the next section, except for the memory usage of BSMAP’s
methylation caller (for which we used the declared value of 26 GB on
Human genome). The horizontal green line marks the space of the
raw reference fasta file (3.2 GB)

BS-seq library [22]. The dataset (lung adenocarcinoma
cell lines) contains 50,544,402 pairs of 100 bp illu-
mina (HiSeq 2500) reads. First of all, reads were
quality-trimmed using ERNE-FILTER [23]. The resulting
48,706,207 pairs were subsequently aligned with ERNE-
BS5 2, Bismark + Bowtie 1, Bismark + Bowtie 2, and
BSMAP enabling multithreading on 2 cores for all the
aligners as described at the beginning of this section. In
this experiment we used default parameters for all the
tools. After the alignment, we used ERNE-METH 2 and
bismark_methylation_extractor to call methy-
lation values. BSMAP’s methylation caller was excluded
from this benchmark due to its high memory require-
ments (26 GB on the Human genome).
We report the results in Figs. 5 and 6. The plot in

Fig. 5 shows throughput of the tools and fraction of reads
aligned at unique positions (i.e. excluding unmapped
reads and reads mapped in multiple positions). As
expected, ERNE-BS5 2 exhibits the same mapping effi-
ciency of the hash-based aligner BSMAP, and a speed
which is intermediate between BWT-based (Bismark) and
classic hash-based (BSMAP) aligners.
Figure 6 shows the time required by the tools to com-

plete the whole alignment andmethylation call pipeline on
the dataset. ERNE 2 finished the analysis in considerably
less time than Bismark + Bowtie 2 (being 3.6 times faster
than Bismark), and in time comparable to that required by
Bismark + Bowtie 1 (being 1.6 times faster than Bismark).
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and Bowtie 2). As expected, the hybrid ERNE’s dB-hash data structure
is faster than BWT-based indexes and slower than classic hash-based
indexes (BSMAP)
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bismark_methylation_extractor. The ERNE 2 pipeline is
from 1.6 to 3.6 times faster than the Bismark pipeline (using Bowtie
1/Bowtie 2, respectively). BSMAP is not shown here since its methylation
caller required too much RAM (26 GB) to be run on our system

SimulatedWGBS datasets
Real datasets cannot be used to test the accuracy of a
bisulfite aligner/caller (in terms of number of correctly
mapped reads / number of correctly called methylation
values), since the underlying methylome is usually not
known in advance. For this reason, the use of a sim-
ulated dataset is often a good choice if one wishes to
assess such values. To compare the speed and accuracy of
ERNE-BS5 2 with those of the other tested tools, we sim-
ulated a Human dataset (see below for details), aligned
the reads, and measured speed and number of correctly
mapped reads of all tools under different combinations of
parameters. Finally, we tested the correctness of our caller
ERNE-METH 2 by simulating a high-coverage dataset on
the Arabidopsis thaliana genome and by comparing the
predicted methylation values with the simulated ones.

Datasets simulation To generate the simulated datasets,
we used custom scripts [24] and [25] in conjunction with
the SimSeq reads simulator [26] to generate a directional
[27] BS-seq dataset with simulated SNPs, indels, sequenc-
ing errors, (uniform) bisulfite conversions, and bisulfite
conversion failures (usually, bisulfite protocols have a con-
version efficiency around 98%). See Additional file 2 for
more details on the simulation procedure used.

Mapping Accuracy Tomeasure mapping accuracy of the
tested tools in terms of fraction of correctly aligned reads,

we simulated (as described above) 13,850,280 read pairs
from the build hg19 of the Human genome and aligned
them with Bismark + Bowtie1, Bismark + Bowtie2, ERNE-
BS5 2, and BSMAP on the reference. We evaluated only
uniquely-mapping reads (multiple alignments are usually
discarded before methylation reconstruction). A unique
alignment was considered correct if and only if both chro-
mosome and strand coincided with those outputted by
SimSeq and if the alignment’s position was within 50
bases from the position outputted by Simseq (in order to
account for indels and clipped bases).
As observed in [28], input data quality and alignment

parameters can greatly influence aligner’s performances.
In particular, the study reports that low sequencing error
rates and trimmed data (see also [29]) improve map-
ping efficiency, while parameters such as number of mis-
matches allowed in the seed and number of mismatches
allowed in the read are those having a major effect on
the aligner’s speed and accuracy. In light of these obser-
vations, we decided to perform two types of compar-
isons. First of all, the tools were compared by using their
default parameters (except for the multithreading options,
as explained above, and disabling trimming since reads
were already trimmed). This choice is motivated by the
fact that default parameters are chosen by the software’s
developers in order to offer a reasonably good trade-
off between performances (memory/speed) and mapping
accuracy, and therefore represent a good choice when one
is interested in optimizing both these features. The default
parameters used are: ERNE-BS52 (seed length in index
construction: -bl 30, seed errors: -seed-errors 2,
gaps enabled, threads: -threads 2, trimming dis-
abled: -no-auto-trim), Bismark + Bowtie 1 (seed
length: -l 28, seed errors: -n 1, gaps not supported,
threads: -p 1), Bismark + Bowtie 2 (seed length: -L 20,
bseed errors: -N 0, threads: -p 1), BSMAP (seed
length: -s 16, only error-free seeds supported, mismatch
rate: -v 0.08, gaps: -g 0, number of threads: -p 2).
The results of this experiment are reported in Fig. 7.

ERNE-BS5 2, Bismark + Bowtie 1, Bismark + Bowtie 2,
and BSMAP map uniquely 89, 84, 86.6, and 94% of the
reads, respectively. All aligners map correctly most of the
unique reads (> 99%). Memory usage and alignment
speed of the tools were consistent with those reported in
Figs. 4 and 5.
In order to compare the tools on a more common

ground, we adopted the strategy of [28] and re-aligned the
reads by setting the maximum number of allowed mis-
matches in the seeds to 0 for all the tools. Since Bismark
does not permit to easily control the maximum number of
allowed mismatches between the read and the reference,
we allowed the tools to insert the maximum supported
number of mismatches/indels in the remaining part of the
alignment (i.e. seeds excluded). This is a reasonable choice
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Fig. 7 Simulated dataset, default parameters. Fraction of total mapped
(multiple and unique), unique, and correctly mapped unique reads. In
this experiment we used default parameters for all the tools

since seeding is themost critical step of the alignment pro-
cess; aligners usually implement in the seeding step most
of their heuristics—e.g. backtracking (Bowtie) or hashing
withmismatches (ERNE)—. In indel-free alignments, mis-
matches outside the seed are found simply by extension,
a step that requires a good seeding strategy in order to be
successfully performed.
The used parameters are: ERNE-BS52 (seed length in

index construction: -bl 30, seed errors:
-seed-errors 0, gaps enabled, threads: -threads
2, trimming disabled: -no-auto-trim), Bismark +
Bowtie 1 (seed length: -l 28, seed errors: -n 0, gaps
not supported, threads: -p 1), Bismark + Bowtie 2
(seed length: -L 20, seed errors: -N 0, threads: -p 1),
BSMAP (seed length: -s 16, only error-free seeds sup-
ported, mismatch rate: -v 15, gaps: -g 3, number of
threads: -p 2).
The results of this experiment are reported in Fig. 8.

ERNE-BS5 2, Bismark + Bowtie 1, Bismark + Bowtie 2,
and BSMAP map uniquely 84.5, 54.5, 86.6, and 95.3% of
the reads, respectively. Again, all aligners correctly map
most of the uniquely mapped reads.
The first noticeable effect of not allowing seed errors is

that Bismark + Bowtie 1 has now very poor performances.
This is due to the fact that Bowtie 1 uses a single-seed
strategy and therefore requires seed errors in order to
be reasonably efficient. All other tools use multiple seed-
ing, and maintain overall a good alignment efficiency. The
experiment shows that, under similar parameter combi-
nations, ERNE-BS5 2 and Bismark + Bowtie 2 give very
similar results. Despite both allowing 0 erros in the seed,
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Fig. 8 Simulated dataset, common parameters. Fraction of total
mapped (multiple and unique), unique, and correctly mapped unique
reads. In this experiment we disabled seed errors in all the tools, while
tolerating the maximum allowed number of mismatches/indels in
the rest of the read

in this experiment ERNE-BS5 2 and BSMAP align a dif-
ferent number of unique reads. This is due to the fact that
BSMAP uses a much shorter seed than ERNE-BS5 2 (16
bp versus 30 bp), and is thus capable of aligning reads with
more errors. BSMAP aligns slightly more reads than in the
previous experiment since the only changed parameter is
the allowed length of indels (the dafault is 0, while in this
experiment was set to the maximum 3). However, allow-
ing gaps in BSMAP heavily affects its running time: the
tool required 9 h and 20 min to complete the alignment,
for an overall throughput of 2.96 Million reads per hour.
ERNE-BS5 completed the alignment in 1 hour and 36 min
(17.3 Million reads per hour), Bismark + Bowtie 1 in 1 h
and 20 min (20.77 Million reads per hour), and Bismark +
Bowtie 2 in only 57 min (29.15 Million reads per hour).

Methylation calling accuracy Finally, we evaluated the
accuracy of our methylation caller by simulating a high-
coverage dataset on a medium-sized genome (Arabidopsis
thaliana) and by comparing the results of ERNE-
METH 2’s methylation calls to the simulated ground
truth.
By using the protocol described at the beginning of this

section, we generated a 24.6x coverage dataset on the
Arabidopsis genome (60 M paired-end reads). Firstly, we
aligned the reads with ERNE-BS5 2. After the alignment
phase, we ran ERNE-METH 2 on the resulting bam file
to generate the methylation profile. For the evaluation, we
considered only Cs that had a coverage of at least 3, and we
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treated a C as methylated if its (called) methylation value
was strictly greater than 0.5.
The whole pipeline took only 37 min to complete

(27 min of alignment with ERNE-BS5 2 and 10 min of
methylation call with ERNE-METH 2). 91% of the reads
were aligned uniquely by ERNE-BS5, and 95.85% of all
cytosines (on both strands) were covered by at least 3
reads. ERNE-METH 2 correctly called 99.9931% of all
covered cytosines’ methylation values.

Discussion
In this paper, we described how to efficiently apply
recent advances in succinct indexing techniques [15] to
the bisulfite-alignment problem. To reach this goal, we
employed a hash function with three properties: the
first, de Bruijn, reduces space for the hash index from
O(n log n) to (2 + o(1))nlogσ bits; experiments confirm
that in practice this strategy reduces the size of the struc-
ture by one order of magnitude. The second property,
Hamming-awareness, results in a considerable reduction
in search space, thus speeding up (not only in theory but
also in practice, as shown by our experiments) the align-
ment process. Finally, the bisulfite-awareness property
enables efficient alignment of bisulfite-treated reads with-
out significant penalization in query times with respect to
standard DNA alignment (as demonstrated by the results
here presented together with those reported in [19]). We
implemented the bisulfite dB-hash data structure in the
aligner ERNE-BS5 2, and showed that in practice it is com-
petitive with state-of-the-art bisulfite aligners in terms of
memory and speed, with comparable accuracy. On sim-
ulated reads, the hash-based aligner BSMAP was able
to align reads more efficiently than ERNE-BS5 2 and
Bismark, even though ERNE-BS5 2 was as efficient as
BSMAP (and more than Bismark) on real data. Overall,
ERNE-BS5 2 and ERNE-METH 2 showed to be extremely
lightweight tools (much more than Bismark and BSMAP),
offering a good tradeoff between memory, speed, and
accuracy.

Conclusions
The use of compressed data structures is fundamental in
tasks where huge amounts of data need to be processed.
By implementing recent theoretical results in this field of
research, our tools are able to efficiently carry out in RAM
both alignment and methylation calling processes using
slightly more RAM space than the reference itself. In par-
ticular, our methylation caller ERNE-METH 2 is one order
of magnitude faster than external memory algorithms per-
forming the same task (e.g. Bismark’s caller), while at the
same time using a relatively low amount of main mem-
ory. Other tools that perform this task completely in RAM
(e.g. BSMAP’smethylation caller) require up to 6 times the
space used by ERNE-METH 2.

Finally, the new target-oriented functionalities of ERNE-
METH 2 make it a useful tool in target enrichment
experiments.

Availability
ERNE (Extended Randomized Numerical alignEr, ver-
sion 2.1) is a short string alignment package whose
goal is to provide an all-inclusive set of tools to handle
short reads. ERNE comprises: ERNE-MAP, ERNE-DMAP,
ERNE-FILTER, ERNE-VISUAL, ERNE-BS5, and ERNE-
METH. ERNE is free software and distributed with an
Open Source License (GPL V3) and can be downloaded
at: http://ERNE.sourceforge.net.
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