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Abstract
Background: Phosphorylation is one of the most important post-translational modifications (PTM) employed by
cells to regulate several cellular processes. Studying the effects of phosphorylations on protein structures allows to
investigate the modulation mechanisms of several proteins including chaperones, like the small HSPs, which display
different multimeric structures according to the phosphorylation of a few serine residues. In this context, the proposed
study is aimed at finding a method to correlate different PTM patterns (in particular phosphorylations at the monomers
interface of multimeric complexes) with the dynamic behaviour of the complex, using physicochemical parameters
derived from molecular dynamics simulations in the timescale of nanoseconds.

Results: We have developed a methodology relying on computing nine physicochemical parameters, derived from
the analysis of short MD simulations, and combined with N identifiers that characterize the PTMs of the
analysed protein. The nine general parameters were validated on three proteins, with known post-translational
modified conformation and unmodified conformation. Then, we applied this approach to the case study of
αB-Crystallin, a chaperone which multimeric state (up to 40 units) is supposed to be controlled by phosphorylation of
Ser45 and Ser59. Phosphorylation of serines at the dimer interface induces the release of hexamers, the active state of
αB-Crystallin. 30 ns of MD simulation were obtained for each possible combination of dimer phosphorylation state and
average values of structural, dynamic, energetic and functional features were calculated on the equilibrated portion of
the trajectories. Principal Component Analysis was applied to the parameters and the first five Principal Components,
which summed up to 84 % of the total variance, were finally considered.

Conclusions: The validation of this approach on multimeric proteins, which structures were known both modified
and unmodified, allowed us to propose a new approach that can be used to predict the impact of PTM patterns in
multi-modified proteins using data collected from short molecular dynamics simulations. Analysis on the αB-Crystallin
case study clusters together all-P dimers with all-P hexamers and no-P dimer with no-P hexamer and results suggest a
great influence of Ser59 phosphorylation on chain B.
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Background
Post-translational modifications (PTMs) regulate cell life.
Several types of PTMs have been observed in proteins,
alone or combined in order to regulate their activity and
function. In particular, PTMs govern tertiary and quater-
nary protein structures [1]. One of the most extensively
PTMs used by cells is phosphorylation. It regulates
several cellular processes, among which are differentiation,
growth, metabolism, apoptosis, cellular transport and sig-
nal transduction [2].
Phosphorylation consists in the esterification of a resi-

due possessing a hydroxyl with phosphoric acid, a small
and negatively charged group. This PTM can regulate a
protein function by affecting its conformation and aggrega-
tion capabilities. Frequently, intrinsically disordered protein
regions undergo to a structure rearrangement subsequently
to a phosphorylation [3]. These structural rearrangements
allow protein multimerization (small HSPs [4–6]), protein
ordering (Microtubule Associated Protein Tau [7]), and
protein-protein interactions (p47 [8]). Moreover, phosphor-
ylation can affect the enzyme activity endorsing the ligand
binding in the active site (Thymidylate synthase) [9, 10].
Frequently, the modification of multiple phosphorylation
sites of a protein constitutes more than an on/off mechan-
ism, since the level of phosphorylation can induce thresh-
old related events. This mechanism is widely employed in
eukaryotic regulatory proteins, like G protein-coupled [11]
or tyrosine-kinase receptors [12], where the number of
phosphorylated serine/threonine and tyrosine regulates the
signal transduction. The availability of multiple phosphor-
ylation sites in proteins provides a precise tool for dynamic
regulation of the downstream processes. Different phos-
phorylation profiles of a single protein might be linked to
different functions [13].
A well-known class of proteins modulated by phosphor-

ylation is the small Heat Shock Protein (HSP) family.
Although for these proteins the role of phosphoryl-
ation is not completely understood, it is necessary to
their chaperone function [2]. In particular, αB-Crystallin
(HspB5) is a small HSP that is upregulated in several
neuropathological diseases [14] as well as in different
forms of cancer [15]. Both phosphorylated and unpho-
sphorylated forms of αB-Crystallin have been found in eye
lens, although the phosphorylated form increases with age
[16]. This small HSP is also found in other tissues where it
performs its role of chaperone, preventing intracellular
aggregation of partially folded polypeptides [17]. Under
cellular stress conditions, such as heat, oxidation, increase
of intracellular calcium levels and ischemia, the level of
the phosphorylated form increases [16]. αB-Crystallin is
modulated by a trade-off between its different multimeric
conformations. In particular, its simpler multimeric form
is a homodimer, while more complex structures can be
hollow globes composed from up to 20 homodimers [18]

(Fig. 1a). The active units are smaller complexes, like the
hexamer, which are torus-like structures composed by 3
dimers connected via an inter-dimeric interface [19]
(Fig. 1b). The multimerization of this protein, and thus its
function, is controlled by the phosphorylation of three
serine residues, Ser19, Ser45 and Ser59. Phosphorylation
of Ser19 has little effect on the chaperone activity [20] and
no correlation with cytoprotection [21], while phosphoryl-
ation of Ser59 is important in controlling apoptosis and
for the association of this small HSP with actin filaments
[2, 22, 23]. Moreover, phosphorylation of Ser45 results in
the disruption of the dimeric substructure induced by the
steric hindrance of the two phosphate groups, which are
too close to each other in the dimer [20]. Phosphorylation
of Ser45 and Ser59 results also involved in αB-Crystallin
localization at nuclear speckles [24]. Overall, in vitro and
in vivo, only one or two serine residues result phosphory-
lated [25], for these reasons we included in this analysis
only Ser45 and Ser59 as phosphorylatable serine (Fig. 1c).
These residues are phosphorylated by the p44/42 mitogen-
activated protein kinase and MAP kinase activated protein
kinase 2, respectively [22]. Ser45 and Ser59 localize near
the inter-dimeric interface, which supports the idea that
phosphorylation influences the connection between dimers
in higher structures. Aquilina et al. proposed that the
disruption of dimeric interfaces is caused by serine phos-
phorylation, and this different conformation displays an
increased affinity for the chaperone substrates [20]. Several
works with engineered αB-Crystallin S19D/S45D/S59D or
S19E/S45E/S59E can be found in literature, mimicking
phosphorylation with aspartate or glutamate in tri-pseudo
phosphorylated complexes [19, 24]. While changes in the
multimeric state of αB-Crystallin were observed, only
pure pseudo-phosphorylated monomers were used, with-
out focusing on the behaviour of different αB-Crystallin in
presence of pseudo-phosphorylated proteins [16].
Considering multi-PTMs involved in the multimeriza-

tion level, the aim of this study is to develop a method-
ology to classify PTM patterns to predict their impact
on the protein, by using data collected from short mo-
lecular dynamics (MD) simulations. In particular, MD
simulations were extensively used to study conformational
changes induced by Ser/Thr phosphorylations (tau peptide
[7]; Na+/K+ - ATPase (NKA) [26], myelin basic protein
(MBP) [27], and ADP ribosylation factor nucleotide site
opener (ARNO) [28]). Nonetheless, simulations of large
multimers in different phosphorylated conformations can
take huge computational effort and impracticable analysis
time. Therefore, we developed an approach to estimate
the behaviour of structures by extracting physicochemical
parameters from MD trajectories in the nanosecond time-
scale. Using this approach, structures resulting from dif-
ferent PTM patterns can be classified depending on their
behaviour. According to our validation, this approach is

Chiappori et al. BMC Bioinformatics 2016, 17(Suppl 4):57 Page 226 of 269



reliable in discriminating the evolution of the system,
caused by PTMs, relying on the variation of key indicators
of the structure conformation and stability. Moreover, this
approach has been applied to the different phosphoryl-
ation patterns of the αB-Crystallin in a 24meric state in
order to identify the corresponding behaviour, starting
from MD of dimeric structures.

Results and discussion
Parameter definition
In order to describe the effect of PTMs on protein struc-
tures, we focus on the structural and energetic differences
between different PTM patterns. We define 9 physico-
chemical parameters (Table 1), which are combined with
N case-specific identifiers related to the number of PTMs
considered for the protein in analysis. To identify the
peculiar characteristics of structures with different PTM
states, we need the equilibrated conformations for each of
these protein states. Therefore, all the considered struc-
tures must be simulated using MD in order to obtain an
equilibrated conformation and a sufficient sampling for
each of them. In detail, the 9 physicochemical parameters

describe both the protein-protein interface and the protein
complex from a structural and energetic point of view.
Some of them are static parameters, which are calculated
on representative conformations obtained from the equili-
brated portion of MD simulations, while other represent

Table 1 General parameters

Name Type Input for computation

Total SAS Structural Average value calculated on the eq trajectory

Hydrophobic
SAS

Structural Average value calculated on the eq trajectory

Buried SAS Structural Average value calculated on the eq trajectory

HB Structural Average value calculated on the eq trajectory

Gap_Index Structural Calculated on an average conformation

Volume Structural Calculated on an average conformation

E_LJ Energetic Average value calculated on the eq trajectory

AbsMin Energetic Calculated on FEL

#Min Energetic Calculated on FEL

Fig. 1 αB-Crystallin structure. a 24mer, in red the A chains and in blue the B chains. b hexamer, each dimer I (see Methods section for detail) is in
a different colour; serine 19, 45 and 59 are in sphere. c dimer II, chain A is in green and chain B is in orange, Serine 45 and 59 are in sphere
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the structural temporal evolution and therefore are evalu-
ated on the whole trajectory.
The structural parameters evaluated on the equilibrated

portion of the whole trajectories include: (1) Total SAS,
(2) Hydrophobic SAS, (3) Buried SAS and (4) inter-chain
hydrogen bonds number. SAS and the related hydropho-
bic SAS were evaluated according to Eisenhaber et al.
[29], while Buried SAS was calculated as (Monomer 1
Total SAS +Monomer 2 Total SAS) - Complex Total
SAS. Among all the hydrogen bonds established during
the trajectory, only those involving residues of different
chains were considered. (5) Gap_Index and (6) volume of
the interface region are calculated on average conforma-
tions obtained from MD simulations. The first was de-
scribed by Jones et al. [30], in order to better understand
the protein-protein recognition mechanism, calculated
on crystal structure of bound and unbound dimers,
see Methods for details. Enclosed volume was calcu-
lated with the gap-sphere method described in [31].
Total SAS, Gap_Index and hydrogen bonds were pre-
viously described as parameters characterizing the
interaction observed between proteins in the light of
their biological function [30].

The energetic parameters were considered in order to
take into account not only structural characteristics of
the macromolecules, but also the differences in energy
between bound and unbound protein complexes. These
are average values from the analysis of the equilibrated
portion of the whole MD simulation. In detail, the first
value is the (7) inter-chain Lennard-Jones Energy, for
which only the absolute value is taken into account. The
other two values are obtained from the Free Energy
Landscape (FEL), which representation is achieved pro-
jecting the trajectories on their first two principal compo-
nents of motion [32, 33]. This representation returns the
probability of finding the system in a particular state char-
acterized by a combination of two reaction-coordinates
values. The first two principal components of motion are
the considered reaction-coordinates. From this analysis,
the minimum frequency value (8), or better the prob-
ability of the most likely conformation, and the number of
minima over a case dependent threshold of frequency (9)
are collected. The latter is obtained applying a 20x20
points grid and summing the values included in a 3x3 box:
boxes with values over the threshold are considered. Some
examples are presented in Fig. 2. Parameters evaluated on

Fig. 2 Examples of Free Energy Landscape. 3x3 boxes considered for the #Min value are in evidence
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the FEL are considered as markers of the protein stability.
In detail, a stable conformation returns a limited num-
ber of large minima, while a larger number of minima
characterize a meta-stable structure.

Parameter validation
The 9 general parameters used by this approach were
validated analysing three proteins for which both wild-
type (wt) and post-translational conformations were
experimentally available in the PDB. In particular, the
validation of our approach has been performed on
two X-ray structures of the Serine/threonine-protein
kinase (TBK1) (PDB id: 4EUU/4EUT) [34], two NMR
conformations of the CT10-Regulated Kinase isoform
II (CRKII) (PDB id: 2DVJ/2EYZ) [35], and two crystal
structures of the Glycogen Phosphorylase (GP) (PDB
id: 8GPB/7GPB) [36].
TBK1 is a homodimer in its inactive form, and under-

goes to a large structural rearrangement after phosphoryl-
ation of Ser172 in order to obtain the active conformation.
Similarly to the αB-Crystallin the phosphorylation triggers
a structural change that detaches regions of the 2 chains
previously connected.
CRKII is a splicing isoform of the oncoprotein CRK. It

is composed by three Src Homology (SH) domains,
ordered according the SH2-SH3-SH3 pattern. Phosphor-
ylation localizes in a linker region between the two SH3
domains, and induces the binding of the SH2 domain of
CRKII itself, disrupting its biological activity.
GP exists as an inactive homotetramer and as an

active homodimer. This protein was selected as validation
benchmark given that the homodimer dimerizes when
Ser14 is coupled with sulphate ions. Therefore, this is a
negative example with respect to TBK1, CRKII, because
the PTM induce the multimerization, resulting in a more
compact structure without detachment of side chains.
Our expectation is that wt GP will cluster together with
the PTM conformations of TBK1 and CRKII (and finally
with the phosphorylated αB-Crystallin), while the PTM
conformation of GP will cluster with wt TBK1 and CRKII
(and finally with wt αB-Crystallin). With this example we
want to verify if our method is able to capture the global
effect on the proteins conformation, connected with the
structural rearrangement caused by PTM, instead of the
local effects of the PTM (i.e. changes in the local charge,
changes in the local shape).
All six complexes, wt and post-translational modified

conformations, were undergone to a short (10 ns) MD
simulation, in order to collect the 9 general parameters.
Data were normalized within each validation test by asso-
ciating the wt protein with its modified version and divid-
ing the value of each variable by the mean value of the
two structures. The resulting normalized data was sub-
jected to PCA in order to identify the most important

parameters to characterize the protein behaviour. In par-
ticular, the structures were divided in 2 clusters using the
k-means algorithm (the R implementation, which relies by
default on the Hartigan–Wong algorithm) on the first 3
PCs (results are shown in Fig. 3) in order to discriminate
the role of the different PTMs. The structures in which
the presence of PTMs (or lack of PTMs in case of GP)
induces the detachment of chains were clustered together
(in Fig. 3 identified by the “Op” suffix). At the same way,
structures in which the lack of PTMs (or presence of
PTMs in case of GP) induces monomers aggregation were
also clustered together (in Fig. 3 identified by the “Cl”
suffix). This supports our claim that the 9 parameters are
good predictors of the direction towards which the protein
structure is shifting after a PTM.

αB-Crystallin case study
The αB-Crystallin was chosen as case study, in order to
clarify the role of phosphorylation on the multimerization
state and on the achievement of the active conformation.
Dimers and hexamers (Fig. 1), and the related phosphory-
lated forms, were obtained from the deposited 24-meric
structure 2YGD, as described in the Methods section.
All complexes, 16 dimers and 2 hexamers, were simu-

lated by MD for 30 ns, in order to obtain equilibrated
conformations of unknown structures and a sufficient
conformational sampling for the analysis. We defined
four peculiar parameters according to the phosphorylation
states of Ser45 and Ser59 of both chains A and B: in detail,
value 1 was assigned to phospho-serine and 0 to the
serine. Moreover, minima which frequency was 0.7 times
the FEL absolute minimum were considered for the

Fig. 3 Clustering of the first 3PCs based on k-means algorithm.
The three validation tests (GP, CRKII, and TBK1) both in PTM and
wt conformations are represented
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analysis. The parameters achieved for the different αB-
Crystallin conformations underwent to a statistical ana-
lysis both to identify phosphorylation effects (parameters
mainly correlated with the phosphorylatable residues) and
to link phosphorylation patterns to measurable character-
istics evaluated on protein structure.
We preliminary analysed the applicability of the approach

to αB-Crystallin by mapping some of its conformers on the
first two PC achieved during the parameter validations. In
particular, all-phosphorylated and wt forms of the αB-
Crystallin dimer II and hexamer were considered in the
frame of the clusters achieved during validation. As ex-
pected, both the phosphorylated forms fall near the cluster
centroid of the detached structures analysed in the valid-
ation examples, while wt conformers fall near the cluster
centroid of the aggregated complexes. This preliminary
example is a proof that the proposed approach is robust
also for the analysis of our case study.
Now, considering the αB-Crystallin, PTMs, a Correl-

ation Matrix between the general parameters and the spe-
cific phosphorylations of the protein was drawn, using the
Pearson correlation coefficient (Fig. 4, correlation values
are reported in each box), in order to identify the phos-
phorylation effects on macromolecular structures. Phos-
phorylation of residue A.45 and B.45 result correlated to
Volume and Gap_Index, while only A.45 is negatively
related to the minimum absolute value (AbsMin). Position
45 is at the dimer interface, its phosphorylation likely
influence the distance between chains, represented by
Gap_Index, and directly the inter-chains volume. Modifi-
cation of A.59 residue was only negatively related to the
average number of inter-chain hydrogen bonds, although
this residue localize outward the dimer interface. Signifi-
cant positive values were found between B.59 and Total

SAS, Hydrophobic SAS and, to a lesser extent, the #Min,
instead the minimum absolute value (AbsMin) is negatively
correlated. Residue 59 localizes in the linker between ACD
and CTD and chain B is in the bent conformation; since a
large group is added in a cleft, this phosphorylation is likely
to influence both Total SAS and Hydrophobic SAS.

Principal Component Analysis
In order to study the key phosphorylations for αB-
Crystallin activation, a PCA was applied considering all
the 13 parameters, 9 general (Table 1) and 4 peculiar for
the considered phosphorylations. The first 5 principal
components were analysed, as they summed up to 84 %
of the total variation and each of them had standard
deviation > 1. Several methods for clustering the struc-
tures were tested on PCA data, in order to define which
patterns behaved similarly, but the final choice was to
use k-means because of the suitable possibility of inte-
grating this algorithm with PCA (which in fact is known
to be a relaxation of the k-means clustering [37]).
The k-means clustering algorithm, (selected after a

comparison with other hierarchical clustering methods),
returned the optimal solution with 5 clusters, resulting
in a cluster containing all-phosphorylated dimer and
hexamer and another cluster containing all the non-
phosphorylated forms (the other clusters contain mixed
phosphorylation patterns). Results of k-means algorithm
using 5 clusters are displayed in Fig. 5. Both the dimer
and the hexamer with all Ser45/Ser59 phosphorylated
ended up in the same cluster with A.59-B.45.59. Non-P-
dimer and non-P-hexamer also clustered together with
A.59-B.45, suggesting a great influence of B.59 phos-
phorylation. A.45.59 stands alone in its cluster, B.59,
A.45,59-B.59 and A.45-B.59 compose the fourth cluster,

Fig. 4 Correlation matrix. Representing the Pearson correlation coefficient between the phosphorylatable residues and the parameters employed
in the analysis. Extreme colours represent high correlation between the two parameters, positive is in blue and negative is in red. Significant
correlation is represented by values above |0.30| (in bold)
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while all the remaining structures compose the fifth clus-
ter. Other hierarchical clustering algorithms supported the
same results, with phosphorylated structures more similar
than the non-phosphorylated ones.

Loading matrix interpretation
The variance reduction performed through PCA has been
further investigated in order to identify which of the
original parameters was more important in defining the
higher Principal Components (PCs) and therefore was
critical to discriminate between the behaviours caused by
the different phosphorylation patterns. In particular, we
analysed the loading matrix, as shown in Fig. 6, to verify
how observed variables are expressed in terms of PC. Each

row of the loading matrix describes the score (which
values range between [-1;1]) of a variable for each PC, data
are also collected in Table 2. Each PC is defined as the
linear combination of the product of these values and
their associated variables. Each loading can also be inter-
preted as a positive or negative correlation between an
observed variable and a PC, while the most extreme values
of loading indicate those variables that mostly define each
PC. In detail, we can see how the Buried SAS positively
influences the first component of the PCA and the Total
SAS and Hydrophobic SAS variations, which account for
almost half of the total variance described by PC1, nega-
tively influence this. Considering PC2, we can see that it is
positively influenced by #Min while there is a negative
contribution of AbsMin: these two variables are also
known to be anticorrelated. On the other hand, PC3 has a
very important contribution from the Gap_Index and
from B.45 phosphorylation state. At last, we can see that
PC4 and PC5 are characterized by important contribu-
tions directly from the information concerning the residue
phosphorylation (A.45 and A.59 positive for PC4, and
B.45 - positive - and A.59 - negative - for PC5). The first 2
PCs show clear attributes from their most important
variables: PC1 is mostly influenced by the geometrical
structure of the protein, while PC2 groups the information
about the stability.

Experimental evidences supporting our results
Looking at the results of the αB-Crystallin case study,
we can infer a great influence of Ser59 phosphorylation
on chain B for the regulation of the protein multimeriza-
tion. The key role of phosphorylation for the αB-Crystallin
structure was widely demonstrated [16, 19, 20], as also the
connection between phosphorylation level and chaperone
activity [38]. In particular, phosphorylation of Ser59 has a
role in ischemic stress, in the expression and regulation of

Fig. 5 Clustering of PCA data based on k-means algorithm. The five
clusters are evidenced with different colours

Fig. 6 PCA factor loading matrix. Parameters are plotted against the first five PCs. Extreme colours represent mainly influencing variable to each PC
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cytoprotective proteins, like Bcl2 [39], and in the ubiqui-
tin–proteasome system [40]. There are evidences that
Ser59 phosphorylated αB-Crystallin accumulates in brains
of patients with neurodegenerative disease, like Alexander
and Alzheimer disease [41]. Moreover, inhibiting Ser59
phosphorylation leads to cell death [42]. These results
support our claim that Ser59 is a key residue for determin-
ing the multimeric conformation of αB-Crystallin.

Conclusions
PTMs, and in particular phosphorylations, have a great
importance in the regulation of protein activity. Using
molecular dynamics simulations to study their effects is
a natural approach to the problem. Nonetheless, simula-
tions of large multimers in different phosphorylated con-
formations can take huge computational effort (since very
long simulations are necessary to reach an equilibrated
conformation) and impracticable analysis time. Therefore,
we developed an approach to estimate the behaviour of
structures by extracting physicochemical parameters from
MD trajectories in the nanosecond timescale. We vali-
dated our approach on two examples of structures known
both in unmodified and post-translational modified states,
achieving very good results in terms of predictions of the
behaviour of the systems. In particular, the most interest-
ing patterns which are able to describe the behaviour of
the system from the very beginning of the simulation are
the variation of the Total SAS, that is the geometrical
structure of the protein, and the information about the
stability (frequency and number of minima). Moreover, we
applied our approach to different subunits of the 24meric
structure of αB-Crystallin, showing that the parameters
obtained from analysis of the asymmetric unit interface
may predict the behaviour of the whole multimeric state.

Methods
Case study
The 24meric structure of αB-Crystallin (PDB id: 2YGD)
has been obtained from PDB [25]. The monomer displays
2 conformations inside the oligomers, one bent and one
straight. They assemble in dimer I, that can exist alone,
and also in a different dimeric structure, named dimer II,
that does not exist alone, but includes the inter-dimeric
interface. Dimer I interface is composed by antiparallel β-
strands of the α-Crystallin Domain (ACD), while in dimer
II the interface is between the C-terminal Domain (CTD),
where both the serines localize. We focused the analysis
only on dimer II, as both phosphorylation sites are far
from the interface in dimer I. We obtained the smaller
units from the 24mer structure: dimer II and the hexamer.
Using Chimera [43], we achieved all the 24 = 16 combina-
tions of the two possible phosphorylation residues (Ser45
and Ser59) for dimer II. Moreover, two hexamers were
prepared for simulation: one with no phosphorylations
and one with all the serines phosphorylated. Globally we
modelled 18 structures, 16 dimers and 2 hexamers. In
order to collect data for both the non-phosphorylated
(non-P-) and the phosphorylated (P-) hexamer, we used
the average of the values calculated for the structures
composed by assembling dimer II monomers, since that
interfaces can be both phosphorylated or not.
All structures have been solvated and neutralized with

Na+ ions, then their free energy has been minimized
using the Steepest Descent algorithm until the maximum
force was smaller than 500 kJ(mol-1 nm-1). Then, a simu-
lation of 30 ps in NVT environment was performed at
300 K, followed by 100 ps of simulation in NPT environ-
ment performed at 300 K and 1.0 bar.

Molecular dynamics simulation and analysis
MD simulations of 30 ns at 300 K were obtained with
Gromacs 4.5 [44], employing the amber99sbP force field,
which includes an energy model for phospho-serines. All
bonds were constrained using LINCS algorithm [45], and
periodic boundary conditions were applied in all direc-
tions. Long-range electrostatic forces were treated using
the PME method.
The representative conformation is the central structure

of the first cluster obtained by clustering conformations
sampled in the equilibrated portion of the trajectories,
using the Gromacs tool, g_cluster on Ca atoms the
gromos method [46] and applying a cut-off distance of
0.3 nm.
Equilibrated portion of the trajectories was evaluated

based on RMSD plot. Representative conformations were
evaluated using QMEAN [47] and Verify_3D [48] server.
Ramachandran plots of the achieved structures were
also analysed. Based on these evaluations, representative

Table 2 Loadings values

PC1 PC2 PC3 PC4 PC5

Total SAS 0.405 −0.303 0.003 −0.104 0.042

Hydrophobic SAS 0.316 −0.347 −0.139 0.146 0.282

Buried SAS −0.461 −0.047 −0.131 −0.163 0.247

HB −0.378 −0.121 −0.199 0.229 −0.236

E_LJ 0.451 0.060 0.178 0.209 −0.203

Volume −0.300 −0.351 0.202 −0.130 0.233

Gap_Index 0.001 −0.297 0.549 0.056 −0.216

A.45 −0.051 −0.226 0.157 −0.628 −0.411

A.59 0.171 0.030 −0.021 −0.565 0.289

B.45 0.130 0.128 −0.523 −0.247 −0.485

B.59 0.164 −0.350 −0.349 −0.062 0.275

AbsMin 0.065 0.479 −0.005 −0.115 0.274

#Min −0.068 −0.364 −0.356 0.173 −0.132
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conformations quality is comparable to the 24-meric PDB
structure (data not shown).
Energy evaluation, Hydrogen bonds analysis, Solvent

Accessible Surface and RMSF were obtained using differ-
ent tools from the Gromacs Suite, while data from the
PCA of the trajectories was used for evaluating protein
stability and metastable structures. Exploiting the Chimera
plugin SurfNet, using 0.8 Å as grid interval and 5 Å as
distance cut-off values, we obtained the volume of the
interface region and its surface, and the ratio of volume
on surface returns the Gap_Index (= Gap Volume (Å3)/
interface ASA (Å2)) [30].
R (http://www.r-project.org/) was used to obtain the

Principal Component Analysis of the selected parameters,
to cluster similar structures and to obtain the correlation
matrix for the parameters and its heat map.
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